Bull. Aust. Math. Soc. **92** (2015), 478–**487** doi:10.1017/S0004972715000866

ON ALGEBRAIC INVARIANTS FOR FREE ACTIONS ON HOMOTOPY SPHERES

JANG HYUN JO

(Received 17 February 2015; accepted 29 May 2015; first published online 4 September 2015)

Abstract

We investigate conjectures and questions regarding topological phenomena related to free actions on homotopy spheres and present some affirmative answers.

2010 Mathematics subject classification: primary 57S25; secondary 20J05.

Keywords and phrases: elementary amenable group, Gorenstein cohomological dimension, $H_{\mathfrak{F}}$ groups, periodic cohomology, projective complete cohomological dimension.

1. Introduction

The purpose of this paper is to investigate the following conjectures and questions regarding topological phenomena related to free actions on homotopy spheres.

CONJECTURE I [31]. A group G has periodic cohomology after some steps if and only if G admits a finite-dimensional free G-CW-complex which is homotopy equivalent to a sphere.

QUESTION A. Suppose there exists a nonnegative integer k such that for each proper subgroup H < G of finite projective complete cohomological dimension, $pccd H \le k$. Is it true that $pccd G < \infty$?

QUESTION B. For which groups is the following statement true?

A group *G* has periodic cohomology of period *q* after some steps with periodicity isomorphisms induced by the cup product with an element in $H^q(G, \mathbb{Z})$ if and only if *G* has periodic homology of period *q* after some steps with periodicity isomorphisms induced by the cap product with an element in $H^q(G, \mathbb{Z})$.

CONJECTURE II [33]. If G is an elementary amenable group, then $\operatorname{Gcd}_{\mathbb{Q}} G = \operatorname{Gcd} G$.

The author is supported by the Basic Science Research Program under the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2006395). © 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

Suppose that a group G admits a finite dimensional free G-CW-complex which is homotopy equivalent to a sphere. Then it can be seen that there exists an exact sequence of $\mathbb{Z}G$ -modules

$$0 \to \mathbb{Z} \to A \to P_{n-1} \to \cdots \to P_0 \to \mathbb{Z} \to 0,$$

where each P_i is projective and proj.dim_{ZG} $A < \infty$ (see [24, Proposition 5.10]), and then it follows from [27, Theorem 2.6] that G has periodic cohomology of period q after k-steps, that is, $H^i(G, -)$ and $H^{i+q}(G, -)$ are naturally equivalent for all i > k. Thus the essential part of Conjecture I is whether the periodicity of the group cohomology is the algebraic characterisation of those groups G which admit a finite dimensional free G-CW-complex which is homotopy equivalent to a sphere. Mislin and Talelli [24] describe the history of this conjecture and prove Conjecture I when G belongs to the class $\mathbf{H}_{\delta b}$ of groups.

The class $\mathbf{H}\mathfrak{F}$ is the smallest class of groups that contains finite groups and contains a group *G* whenever *G* admits a finite dimensional contractible *G*-*C*-complex whose stabilisers are already in $\mathbf{H}\mathfrak{F}$ [20]. The class $\mathbf{H}\mathfrak{F}_b$ is the subclass consisting of those groups in $\mathbf{H}\mathfrak{F}$ for which there is a bound on the orders of their finite subgroups. The class $\mathbf{L}\mathbf{H}\mathfrak{F}$ is the class of groups such that all of its finitely generated subgroups are in $\mathbf{H}\mathfrak{F}$. The class $\mathbf{L}\mathbf{H}\mathfrak{F}$ contains, for example, all elementary amenable groups and all linear groups, and it is extension closed, closed under ascending unions and closed under amalgamated free products and HNN extensions.

In [1] Adem and Smith proved Conjecture I under the hypothesis that the periodicity isomorphisms are given by the cup product with a cohomology element. In [31] Talelli combined the following theorem with the result of Adem and Smith to show that Conjecture I holds for the groups of the class $H\mathfrak{F}$.

THEOREM 1.1 [31, Theorem 3.2, Corollary 3.3, Proposition 3.4]. Let G be a group with periodic cohomology of period q after k-steps. Then the following statements are equivalent:

- (1) $H^{i}(G, P) = 0$ for all i > k and every projective $\mathbb{Z}G$ -module P;
- (2) the periodicity isomorphism is induced by the cup product with an element in $H^q(G,\mathbb{Z})$;
- (3) spli $G < \infty$.

For $G \in \mathbf{H}\mathfrak{F}$ the above equivalent conditions hold. Thus if $G \in \mathbf{H}\mathfrak{F}$, Conjecture I holds for *G*. Here spli *G* is the supremum of the projective lengths of the injective $\mathbb{Z}G$ -modules [12].

