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ON PROPER HOLOMORPHIC MAPPINGS FROM

DOMAINS WITH T-ACTION

BERNARD COUPET, YIFEI PAN and ALEXANDRE SUKHOV

Abstract. We describe the branch locus of a proper holomorphic mapping
between two smoothly bounded pseudoconvex domains of finite type in C

2

under the assumption that the first domain admits a transversal holomorphic
action of the unit circle. As an application we show that any proper holomorphic
self-mapping of a smoothly bounded pseudoconvex complete circular domain
of finite type in C2 is biholomorphic.

§1. Introduction

In the present paper we study proper holomorphic mappings between

smoothly bounded pseudoconvex domains of finite type in C
2. We begin

with the description of the branch locus of a proper holomorphic mapping.

Let Ω be a smoothly bounded pseudoconvex domain of finite type in C
2. It

follows by [3, 7] that the automorphism group action Aut(Ω) × Ω −→ Ω,

(f, z) 7→ f(z) extends smoothly to Ω. Thus we can assume that Aut(Ω)

acts smoothly on Ω and in particular on ∂Ω. We say (see [3, 4, 27]) that a

subgroup G of Aut(Ω) acts transversally on ∂Ω if for every point p ∈ ∂Ω

the image of the tangent mapping (Ψp)
∗ : TeG −→ Tp(∂Ω) associated to

the mapping Ψp : G −→ ∂Ω, f 7→ f(p) is not contained in the holomorphic

tangent space Hp(∂Ω). We will denote by T the Lie group of the unite

circle. If T is a subgroup of Aut(Ω) and acts transversally on ∂Ω, we will

simply say that Ω admits a transversal T-action.

Let f : Ω −→ D be a proper holomorphic mapping between two do-

mains Ω and D. We will denote by Jf (z) the Jacobian determinant of f

and by Vf = {z ∈ Ω : Jf (z) = 0} the branch locus of f .

Our first main result is the following

Theorem 1.1. Let f : Ω −→ D be a proper holomorphic mapping

between two smoothly bounded pseudoconvex domains of finite type in C
2.
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Suppose that Ω admits a transversal T-action. Then for any irreducible

component V of the branch locus Vf the following holds:

(i) (V, ∂V ) is a smooth manifold with boundary in a neighborhood of every

point in V ∩ ∂Ω.

(ii) ∂V := V \V is a finite disjoint union of T-orbits.

It is well-known [1] that any proper holomorphic self-mapping of the

unit ball is biholomorphic. This important result was extended to larger

classes of domains by several authors [6, 8, 10, 13, 22, 26]. One of the natural

conjectures here is to show that any proper holomorphic self-mapping of a

pseudoconvex domain with smooth finite type boundary is biholomorphic

(this question still remains open even in dimension 2). In our paper we

establish a result confirming this general conjecture.

Theorem 1.2. Let Ω be a smoothly bounded pseudoconvex complete

circular domain of finite type in C
2. Then every proper holomorphic self-

mapping of Ω is a biholomorphism.

In contrast with the T2 action case a regularity of the boundary is

essential here. Indeed, a basin of attraction of a polynomial homogeneous

complex dynamic system in C
2 is a complete circular domain [23]; this

gives a large class of examples of circular domains with proper holomorphic

self-mappings which are not automorphisms. For instance, there exists a

complete circular domain D in C
2 with real analytic strictly pseudoconvex

boundary outside of the union of three circles (where the boundary is not

smooth) such that there is a proper holomorphic self-mapping of D which

is not biholomorphic [14] .

The basic idea in proof of Theorem 1.1 given in Section 2 and 3 is a

special version of the scaling method developed in [17, 18]. One can consider

this method as a quantitative version of deformation of a complex structure

which reduces the determination of the branch locus to a very special class of

domains with algebraic boundaries. Theorem 1.2 then follows by elementary

complex dynamics arguments in Section 4.

