Figures

1.1	Map showing the four study sites presented in this book.	page 7
1.2	The water diary charts designed for Kitui county, Kenya, which were	
	translated to the local language Kikamba. One hundred and fifteen	
	households in Kyuso and Tseikuru wards of Mwingi-North subcounty	
	participated in the diary study from August 2018 to July 2019.	8
2.1	Looking into the expansive Buriganga River from our tour boat in	
	March 2018. As the black, polluted waters glistened in the morning	
	sun, the bridge at the far end read, 'The nation thrives if the rivers	
	survive. We will bring back our Golden Bengal' (translated from Bangla).	
	(Photo credit: Alice Chautard, 2018).	15
2.2	Map of Greater Dhaka (comprising four districts) showing the Dhaka	
	North (DNCC), Dhaka South (DSCC), Gazipur (GCC), and	
	Narayanganj (NCC) City Corporations, major rivers, and industrial clusters.	17
2.3	River health of Greater Dhaka during 2019–2020 based on a Water	
	Quality Index comprising 15 parameters, namely temperature, pH,	
	electrical conductivity, dissolved oxygen, oxidation-reduction potential,	
	turbidity, colour, alkalinity, iron, ammonia nitrogen, nitrate, phosphate,	
	sulphide, sulphate, and chloride. Drawn by author using data collected	
	by the Bangladesh University of Engineering and Technology under	
	the REACH Programme.	20
2.4	Low-income settlements near the Konabari industrial cluster along the	
	Turag River. Rise in water levels in monsoon dilutes pollutants, though	
	increased proximity and use of river water is likely to increase exposure	
	to toxic chemicals and pathogens. (Photo credit: Sonia Hoque, February	
	and August 2019).	21
2.5	Map of Turag River and Tongi Khal in northern Dhaka showing locations of	
	households surveyed and river use observation study by zones.	23
2.6	(a) Boat dwellers and hanging latrines along Tongi slum (Photo credit:	
	Sonia Hoque, 2017); (b) woman collecting plastic bottles from Tongi Khal	
	(Photo credit: Rebecca Peters, 2017); (c) men washing and bathing in the	
	indigo waters (Photo credit: Alice Chautard, 2018); (d) and a Ferris wheel	
	for children next to an effluent outlet along Buriganga River (Photo credit:	
	Alice Chautard, 2018).	26

viii

2.7	Intensity of river use activities disaggregated by zone and observation	
	site. Reprinted from Hoque et al. (2021) under the terms of the CC BY	
	4.0 license.	27
2.8	Observations of river use disaggregated by gender and age. Reprinted	
	from Hoque et al. (2021) under the terms of the CC BY 4.0 license.	33
3.1	Sisters-in-law busy with chores on a typical afternoon in Polder 29.	38
3.2	Location and water salinity of tube wells mapped in Polder 29 and	
	Polder 23 of Khulna district.	40
3.3	Women using <i>kolshis</i> and plastic bottles to collect water from	
	a pond sand filter (Photo credit: Lutfor Rahman).	41
3.4	Water from a deep tube well in Polder 29 being transported in 30-litre	
	containers via a trawler to be sold to villages $6-8$ km further south	
	(Photo credit: Lutfor Rahman).	42
3.5	(a) Water supply infrastructure and (b) main sources of drinking	
0.0	water in Polder 29 and Polder 23.	44
3.6	Water sources used by 120 diary households during 2018–2019 in relation to	
5.0	rainfall.	46
3.7	Seasonal variations in chemical and faecal contamination across	10
5.7	97 waterpoints in Polder 29.	47
3.8	Annual water and food expenditures against total expenditures for 120 diary	77
5.0	households in Polder 29 in 2018–2019.	49
4.1	Spatial and seasonal variations in rainfall over Kitui county, illustrating	77
7.1	the 'long rainy season' (March–May) and the 'short rainy season'	
	(October–December) separated by a prolonged 'dry season' (June–September).	
	Map drawn by Ellen Dyer using rainfall data from 2016 to 2022 available	
	from the Climate Hazards Group InfraRed Precipitation with Station data	
	(CHIRPS).	58
4.2	People extracting water from scoopholes in a dry sandy riverbed in	50
4.2	rural Kitui. The photo was taken in March 2017 just days before the Kenyan	
		60
1 2	President declared a national drought emergency (Credit: Rob Hope).	00
4.3	Map of Mwingi-North subcounty showing the spatial and seasonal	67
4 4	changes in water sources by 115 water diary households during 2018–2019.	67
4.4	Monthly variations in water salinity and faecal contamination risks by	
	type of source in Mwingi-North subcounty. (Designed by author using	
	data from Nowicki et al. 2022. Missing datapoints refer to instances where	60
	the sources have dried up, closed operations, or become non-functional.)	68
4.5	Monthly variation in amount of water fetched from different sources and	70
	water expenditures for households in four 'expenditure categories'.	70
4.6	Household annual water and total expenditures grouped by 'water	
	expenditure categories'. (Each pie chart represents one household, with	
	the colours reflecting the share of total amount of water fetched by source.	
	Water expenditure categories were derived through cluster analysis of	
	household monthly water expenditures. The dashed lines show the median	
. –	annual water expenditure for each category.)	71
4.7	Boxplot showing monthly variations in water supplied across 32 piped	
	schemes in Mwingi-North during 2018–2021, with red line showing	