For an arbitrary group *G*, the complete cohomology of *G* was introduced independently by Benson and Carlson [6], Mislin [23] and Vogel [13] and their approaches turned out to be isomorphic (as shown by Mislin). The projective complete cohomological dimension, pccd *G*, of a group *G* comes naturally from the complete cohomology of *G*. It is defined as the least integer $n \ge -1$ for which $H^i(G, -) \cong \widehat{H}^i(G, -)$ for all i > n, or ∞ if no such *n* exists, where $\widehat{H}^i(G, -)$ is the complete cohomology of *G* [17]. The possible values of pccd *G* are integers greater than or equal to -1 and ∞ . It is known that if $G = *_{n \in \mathbb{N}} G_n$ and G_n is a free abelian group of rank *n*, then pccd $G = \infty$, and if *G* is the Thompson group T, $\bigoplus_{i=1}^{\infty} \mathbb{Z}$, or $GL_n(K)$, where *K* is a subfield of the algebraic closure of \mathbb{Q} , then pccd G = -1 [17, 18].

Note that condition (1) of Theorem 1.1 is equivalent to the condition $pccd G \le k$ (see [17, Proposition 2.3]). It can be seen from [1, Corollary 2.10] and Theorem 1.1 that the validity of Conjecture I depends on the finiteness of the projective cohomological dimension. It was also known from [17, Theorem 3.17] that if $G \in \mathbf{H}\mathfrak{F}$ or $pccd G < \infty$, then condition (1) of Theorem 1.1 holds. Thus, if G has periodic cohomology of period q after k-steps, then every proper subgroup H < G of finite projective complete cohomological dimension satisfies $pccd H \le k$, since H also has periodic cohomology of period q after k-steps. From this viewpoint, we may ask whether Question A has an affirmative answer.

Note that if G has periodic cohomology of period q after k-steps, then G admits a complete projective resolution [24, 27] and so pccd G > -1 [17, Proposition 3.10]. Thus, when we consider Conjecture I, we only need to treat the case that the pccd of a group is greater than -1. But we also consider the possibility that the pccd of a group is -1 in Question A. Analogous questions to Question A were also considered in [19, 25], but there is a crucial difference. The finiteness of the cohomological dimension of a group is a subgroup closed property while the finiteness of the pccd of a group is not a subgroup closed property. As we noted earlier, if G is a free abelian group of infinite rank then pccd G = -1, while for any positive integer k there is a subgroup H of G with pccd H > k [17]. As noted above, if Ouestion A has an affirmative answer, then Conjecture I is a theorem. One of the purposes of this paper is to present a large class of groups such that if we restrict ourselves to this class of groups we have an affirmative answer to Question A (and therefore a partial answer to Conjecture I). In Theorem 2.9, we show that if a group G belongs to a certain class \mathfrak{X} of groups, then Question A is affirmative for G. If, in addition, G belongs to the class $L\mathfrak{X}$ and satisfies the \aleph_n -condition, then Question A has an affirmative answer for G (see Section 2 for the definitions of \mathfrak{X} , L \mathfrak{X} and the \aleph_n -condition).

In [4], using the notion of flat covers and proper flat resolutions, Asadollahi *et al.*, investigated the notion of periodic homology of period q after k steps, that is, that $H_i(G, -)$ and $H_{i+q}(G, -)$ are naturally equivalent for all i > k. They showed that if a group G with the property that every flat $\mathbb{Z}G$ -module has finite projective dimension, then G has periodic cohomology of period q after some steps with the periodicity isomorphisms induced by the cup product with an element in $H^q(G, \mathbb{Z})$ if and only if G has periodic homology of period q after some steps with the periodicity isomorphisms induced by the cap product with an element in $H^q(G, \mathbb{C})$, where C is the cotorsion envelope of the trivial $\mathbb{Z}G$ -module \mathbb{Z} . In [32], Talelli showed that a countable group G has periodic cohomology of period q after some steps with the periodicity isomorphisms induced by the cup product with an element in $H^q(G, \mathbb{Z})$ if and only if G has periodic cohomology of period q after some steps with the periodicity isomorphisms induced by the cup product with an element in $H^q(G, \mathbb{Z})$ if and only if G has periodic cohomology of period q after some steps with the periodicity isomorphisms induced by the cup product with an element in $H^q(G, \mathbb{Z})$ if and only if G has periodic homology of period q after some steps with the periodicity isomorphisms induced by the cup product with an element in $H^q(G, \mathbb{Z})$ if and only if G has periodic homology of period q after some steps with the periodicity isomorphisms induced by the cup product with an element in $H^q(G, \mathbb{Z})$ if and only if G has periodic homology of period q after some steps with the periodicity isomorphisms induced by the cup product with an element in $H^q(G, \mathbb{Z})$. In Theorem 3.3, we show

that if G is a finite group or an infinite group of cardinality \aleph such that $2^{\aleph} = \aleph_k$ for some $k \in \mathbb{N}$, then G satisfies the statement in Question **B**.