§2. Branching of holomorphic mappings between algebraic

domains

This section is devoted to the study of holomorphic mappings between

algebraic domains in C
2. The general situation will be reduced to this case

in the next section.
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We recall certain general facts about boundary behavior of proper holo-

morphic mappings. Let f : D1 −→ D2 be a proper holomorphic mapping

between two pseudoconvex smoothly bounded domains in C
2. We suppose

that f is smooth up to the boundary. Let rj be the defining function of Dj .

Following [6, 8], we consider the Levi-determinant of Dj defined as follows:

Λ∂Dj
(p) = − det
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Obviously Λ∂D2(f(p))|Jf (z)|2 = Λ∂D1(p) for any p ∈ ∂D1.

For any boundary point p ∈ ∂Dj we consider also the order of vanishing

of ΛDj
at p denoted by τ∂Dj

(p), which is defined as follows: we choose

smooth real coordinates x = (x1, x2, x3) on ∂Dj such that p corresponds

to x = 0 , and the formal power series ΛDj
(x) =

∑∞
j=0

∑

|α|=j aαx
α, where

α = (α1, α2, α3) is a multi-index and |α| = α1 + α2 + α3. We set τ∂Dj
(p) =

min{|α| : aα 6= 0} (of course, this definition does not depend on the choice

of coordinates). The following properties of τ are well known (see [6, 10]):

(1) τ∂Dj
(p) is an upper-semicontinuous function on ∂Dj .

(2) τ∂D2(f(p)) ≤ τ∂D1(p) and the equality holds if and only if Vf does

not contain p i.e. f is a diffeomorphism on the boundary near p .

The main purpose of this section is to study the structure of the branch

locus of a proper holomorphic mapping f between rigid algebraic domains

Ω = {(z,w) ∈ C
2 : ρ(z,w) = Imw + P (z) < 0} and D = {(z,w) ∈

C
2 : φ(z,w) = Imw + Q(z) < 0}, where P,Q are non identically zero

subharmonic polynomials without purely harmonic terms.

The set of weakly pseudoconvex points of ∂Ω will be denoted by w(∂Ω).

One has w(∂Ω) = {z ∈ C : (∆P )(z) = 0} × R.

Let us consider the set ΣΩ ∈ C of singular points of the set S = {z ∈

C : (∆P )(z) = 0}, i.e. the set of points in C such that S is not a smooth

curve in any neighborhood of such a point. Note that ΣΩ is finite (as an

algebraic set of dimension 0).

Proposition 2.1. Let U be a neighborhood of the origin and f : Ω ∩

U −→ D be a holomorphic mapping verifying the following property: for

every point p ∈ U ∩ ∂Ω and any sequence of points (pj)j in Ω converging
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to p the sequence of images (f(pj))j has no cluster points in D. Then for

every open U ′ ⊂ U the branch locus U ′ ∩Vf in U ′ is contained in the union

of complex lines ∪zj∈ΣΩ
{(zj , w) ∈ C

2 : Imw < −P (zj)}.

The following corollary considers the case useful for the proof of our

main results:

Corollary 2.2. If P is homogeneous, then Vf is contained in the

half-plane {(0, w) : Imw < 0}.

Proof of Proposition 2.1.

We have S = S1 ∪ . . . ∪ Sk ∪ ΣΩ, where Sj are smooth connected real

algebraic curves. We note that the order of vanishing of the laplacian ∆P

is constant on every Sj by the connectivity.

Hence, we have w(∂Ω) = ∪N
j=1(Sj ×R)∪ (ΣΩ ×R) and τ(p) is constant

on every totally real manifold Sj × R.

Let us recall also the following property of the mapping f established

in Proposition 2.2 and Lemma 4.1 of [17]: if p is a boundary point of Ω

and there exists a sequence of points (pj)j in Ω converging to p such that

the sequence of images (f(pj))j converges to a finite boundary point of ∂D,

then f extends continuously up to the boundary in a neighborhood of p;

then it follows by Lemma 6.2 of [18] that f extends to C
2 as an algebraic

mapping i.e. its graph is contained in a complex algebraic 2-dimensional

variety X in C
2 × C

2. Moreover, it follows by Proposition 6.3 of [18] and

[11] that f is smooth up to the boundary in a neighborhood of p and then

by Lemma 2.1 of [18] the Jacobian determinant Jf of f does not vanishes

identically. Thus, U ∩ ∂Ω is a disjoint union of two subsets: the subset A of

points where f extends smoothly up to the boundary and the subset B of

points b ∈ U ∩ ∂Ω such that lim(z,w)−→b |f((z,w))| = ∞. It was shown in

Lemma 4.1 of [17] that A is an (non-empty) open dense subset of U ∩ ∂Ω.