	the mean values. The chart highlights the drop in piped scheme usage	
	during the two rainy seasons (Data source: FundiFix).	73
5.1	Charts showing spatial variations in rainfall in the Turkwel River basin	
	(orange boundary) across different months. (Star shows location of Lodwar	
	town, and white dot shows Turkwel Gorge dam). Map drawn by Ellen	
	Dyer using rainfall data from 2016 to 2022 available from the Climate	
	Hazards Group InfraRed Precipitation with Station data (CHIRPS).	79
5.2	Typical dome-shaped huts in Lodwar with a metered LOWASCO water tap	
	protruding from the ground (Photo credit: Sonia Hoque, February 2019).	83
5.3	Main sources of drinking water reported by households in Lodwar town	
	in 2017.	85
5.4	Monthly variations in water, food, education, and total expenditures	
	reported by 98 water diary households during 2018–2019. Water expenditures	
	remain relatively stable throughout the year, with food expenditures peaking	
	during Christmas (December 2018) and educational expenditures peaking in	
	beginning of term (September 2018 and January 2019).	86
5.5	Annual water expenditure incurred by 98 water diary households in	
	2018–2019 in relation to their total household expenditures and the	
	proportion of water fetched from different sources.	87
5.6	Map of Lodwar town showing location of waterpoints (functional at	
	the time of data collection). Data combined from multiple rounds of water	
	supply infrastructure mapping in June 2021, February 2022, and May 2023.	88
5.7	Private water vendor selling water for KES 30 per 20-litre jerrycan	
	(USD 1.5 per m ³) in Lokaparparei, 4 km north of Lodwar town	
	(Photo: Waterpoint Survey, July 2021).	91
5.8	Children scooping water from the dry riverbed of Kawalase River in	
	Lodwar (Photo credit: Sonia Hoque, February 2019).	92
A.1	The water diary charts designed for Khulna, Bangladesh, which were	
	translated to Bangla. One hundred and twenty households from the southern	
	part of Polder 29 participated in the diary study from May 2018 to April	
	2019. Reprinted from Hope and Hoque (2020) under the terms of the	
	CC BY 4.0 license.	110
A.2	Water diary sheets filed by household ID and stacked in REACH Polder	
	29 office in Khulna.	113
A.3	Completed water diaries submitted by week and by number of households	
	in Khulna, Kitui, and Lodwar.	113
A.4	Timeline of water diaries and complementary methods across the four sites	
	in Bangladesh and Kenya.	117