On the other hand, recall the notion of property \mathcal{P}_1 [22, 30] which comes naturally from the notion of periodic cohomology after 1-step [28, 29]: a group *G* is said to have property P_1 if there exists a \mathbb{Z} -free $\mathbb{Z}G$ -module *A* such that proj.dim_{$\mathbb{Z}G$} $A \leq 1$ and $H^0(G, A) \neq 0$. In [22, 30] Kropholler and Talelli showed that *G* has property \mathcal{P}_1 if and only if $cd_{\mathbb{Q}} G \leq 1$ if and only if *G* is the fundamental group of a graph of finite groups. As noted above, if *G* admits a finite dimensional free *G*-*CW*complex homotopy equivalent to a sphere, then there exists an exact sequence of $\mathbb{Z}G$ -modules $0 \to \mathbb{Z} \to A \to P_{n-1} \to \cdots \to P_0 \to \mathbb{Z} \to 0$, where each P_i is projective and proj.dim_{$\mathbb{Z}G$} $A < \infty$. It can be easily seen that $H^0(G, A) \neq 0$. In [5, 31] Bahlekeh *et al.* and Talelli showed that spli $G < \infty$ if and only if there is a \mathbb{Z} -split, $\mathbb{Z}G$ -exact sequence $0 \to \mathbb{Z} \to A$ with $A \mathbb{Z}$ -free and proj.dim_{$\mathbb{Z}G} <math>A < \infty$. Moreover, in this case proj.dim_{$\mathbb{Z}G$} A = Gcd G. Here Gcd *G* is the Gorenstein cohomological dimension of *G* which is defined as the Gorenstein projective dimension of the trivial $\mathbb{Z}G$ -module \mathbb{Z} [14]. It is known from [3, 9, 12, 17] that for any group *G*,</sub>

$$\operatorname{pccd} G \leq \operatorname{cd} G = \operatorname{Gcd} G \leq \operatorname{silp} G = \operatorname{spli} G \leq \operatorname{cd} G + 1 = \operatorname{Gcd} G + 1$$

where $\underline{cd} G := \sup\{n : \operatorname{Ext}_{\mathbb{Z}G}^n(M, F) \neq 0, M \text{ is } \mathbb{Z}\text{-free and } F \text{ is } \mathbb{Z}G\text{-free}\}$ is Ikenaga's generalised cohomological dimension [15] and silp G is the supremum of the injective lengths of the projective $\mathbb{Z}G$ -modules [12]. From this viewpoint, analogous to property \mathcal{P}_1 , we can naturally consider property \mathcal{P}_n . For a positive integer n, a group G is said to have property \mathcal{P}_n if there exists a \mathbb{Z} -free $\mathbb{Z}G$ -module A such that proj.dim_{ZG} $A \le n$ and $H^0(G, A) \ne 0$. One might expect that G has property \mathcal{P}_n if and only $cd_{\mathbb{O}} G \leq n$. Note that for any group G, $Gcd_{\mathbb{O}} G \leq Gcd G$, and for an LH \mathfrak{F} -group G, Gcd $_{\mathbb{O}}$ G = cd $_{\mathbb{O}}$ G [33]. As mentioned in [33], we cannot expect in general that $\operatorname{Gcd}_{\mathbb{O}} G \leq \operatorname{Gcd} G$, because there are torsion-free groups G such that $\operatorname{Gcd}_{\mathbb{Q}} G = \operatorname{cd}_{\mathbb{Q}} G < \operatorname{cd} G = \operatorname{Gcd} G < \infty$. But, Talelli conjectured in [33] that this is true for elementary amenable groups as in Conjecture II. It can be seen that if an elementary amenable group G is an affirmative answer to Conjecture II, then G has property \mathcal{P}_n if and only if $cd_{\mathbb{Q}} G \leq n$ (Lemma 3.4). We show in Theorem 3.5 that every elementary amenable group of type FP_{∞} satisfies Conjecture II. As a corollary, we also show that if G is an elementary amenable group of type FP_{∞} , then G has property \mathcal{P}_n if and only if $\operatorname{cd}_{\mathbb{O}} G \leq n$ (Corollary 3.6).

2. About Conjecture I and Question A

In order to have a class of groups which have an affirmative answer to Question A (and so Conjecture I), we start with the following lemma.

LEMMA 2.1. Let G admit an n-dimensional contractible G-CW-complex X. If there exists a nonnegative integer k such that for any isotropy subgroup G_{σ} , $pccd G_{\sigma} \leq k$, then $pccd G \leq n + k$.