We will call B the ”pull-back of infinity” and will denote by f−1(∞).

We denote by CP 2 the complex 2-dimensional projective space and

by X̂ the projective closure of X in CP 2 × CP 2 which is an irreducible

complex 2-dimensional projective variety. Let πΩ (resp. πD) be the natural

projection of X̂ to the copy of CP 2 containing Ω (resp.D) (or more precisely

its image under the canonical embedding i : C
2 ↪→ CP 2). Since Jf does not

vanishes identically, the composition πD ◦ π−1
Ω : CP 2 −→ CP 2 is a proper

holomorphic correspondence (see [24]) and in particular, surjective. Then
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πΩ ◦ π−1
D (CP 2\i(C2)) is an complex algebraic curve γ in CP 2 containing

f−1(∞). Since ∂Ω is of finite type, the intersection γ′ = γ ∩ (U ∩ ∂Ω) is at

most a real algebraic curve.

Lemma 2.3. The closure Vf does not intersect the set of strictly pseu-

doconvex points in ∂Ω.

Proof. Let p be a strictly pseudoconvex point in Vf ∩ U ∩ ∂Ω and W

be its neighborhood which does not intersect w(∂Ω). If there exists a point

p′ ∈ Vf ∩W which is not in f−1(∞), then it follows by [17] that f(p′) is a

strictly pseudoconvex point in ∂D and f extends to a biholomorphism in a

neighborhood of p′: a contradiction.

Thus, it suffices to establish the following

Claim. For any open subset W of ∂Ω∩U the intersection Vf ∩W ∩∂Ω

is not contained in f−1(∞).

For the proof assume by contradiction that Vf ∩W ∩ ∂Ω is contained

in f−1(∞). Since f extends to an algebraic mapping, Vf is a piece of an

complex algebraic subset in C
2 and the set of its non-regular points Y is

finite. It follows by the maximum principle applied to the restriction ρ|Vf

that the intersection Vf ∩ ∂Ω cannot contain only point from Y . Thus, one

can assume that there exists a point p′ in Vf ∩W ∩∂Ω such that Vf extends

to a neighborhood of p′ as a smooth complex manifold Ṽf . Now the well-

known argument of [5] using the Hopf lemma shows that (moving slightly

p′) one can assume that Ṽf intersects ∂Ω transversally at p′.

Let g(z,w) is a holomorphic function on D , |g(z,w)| < 1 on D and

g(z,w) −→ 1 as |(z,w)| −→ ∞ (see [17]). Let us consider the composition

g ◦ f . Since Vf ∩ ∂Ω is contained in f−1(∞), (g ◦ f)(z,w) −→ 1 as (z,w)

tends to Vf ∩ ∂Ω; then it follows by the boundary uniqueness theorem that

(g ◦ f)|Vf is equal to 1 identically : a contradiction, and we get the claim.

Q.E.D.

Thus, we have the inclusion Vf ∩ U ∩ ∂Ω ⊂ w(∂Ω).

Lemma 2.4. The intersection V f ∩ (Sj × R) is empty for every j.

Proof. Suppose by contradiction that Vf ∩ (Sj × R) contains a point

p for some j. Then Vf ∩ ∂Ω is contained in (Sj × R) near p ; it follows

by the Claim that there exists a point q in V ∩ Sj × R such that f(q) is
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finite and f extends smoothly up to the boundary near q . Since Jf does

not vanish identically on Sj ×R by the boundary uniqueness theorem, there

exists a sequence (qk) in Sj converging to q such that Jf (qk) 6= 0. Therefore,

τ∂Ω(qk) = τ∂D(f(qk)). On the other hand, τ∂D(f(q)) < τ∂Ω(q). Since τ∂Ω

is constant on Sj, we have τ∂D(f(q)) < τ∂Ω(qk) = τ∂D(f(qk)). This is a

contradiction since the function τ∂D is upper semicontinuous.