PROOF. It is well known that for any $\mathbb{Z}G$ -module M, there is a spectral sequence

$$E_1^{p,q} = \prod_{\sigma \in \sum_p} H^q(G_\sigma, M) \Rightarrow H^{p+q}(G, M),$$

where \sum_p is a set of representatives for the *p*-simplices of *X* mod *G*. By our assumption, if *M* is projective, then $E_1^{p,q} = 0$ for p > n or q > k and thereby $E_1^{p,q} \cong E_{\infty}^{p,q} = 0$ for p > n or q > k. Therefore $H^{p+q}(G, P) = 0$ for p > n or q > k and projective *P*. Hence pccd $G \le n + k$.

Recall that every group G is expressed as the direct limit of the direct family of its finitely generated subgroups, that is, $G = \lim_{i \in I} G_i$, where G_i is finitely generated.

DEFINITION 2.2. Let *G* be an arbitrary group. We say that *G* satisfies the \aleph_n -condition if the cardinality of the directed set *I* is \aleph_n , where *n* is a nonnegative integer, $G = \varinjlim_{i \in I} G_i$ and each G_i is a finitely generated subgroup of *G*.

The following can be shown by the method of [15, Proposition 6].

LEMMA 2.3. Let $G = \varinjlim_{i \in I} G_i$, where $G_i < G$ and $|I| = \aleph_n$. Then

$$\operatorname{pccd} G \leq \sup_{i \in I} \{\operatorname{pccd} G_i\} + n + 1.$$

PROOF. Notice the following two facts (cf. [16]):

(a) If $\{A_i\}$ is a direct system of *R*-modules and *B* is a *R*-module, then there is a spectral sequence

$$E_2^{p,q} = \varprojlim^{(p)} \operatorname{Ext}_R^q(A_i, B) \Longrightarrow \operatorname{Ext}_R^{p+q}(\varinjlim A_i, B).$$

(b) Let $\{M_i\}_I$ be an inverse system of modules such that $|I| \leq \aleph_n$. Then

$$\lim_{m \to \infty} M_i = 0 \text{ for } m > n + 1.$$

Since $G = \varinjlim G_i$, we have $\varinjlim (\mathbb{Z} \otimes_{\mathbb{Z}G_i} \mathbb{Z}G) \cong \mathbb{Z}$ and

$$\operatorname{Ext}^q_{\mathbb{Z}G}(\mathbb{Z}\otimes_{\mathbb{Z}G_i}\mathbb{Z}G,B)\cong\operatorname{Ext}^q_{\mathbb{Z}G_i}(\mathbb{Z},B)\cong H^q(G_i,B).$$

Let P be a projective $\mathbb{Z}G$ -module. From the above fact (a), we have the following spectral sequence:

$$\varprojlim^{(p)} H^q(G_i, P) \Rightarrow H^{p+q}(G, P).$$

If $\sup\{p \operatorname{ccd} G_i\} \le l$, then the spectral sequence only lives in the rectangle $0 \le p \le n + 1, 0 \le q \le l$. Hence if $p \operatorname{ccd} G = \infty$, then $\sup\{p \operatorname{ccd} G_i\} = \infty$. On the other hand, if $p \operatorname{ccd} G < \infty$, then $\sup\{p \operatorname{ccd} G_i\} = m < \infty$ and $p \operatorname{ccd} G \le m + n + 1$.

PROPOSITION 2.4. Let $G = \bigoplus_{i \in I} G_i$ be a direct sum of groups G_i with $|I| = \aleph_n$. If Question A is affirmative for each G_i , then it is affirmative for G as well.

482

PROOF. Suppose that there exists a nonnegative integer *k* such that for each proper subgroup H < G of finite projective complete cohomological dimension, $pccd H \le k$. Notice that for each $i \in I$ and for any proper subgroup $H_i < G_i$ of finite projective complete cohomological dimension, $pccd H_i \le k$, since H_i is a subgroup of *G*. Thus, for each *i*, $pccd G_i < \infty$ and thereby $pccd G_i \le k$. Hence, $pccd G < \infty$ by Lemma 2.3. \Box

PROPOSITION 2.5. Let $1 \to N \to G \to Q \to 1$ be an extension of groups such that $\operatorname{vcd} Q < \infty$. If Question A is affirmative for N, then it is affirmative for G as well.

PROOF. Suppose that there exists a nonnegative integer k such that for each proper subgroup H < G of finite projective complete cohomological dimension, pccd $H \le k$. Notice that for each proper subgroup L < N of finite projective complete cohomological dimension, pccd $L \le k$, since L is a subgroup of G. Since Question A is affirmative for N, pccd $N < \infty$ and thereby pccd $N \le k$. From [17, Proposition 2.5], it follows that pccd $G \le k + \text{vcd } Q < \infty$.