Q.E.D.

Now the desired proposition follows by the uniqueness theorem.

§3. Scaling and branching

We begin with the following local version of Theorem 1.1:

Proposition 3.1. Let D1 = {(z,w) ∈ W : Imw + P2m + ϕ(z) < 0}

be a smooth pseudoconvex finite type domain in a neighborhood W of the

origin, ϕ(z) = o(|z|2m), P2m is a non-zero subharmonic polynomial without

purely harmonic terms and D2 be a smoothly bounded pseudoconvex finite

type domain. Let f : D1 −→ D2 be a holomorphic mapping smooth up to

the boundary, f(0) = 0 and V is an irreducible component of the branch

locus Vf such that 0 ∈ V . Then V = D1 ∩ {(z,w) ∈W : z = 0}.

In what follows we denote by Γj the boundary of Dj near the origin.

Recall that by the well-known argument [5] the set E ⊂ V ∩ Γ1 of points

where V is a C∞ smooth manifold with boundary transversal to Γ1 is

open dense in V ∩ Γ1 ([5] considers the strictly pseudoconvex case but the

argument easily can be adapted for our case in view of the existence of

holomorphic peak functions [9] and plurisubharmonic exhaustion functions

[19], see also [6]).

First, we assume that 0 ∈ E , i.e. V is a C∞ smooth variety with

boundary near the origin and transversal to Γ1; the general case will be

reduced to this one. We proceed the proof by contradiction. Assume that the

statement is false. Since V is an irreducible complex variety and a smooth

manifold with boundary near 0, there exists a sequence ζν = (aν , bν) in

V ∩Γ1 converging to 0 and such that aν 6= 0 for any ν. Since V is transversal

to the boundary at 0, it follows by the implicit function theorem that there

exists a smoothly bounded domain X in C , 0 ∈ ∂X and a neighborhood

U of the origin in C
2 such that

V ∩ U = {(z,w) ∈ U : z = h(w), w ∈ X},(1)
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where h is a holomorphic function on X smooth up to the boundary. We

extend h smoothly past the boundary and assume that it is defined in a

neighborhood Y of 0.

Let bν = αν + iβν . Let us consider the translations T ν : (z,w) −→

(z,w + αν). Then the sequence (T ν) converges uniformly to the identity

on any compact subset of C
2 and ην = T ν−1

(ζν) = (aν , iβν). Set f ν =

f ◦ T ν and W ν = T ν−1
(W ) . Then the sequence f ν : D1 ∩W ν −→ D2 is

a sequence of proper holomorphic mappings ; the sequence (W ν) converges

in the Hausdorff distance sense to W and (fν) converges to f uniformly on

any compact subset of D1 ∩W . We denote by V ν the pullback T ν−1
(V )

which is contained in the branch locus of f ν. We have ην ∈ V ν ∩ Γ1.

Lemma 3.2. There exists a constant C > 0 such that for any ν and

any (z,w) ∈ D1 ∩W
ν one has

C−1dist((z,w),Γ1) ≤ dist(f ν((z,w)),Γ2) ≤ Cdist((z,w),Γ1).

For the proof we observe that the statement holds for f by the Hopf

Lemma (see [2]) and the linear mappings T ν preserve the distance to Γ1

with a uniform constant independent of ν.

We note that V ν ∩ W ν is defined by {(z,w) ∈ W ν : z = hν(w) =

h(w−αν)}, where hν is holomorphic on Xν = X−αν and smooth up to the

boundary ; evidently, hν converges together with all derivatives uniformly

to h on any compact of X.