PROPOSITION 2.6. Suppose that G admits a finite-dimensional contractible G-CWcomplex X. If Question A is affirmative for each isotropy group G_{σ} of X, then it is affirmative for G as well.

PROOF. Suppose that there exists a nonnegative integer k such that for each proper subgroup H < G of finite projective complete cohomological dimension, $pccd H \le k$. Notice that for each isotropy group G_{σ} , any subgroup $H_{\sigma} < G_{\sigma}$ of finite projective complete cohomological dimension satisfies $pccd H_{\sigma} \le k$, since G_{σ} is a subgroup of G. Since Question A is affirmative for G_{σ} , $pccd G_{\sigma} < \infty$ and thereby $pccd G_{\sigma} \le k$. Hence $pccd G < \infty$ by Lemma 2.1.

COROLLARY 2.7. Let G be a group which belongs to the class $\mathbf{H}\mathfrak{F}$. Then Question A is affirmative for G. If, in addition, G belongs to the class $\mathbf{L}\mathbf{H}\mathfrak{F}$ and satisfies the \aleph_n -condition, then Question A is affirmative for G.

PROOF. The corollary follows from Proposition 2.6 and transfinite induction.

DEFINITION 2.8. Let $\mathfrak X$ denote the smallest class of groups which:

- (1) contains all groups of type $\mathbf{H}\mathfrak{F}$;
- (2) contains all groups *G* with spli $G < \infty$;
- (3) contains all groups *G* with proj.dim_{$\mathbb{Z}G$} $B(G,\mathbb{Z}) < \infty$;
- (4) is closed under direct sums of groups $\bigoplus_{i \in I} G_i$ with $|I| = \aleph_n$;
- (5) is closed under extensions of groups $1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$ such that $\operatorname{vcd} Q < \infty$;
- (6) is closed under passing to the group G which admits a finite-dimensional contractible G-CW-complex from isotropy groups G_{σ} .

A group belongs to $L\mathfrak{X}$ if all of its finitely generated subgroups belong to \mathfrak{X} .

THEOREM 2.9. Let G be a group which belongs to the class \mathfrak{X} . Then Question A is affirmative for G. If, in addition, G belongs to the class $\mathfrak{L}\mathfrak{X}$ and satisfies the \aleph_n -condition, then Question A is affirmative answer for G.

484

J. H. Jo

PROOF. If *G* belongs to the class \mathfrak{X} , then the result follows from Lemma 2.3, Propositions 2.4–2.6, Corollary 2.7 and our preliminaries in Section 2. If *G* is an LH \mathfrak{F} -group satisfying the \aleph_n -condition, then the result follows from Lemma 2.3.

COROLLARY 2.10. Groups belonging to class \mathfrak{X} satisfy Conjecture I. Furthermore, the groups of the class $\mathfrak{L}\mathfrak{X}$ satisfying the \aleph_n -condition satisfy Conjecture I.

REMARK 2.11. In [8] Dembegioti and Talelli conjectured that for any group G, fd G = Gcd G + 1, and showed that this holds for some classes of groups. Note that if G has a periodic cohomology after k-steps, then fd $G \le k + 1$ [24, Lemma 4.7]. Note also that pccd G = Gcd G for a group G with Gcd $G < \infty$. Thus, if the conjecture of Dembegioti and Talelli is a theorem, then so is Conjecture I.

3. About Conjecture II and Question B

Ikenaga's generalised homological dimension, $\underline{hd} G$, of a group *G* is defined by $\underline{hd} G := \sup\{n : \operatorname{Tor}_n^G(M, C) \neq 0, M \text{ is } \mathbb{Z}\text{-torsion-free and } C \text{ is cofree}\}$, and sfli *G* is the supremum of the flat lengths of injective $\mathbb{Z}G\text{-modules}$. We denote by fd *M* the flat dimension of a $\mathbb{Z}G\text{-module } M$.

LEMMA 3.1. For any group G, the following statements are equivalent:

- (1) there is a \mathbb{Z} -split, $\mathbb{Z}G$ -exact sequence $0 \to \mathbb{Z} \to A$ such that A is \mathbb{Z} -torsion-free and $\operatorname{fd} A < \infty$;
- (2) sfli $G < \infty$;
- (3) $\underline{\operatorname{hd}} G < \infty$.

PROOF. (1) \Leftrightarrow (2). This was mentioned in [11, Remark 4.4] without a detailed proof. For the convenience of the reader, we give a proof of the implication (1) \Rightarrow (2), which is a homological analogue of the implication (2) \Rightarrow (3) of [31, Theorem 2.2].

Let $0 \to \mathbb{Z} \to A \to B \to 0$ be a \mathbb{Z} -split, $\mathbb{Z}G$ -exact sequence with A \mathbb{Z} -torsion-free and $\operatorname{fd} A < \infty$. Since $0 \to \mathbb{Z} \to A \to B \to 0$ is \mathbb{Z} -split it follows that for any injective $\mathbb{Z}G$ -module $I, 0 \to I \to I \otimes A \to I \otimes B \to 0$ is $\mathbb{Z}G$ -split exact. Consider a $\mathbb{Z}G$ -exact sequence $0 \to K \to F \to I \to 0$ with F a flat $\mathbb{Z}G$ -module. Since A is \mathbb{Z} -torsion-free, it is \mathbb{Z} -flat (cf. [26, Corollary 3.51]) and so the sequence $0 \to K \otimes A \to F \otimes A \to I \otimes A \to 0$ is $\mathbb{Z}G$ -exact. Note that $F \otimes A$ is $\mathbb{Z}G$ -flat [7, Exercise III.0.1]. Since K is \mathbb{Z} -torsionfree and $\operatorname{fd} A < \infty$, it is clear that $\operatorname{fd}(K \otimes A) \leq \operatorname{fd} A$. Thus $\operatorname{fd}(I \otimes A) \leq \operatorname{fd}(K \otimes A) + 1 \leq$ $\operatorname{fd} A + 1$. Since $0 \to I \to I \otimes A \to I \otimes B \to 0$ is $\mathbb{Z}G$ -split, it follows that $\operatorname{fd} I \leq \operatorname{fd} A + 1$. Hence, $\operatorname{sfli} G \leq \operatorname{fd} A + 1$.

(2) \Leftrightarrow (3). This follows from [18, Proposition 5.4(i)] or [11, Proposition 4.9(iii)]. \Box

THEOREM 3.2. Let G be an infinite group of cardinality \aleph such that $2^{\aleph} = \aleph_k$ for some $k \in \mathbb{N}$. The the following are equivalent:

- (1) there is a \mathbb{Z} -split, $\mathbb{Z}G$ -exact sequence $0 \to \mathbb{Z} \to A$ such that A is \mathbb{Z} -torsion-free and $\operatorname{fd} A < \infty$;
- (2) sfli $G < \infty$;

On algebraic invariants for free actions on homotopy spheres

- (3) hd $G < \infty$;
- (4) $\operatorname{cd} G < \infty$;
- (5) spli $G < \infty$;
- (6) there is a \mathbb{Z} -split, $\mathbb{Z}G$ -exact sequence $0 \to \mathbb{Z} \to B$ such that B is \mathbb{Z} -free and proj.dim $B < \infty$.

PROOF. This follows immediately from Lemma 3.1 and [11, Corollary 4.5].

THEOREM 3.3. Let G be a countable group or an infinite group of cardinality \aleph such that $2^{\aleph} = \aleph_k$ for some $k \in \mathbb{N}$. Then the following are equivalent:

- (1) *G* has periodic homology of period *q* after some steps with the periodicity isomorphisms induced by the cap product with an element $g \in H^q(G, \mathbb{Z})$;
- (2) *G* has periodic cohomology of period *q* after some steps with the periodicity isomorphisms induced by the cup product with an element $g \in H^q(G, \mathbb{Z})$.

PROOF. By [32, Theorem], it suffices to consider the case that *G* is an infinite group of cardinality \aleph such that $2^{\aleph} = \aleph_k$ for some $k \in \mathbb{N}$.

 $(1) \Rightarrow (2)$. From the proof of [32, Proposition] it follows that *g* is represented by a *q*-extension of the form $0 \to \mathbb{Z} \to A \to P_{q-2} \to \cdots \to P_0 \to \mathbb{Z} \to 0$ such that each P_i is projective, *A* is \mathbb{Z} -free and $\mathrm{fd} A < \infty$. By Theorem 3.1 and [11, Corollary 4.5], we may conclude that spli $G < \infty$ and so fin.dim $G < \infty$ by Theorem 3.2. Thus it follows from [16, Proposition 6] and the argument of dimension shifting that proj.dim $A < \infty$. Hence, the cup product with an element $g \in H^q(G, \mathbb{Z})$ induces periodicity isomorphisms in cohomology after proj.dim *A*-steps.

 $(2) \Rightarrow (1)$. This follows from the argument in the proof of [32, Theorem].

By definition, a group *G* is of type FP_{∞} if there exists a projective resolution $P_* \twoheadrightarrow \mathbb{Z}$ in which every P_i is finitely generated (cf. [7]). Note that if *G* is an elementary amenable group of type FP_{∞} , then $h(G) = \operatorname{cd}_{\mathbb{Q}} G = \operatorname{cd}_{\mathcal{F}} G < \infty$, where h(G) is the Hirsch rank of *G* and $\operatorname{cd}_{\mathcal{F}} G$ is the Bredon cohomological dimension of *G* [21].