We set δν = |aν |2m, pν = (0,−δν i). Considering the Taylor expansion

of hν near ην we get z − aν = λν(w − iβν) + ψν(w), where ψν is smooth

function in a fixed neighborhood of 0 and there exists a constant M > 0

such that |ψν(w)| ≤ M |w − iβν |2 for any ν. Note also that the sequence

(λν) is bounded by (1).

Fix α < 0. Let us slice V ν by a complex line w = iαδν + iβν . For

ν large enough the intersection point is (by uniformity of neighborhoods)

(zν , wν) = (aν + iαδνλν + o(δν), iαδν + iβν).

Set r1(z,w) = Imw + P2m(z) + ϕ(z). Since r1(a
ν , bν) = 0, we have

r1(z
ν , wν) = δνα + o(δν) < 0 for ν large enough. Hence, (zν , wν) is in

D1 ∩W
ν for ν large enough.

Now we can apply a version of the scaling construction developed in

[17, 18]. We need the following well-known statement basic for analysis on

pseudoconvex domains of finite type (see [16, 20]).
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Let Ω be a domain in C
2 with C∞ smooth boundary near a point

p ∈ ∂Ω of finite type 2k. Then there exists a neighborhood U of p with the

following properties :

(a) there exists a local biholomorphic change of coordinates such that

in the new coordinates we have

Ω ∩ U = {(z,w) ∈ C
2|r(z) = Imw + θ(z, Rew) < 0},

where θ ∈ C∞ and vanishes at the origin with the order of (at least) 2 ;

(b) there exists a mapping Φ : C
2 × U → C

2 of class C∞ such that

(b1) Φ(•, ξ) is a polynomial and Φ(ξ, ξ) = 0 ;

(b2) there exists a neighborhood V of p and Vξ 3 ξ such that V ⊂

Vξ ⊂ U , Φ(•, ξ) is a biholomorphism from Vξ onto the unit ball B ⊂ C
2 ;

the mapping (t, ξ) 7→ Φ(•, ξ)−1(0, it) is a diffeomorphism between (−1, 1)×

(∂Ω ∩ V ) and V (this implies by continuity that there exists an open cone

C0 with vertex at the origin in the direction of Imw and an open cone Cξ

with vertex on ξ in the direction of the inward normal at ξ and of the vertex

angle independent of ξ such that Φ((Cξ), ξ) ⊂ C0).

(b3) one has

r ◦ Φ(•, ξ)−1 − r(ξ) = Imw +
2k
∑

`=2

P`(z, ξ) + (Rew)
k
∑

`=1

Q`(z, ξ)

+σ2k+1(z, ξ) + σ2(Rew, ξ) + (Imz2)σk+1(z, ξ)

on V × B ; here P` and Q` are homogeneous polynomials in z and z̄ of

degree ` without purely harmonic terms ; σi(v, ξ) vanishes of order i in v ;

(c) one has infξ sup` ‖P`(•, ξ)‖ > 0, where ‖‖ is the norm of homoge-

neous polynomials.

For ε > 0 we set τ(ξ, ε) = min`=2,···,2k

(

ε
‖P`(•,ξ)‖

)1/`
.

We suppose also that Γ2 is of type 2k near the origin.

Set qν = f ν(pν). We denote by ων the point of Γ2 closest to qν ; set also

γν = dist(qν ,Γ2) = |qν −ων |. Let gν denote the polynomial biholomorphism

Φ(•, ων) corresponding to Γ2. Without loss of generality one can assume

that gν → id uniformly on compact subsets of C
2 as ν → ∞.

Let us consider the holomorphic mappings f̃ ν = gν ◦ f : D1 → gν(D2)

and the following dilations of coordinates : Aν : (z,w) 7→ (δ
−1/2m
ν z, δ−1

ν w)

and Bν : (z,w) 7→ (τ(ων , γν)−1z, γ−1
ν w). We set Dν

1 = Aν(D1), D
ν
2 =
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Bν ◦ gν(D2) and consider the mappings

F ν = Bν ◦ gν ◦ f ν ◦ (Aν)−1 = Bν ◦ f̃ ν ◦ (Aν)−1 : Dν
1 → Dν

2 .