LEMMA 3.4. Let G be an elementary amenable group and n a positive integer. If G is an affirmative answer to Conjecture II, then G has property \mathcal{P}_n if and only if $cd_{\mathbb{Q}} G \leq n$.

PROOF. Since *G* is an LH[®]-group and satisfies Conjecture II, it follows from [33, Theorem 3.5] that $\operatorname{Gcd} G = \operatorname{Gcd}_{\mathbb{Q}} G = \operatorname{cd}_{\mathbb{Q}} G$. Suppose that *G* has property \mathcal{P}_n . Then there exists a \mathbb{Z} -free $\mathbb{Z}G$ -module *A* such that proj.dim_{$\mathbb{Z}G$} $A \leq n$, and so spli $G < \infty$ by [31, Theorem 2.2] and $\operatorname{Gcd} G = \operatorname{proj.dim}_{\mathbb{Z}G} A$ by [5, Theorem 2.7]. Thus $\operatorname{cd}_{\mathbb{Q}} G \leq n$. Conversely, suppose that $\operatorname{cd}_{\mathbb{Q}} G \leq n$. Then $\operatorname{Gcd} G \leq n$ and there exists a \mathbb{Z} -free $\mathbb{Z}G$ -module *A* such that $\operatorname{proj.dim}_{\mathbb{Z}G} A = \operatorname{Gcd} G$ by [5, Theorem 2.7]. Hence *G* has property \mathcal{P}_n .

THEOREM 3.5. Let G be an elementary amenable group of type FP_{∞} . Then G satisfies Conjecture II.

[8]

J. H. Jo

PROOF. By [33, Theorem 3.2], it suffices to show that $\operatorname{Gcd} G \leq \operatorname{Gcd}_{\mathbb{Q}} G$. We may assume that $\operatorname{Gcd}_{\mathbb{Q}} G < \infty$. Since G is an LHF-group, it follows that $\operatorname{Gcd}_{\mathbb{Q}} G = \operatorname{cd}_{\mathbb{Q}} G$. Let H be a torsion-free subgroup of finite index in G. Then we have

$$\operatorname{vcd} G = \operatorname{cd} H = h(H) = \operatorname{cd}_{\mathbb{O}} H = \operatorname{cd}_{\mathbb{O}} G = \operatorname{Gcd}_{\mathbb{O}} G < \infty$$

Since $\operatorname{vcd} G < \infty$, it follows that $\operatorname{\underline{cd}} G = \operatorname{vcd} G$ [15, Corollary 1]. Hence, we conclude that $\operatorname{Gcd} G = \operatorname{Gcd}_{\mathbb{Q}} G < \infty$.

COROLLARY 3.6. If G is an elementary amenable group of type FP_{∞} and n is a positive integer, then G has property \mathcal{P}_n if and only if $cd_{\mathbb{Q}} G \leq n$.

PROOF. This follows immediately from Lemma 3.4 and Theorem 3.5.

Appendix

In [18, Proposition 5.4] the author claimed that for any group *G*, sfli *G* = silf *G* if both are finite. Soon after [18] was published, the author realised that there is an incorrect argument in the proof of [18, Proposition 5.4] even though sfli $G \le \operatorname{silf} G$ is true. Asadollahi *et al.* showed in [2, Theorem 3.7] that sfli *G* = silf *G* provided that $\mathbb{Z}G$ is coherent. Thus [18, Question B] cannot be proved by the argument in [18, Question B]. However, Emmanouil showed in [10] that [18, Question B] has a positive answer for any group *G*.

References

- [1] A. Adem and J. Smith, 'Periodic complexes and group extensions', *Ann. of Math.* (2) **154** (2001), 407–435.
- [2] J. Asadollahi, A. Bahlekeh, A. Hajizamani and S. Salarian, 'On certain homological invariants of groups', J. Algebra 335 (2011), 18–35.
- [3] J. Asadollahi, A. Bahlekeh and S. Salarian, 'On the hierarchy of cohomological dimension of groups', J. Pure Appl. Algebra 213 (2009), 1795–1803.
- [4] J. Asadollahi, A. Hajizamani and S. Salarian, 'Periodic flat resolutions and periodicity in group (co)homology', *Forum Math.* **24** (2012), 273–287.
- [5] A. Bahlekeh, F. Dembegioti and O. Talelli, 'Gorenstein dimension and proper actions', Bull. Lond. Math. Soc. 41 (2009), 859–871.
- [6] D. J. Benson and J. F. Carlson, 'Products in negative cohomology', J. Pure Appl. Algebra 82 (1992), 107–129.
- [7] K. S. Brown, Cohomology of Groups (Springer, Berlin-Heidelberg-New York, 1982).
- [8] F. Dembegioti and O. Talelli, 'On a relation between certain cohomological invariants', J. Pure Appl. Algebra 212 (2008), 1432–1437.
- [9] I. Emmanouil, 'On certain cohomological invariants of groups', Adv. Math. 225 (2010), 3446–3462.
- [10] I. Emmanouil, 'A homological characterization of locally finite groups', J. Algebra 352 (2012), 167–172.
- [11] I. Emmanouil and O. Talelli, 'On the flat length of injective modules', J. Lond. Math. Soc. (2) 84 (2011), 408–432.
- T. V. Gedrich and K. W. Gruenberg, 'Complete cohomological functors of groups', *Topology Appl.* 25 (1987), 203–223.
- [13] F. Goichot, 'Homologie de Tate-Vogel équivariante', J. Pure Appl. Algebra 82 (1992), 39-64.

486

[10] On algebraic invariants for free actions on homotopy spheres

- [14] H. Holm, 'Gorenstein homological dimensions', J. Pure Appl. Algebra 189 (2004), 167–193.
- [15] B. M. Ikenaga, 'Homological dimension and Farrell cohomology', J. Algebra 87 (1984), 422–457.
- [16] C. U. Jensen, Les foncterus dérivés de lim et leurs applications en theorie des modules, Lecture Notes in Mathematics, 254 (Springer, Berlin-Heidelberg-New York, 1972).
- [17] J. H. Jo, 'Projective complete cohomological dimension of a group', Int. Math. Res. Not. IMRN 13 (2004), 621–636.
- [18] J. H. Jo, 'Complete homology and related dimensions of groups', J. Group Theory 12 (2009), 431–448.
- [19] J. H. Jo and B. E. A. Nucinkis, 'Periodic cohomology and subgroups with bounded Bredon cohomological dimension', *Math. Proc. Cambridge Philos. Soc.* 144 (2008), 329–336.
- [20] P. H. Kropholler, 'Hierarchical decompositions, generalized Tate cohomology, and groups of type (*FP*)_∞', in: *Combinatorial and Geometric Group Theory (Edinburgh, 1993)*, London Mathematical Society Lecture Note Series, 204 (Cambridge University Press, Cambridge, 1995), 190–216.
- [21] P. H. Kropholler, C. Martinez-Pérez and B. E. A. Nucinkis, 'Cohomological finiteness conditions for elementary amenable groups', *J. reine angew. Math.* 637 (2009), 49–62.
- [22] P. H. Kropholler and O. Talelli, 'On a property of fundamental groups of graphs of finite groups', *J. Pure Appl. Algebra* 74 (1991), 57–59.
- [23] G. Mislin, 'Tate cohomology for arbitrary groups via satellites', *Topology Appl.* 56 (1994), 293–300.
- [24] G. Mislin and O. Talelli, 'On groups which act freely and properly on finite dimensional homotopy spheres', in: *Computational and Geometric Aspects of Modern Algebra (Edinburgh, 1998)*, London Mathematical Society Lecture Note Series, 275 (Cambridge University Press, Cambridge, 2000), 208–228.
- [25] N. Petrosyan, 'Jumps in cohomology and free group actions', J. Pure Appl. Algebra 210 (2007), 695–703.
- [26] J. J. Rotman, An Introduction to Homological Algebra, 2nd edn (Universitext, Springer, New York, 2009).
- [27] O. Talelli, 'On cohomological periodicity for infinite groups', Comment. Math. Helv. 55 (1980), 178–192.
- [28] O. Talelli, 'On groups with periodic cohomology after 1-step', J. Pure Appl. Algebra 30 (1983), 85–93.
- [29] O. Talelli, 'On groups with property \mathcal{P}_1 ', Bull. Soc. Math. Greece (N.S.) **29** (1988), 85–90.
- [30] O. Talelli, 'On groups with $cd_{\mathbb{Q}}G \leq 1$ ', J. Pure Appl. Algebra **88** (1993), 245–247.
- [31] O. Talelli, 'Periodicity in group cohomology and complete resolutions', Bull. Lond. Math. Soc. 37 (2005), 547–554.
- [32] O. Talelli, 'On periodic (co)homology of groups', Comm. Algebra 40 (2012), 1167–1172.
- [33] O. Talelli, 'On the Gorenstein and cohomological dimension of groups', *Proc. Amer. Math. Soc.* 142 (2014), 1175–1180.

JANG HYUN JO, Department of Mathematics, Sogang University, Seoul 121-742, Korea e-mail: jhjo@sogang.ac.kr