Let also rν
1 (z,w) = δ−1

ν r1 ◦ (Aν)−1 = δ−1
ν r1(δ

1/2m
ν z, δνw) and rν

2 =

γ−1
ν r2 ◦ (gν)−1 ◦ (Bν)−1 = γ−1

ν rν
2 (τ(ων , γν)z, γνw).

Since Γ2 is of type 2k at the origin, one has

rν
2 = Imw + γ−1

ν

(

2k
∑

`=2

(τ(ων , γν))`P2,`(ω
ν , z)

)

+Rν ,

where the sequence (Rν)ν converges to zero uniformly on compact subsets

of C
2 as ν → ∞ (see [17, 18]).

Passing to the subsequence, one can assume that the polynomials

γ−1
ν Σ2k

`=2P2,`(ω
ν , τ `(ων , γν)z) converge uniformly on compact subsets of C

to a nonzero real polynomial Q of degree ≤ 2k that contains no purely

harmonic terms. Let us consider the domain Ω2 = {w ∈ C
2|ψ(z,w) =

Imw +Q(z) < 0}.

The sequence (rν
2 ) converges to the function ψ uniformly together with

all derivatives of any order ; hence Ω2 is pseudoconvex as a smooth limit

of pseudoconvex domains. In particular, Q is a subharmonic polynomial on

C.

Similarly, we have that the sequence (rν
1 ) converges uniformly on com-

pact subsets of C
2 to the function φ = Imw + P2m(z) (in what follows we

write simply P ). It is worth to note that P is a homogeneous polynomial.

We define the domain Ω1 = {(z,w) ∈ C
2|φ(z) < 0}.

Now quite similarly to [17], it follows by [12] that there exists a sub-

sequence of (F ν)ν uniformly converging on compact subsets of Ω1.Thus,

without loss of generality one can assume that (F ν)ν converges uniformly

on compact subsets of Ω1 to a holomorphic mapping F . This was shown in

[17, 18] that F takes its values in Ω2 and , moreover, one has ψ(F (z,w)) ≤

C(R)φ(z,w) for any R > 0 and z ∈ Ω1 ∩RB (here and below B denotes the

unit ball of C2).

We have Aν(pν) = (0,−i), Aν(ην) = (eiθν , iβνδ−1
ν ). But βν = P2m(aν)

+ o(|aν |2m) and by the choice of δν the sequence βνδ−1
ν tends to a finite

point τ . Therefore,

Aν(zν , wν) = (eiθν + iαδ1−(1/2m)
ν + o(δ1−(1/2m)

ν ), iα + iβν/δν)
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This sequence tends to the point q = (eiθ, iα + iτ). Since (eiθ, iτ) is in

the boundary of the limit model domain Ω1, the point q is in Ω1.

Since the limit mapping F : Ω1 −→ Ω2 satisfies conditions of Proposi-

tion 2.1 and P2m is a homogeneous polynomial, by the previous section we

obtain that VF = {z = 0}. But by the construction q is in VF : a contra-

diction. This proves the proposition 3.1 in the case where V is a smooth

variety with boundary.

Suppose now that 0 is a point of (V ∩ Γ1)\E. Then we take a regular

point (a, b) ∈ E of type 2s and consider the polynomial change of variables

T : (z′, w′) −→ (z,w) = (z′ + a,w′ + b+Q(z′)), where the polynomial Q is

chosen such that r1 ◦ T = Imw′ +R2s(z
′) + ϕ′(z′), where R2s is a homoge-

neous subharmonic polynomial of degree 2s without purely harmonic terms

and ϕ′(z′) = o(|z′|2s). Then 0 is the regular point for the branch locus of

the mapping f ◦T and as it was just shown Jf◦T = {z′ = 0} near the origin.

This implies that (in the old coordinates) V coincides with {(z,w) : z = a}

near (a, b). Since V is irreducible, V coincides with this line everywhere in

U , and hence necessarily a = 0. This completes the proof of Proposition

3.1.

Q.E.D.

We can prove now our first main result.

Proof of Theorem 1.1.

By [4], f is smooth up to the boundary. Let V be an irreducible com-

ponent of Vf and p ∈ ∂V be a boundary point of V . It follows by [27] that

there exists a neighborhood W of p in C
2 , a neighborhood U of 0 and a

biholomorphic mapping H : Ω ∩W −→ Ω′ ∩U smooth up to the boundary

∂Ω, H(p) = 0 such that Ω′ ∩ U is rigid; T acts on Ω′ ∩ U by translations

(z,w) 7→ (z,w + t), t ∈ R. In view of [2] we can assume that the mapping

f ◦H−1 : Ω′ ∩U −→ f(Ω∩V ) is proper. Then it follows by Proposition 3.1

that H(V ∩W ) = {(z,w) ∈ U : z = 0} . But then V ∩W = H−1({z = 0}) is

a smooth manifold with boundary near p. This proves part (i) of Theorem

1.1.

Since the circle T acts (locally) by translation on Ω′, we get that (∂V )∩

W coincides with the orbit T(p) ∩W . By compactness of ∂V there exists

a finite number of neighborhoods W (pj) , j = 1, . . . , N , pj ∈ ∂V such that

∂V ⊂ ∪N
1 W (pj) and for every j the intersection (∂V ) ∩W (pj) is equal to

the orbit T(pj)∩W (pj). Hence, ∂V is contained in a finite union of disjoint

orbits.
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In order to show the inverse inclusion, we note that for any point p

in ∂Ω its orbit T(p) is a smooth connected compact curve; since after an

one-sided biholomorphic change of coordinates the T action is given by

translations and therefore this curve can be transformed to a real line, we

get that for any point a in T(p) there exists a neighborhood U such that

T(p) ∩ U is the boundary of a complex 1-dimensional manifold in Ω ∩ U .

Since T(p) is compact, there exists a neighborhood W of T(p) such that

T(p) is the boundary of a (connected) complex 1-dimensional manifold in

Ω∩W denoted by T(p)C. If the intersection V ∩T(p) contains a point a, then

there exists a neighborhood U of a such that V ∩ U coincides with T(p)C

on U . Since T(p)C is irreducible, it is contained in V by the uniqueness

theorem. Hence , T(p) is contained in V . This completes the proof of part

(ii).

§4. Mappings from circular domains

Important special cases of domains with T-action arise when the action

is linear; classical examples are provided by circular domains. This section

is devoted to the proof of our second main result Theorem 1.2. In what

follows by a disc in C
2 we mean a linear disc, i.e. the image of the unit

disc in C under a linear mapping from C to C
2; in particular, such a disc

contains the origin.

Lemma 4.1. Let f : Ω −→ D be a proper holomorphic mapping be-

tween two smoothly bounded pseudoconvex finite type domains in C
2. Sup-

pose that Ω is a complete circular domain. Then the branch locus Vf is a

finite union of discs.

Proof. Since Ω is pseudoconvex, for every point p ∈ ∂Ω there ex-

ists a neighborhood U and a defining function ρ such that −(−ρ)α is a

plurisubharmonic function on Ω ∩ U (shrinking U if necessarily, one can

take α ∈ (0, 1) arbitrarily close to 1) [19]. Since Ω is a complete circular

domain, every T-orbit is a circle in the boundary which bounds a complex

disc in Ω; it follows by the Hopf lemma that this disc is transversal to the

boundary and hence the T-action is transversal. Therefore, Theorem 1.1

implies that Vf ∩ ∂Ω is a finite union of circles. Then Vf coincides with the

union of corresponding discs (say, by the maximum principle).

Q.E.D.
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In the case of proper self-mappings the last proposition gives surpris-

ingly strong corollaries which allow to prove our second main result.

Proof of Theorem 1.2.

Suppose that the branch locus Vf is not empty. The first step of the

proof of Theorem 1.2 is the following

Lemma 4.2. The mapping f is polynomial homogeneous.

Proof. First, we show that f is a polynomial mapping. We denote by

f (n) the n-th iteration of f . It follows by Lemma 4.1 that for every n the

branch locus Vf(n) is a finite union of discs .

We claim that there exists a sequence (Ln) of discs such that Ln ⊂

Vf(n) , Ln+1 ⊂ f−1(Ln).

We will construct the family (Ln) by induction. For every n we have

Vf(n+1) = Vf ∪f
−1(Vf(n)). Fix any disc L1 in Vf . Then f−1(L1) is contained

in Vf(2) and contains the disc L2. Assume that the discs L1, . . . , Ln are

defined. Then f−1(Ln) is contained in f−1(Vf(n)) ⊂ Vfn+1 . So there exists

a disc Ln+1 such that Ln+1 ⊂ f−1(Ln). Note that since every restriction

f : Ln −→ Ln−1 is proper and f(Ln) ⊂ Ln−1, we have f(Ln) = Ln−1. We

note that the discs (Ln) are distinct. Indeed, suppose by contradiction that

m is the first integer such that there exists p with Lm = Lm+p. If m ≥ 2,

we have f(Lm) = f(Lm+p) and so Lm−1 = Lm+p−1. This contradicts the

definition of m. So m = 1.

Let τ∂Ω(p) be the order of vanishing of the Levi determinant introduced

in section 2. Since τ is invariant with respect to the T-action, τ is constant

on every ∂Ln. We denote it by τn. Since Ln+1 is contained in f−1(Ln),

the sequence (τn)n is increasing . The domain Ω is of finite type, therefore

the sequence (τn) is bounded , so it is a constant for n sufficiently large.

Let n0 be the first integer such that τn = τn0 if n ≥ n0. Given n ≥ n0,

for z ∈ ∂Ln+1 we have τn+1 = τ∂Ω(z) ≥ τ∂Ω(f(z)) = τn = τn+1. Hence

f is locally biholomorphic at z and z is not in Vf ; but then z cannot be

in L1. Thus L2 6= Ln for any n large enough. This is a contradiction. So

the discs Ln are different. In particular, since f(Ln+1) = Ln is proper for

every n we obtain that f(0) = 0. There exists a positive integer n0 such

that for every n ≥ n0 the sequence (τn)n is constant and Ln ∩ Vf = {0}

(since Vf is a finite union of discs). Consider a sequence of points (pn)n in

∂Ω such that pn is in Ln for every n. The restriction f : Ln+1 → Ln is

proper, f(0) = 0 and, since f is locally biholomorphic at Ln+1\{0}, the
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derivative of the restriction f|Ln+1
cannot vanish at a point different of the

origin. Then we have f(λpn+1) = cnλ
knpn where λ ∈ C : |λ| < 1, cn is

a constant, an integer kn is smaller than the order of vanishing or(f) of

f at the origin. Fix r > 0 such that the ball rB is contained in Ω and

consider the decomposition of f in homogeneous polynomials f = Σfk on

rB with fk(λz) = λkfk(z) for any z. Since f (λpn+1) = cnλ
knpn , we have

∑

λkfk (pn+1) = cnλ
knpn for every λ in a neighborhood of the origin in C

independent of n; therefore fk(pn+1) = 0 for k ≥ or(f) + 1 for any n ≥ n0.

Thus, fk vanishes on every Ln, n ≥ n0 for k ≥ or(f) + 1. Since the lines

Ln are different, every homogeneous polynomial fk is zero. Thus, f is a

polynomial of degree ≤ or(f).

Finally, let us show that f is homogeneous. For k ≤ or(f), let Nk

denote the set of positive integer n such that f(λpn+1) = cnλ
kpn. There

exists k0 such that Nk0 is infinite. For every j different from k0 we have

fj(λpn+1) = 0 for any n ∈ INk0 and since Nk0 is infinite, we obtain that

fj = 0; hence f = fk0 and f is homogeneous.

Q.E.D.

The second basic step in our proof of Theorem 1.2 is an application

of complex dynamics arguments. We refer the reader to [15, 23, 21] for

standard definitions.

Since f : Ω −→ Ω is proper and homogeneous, it follows that f is

nondegenerate, i.e. f−1(0) = 0 . Let Ωf denote the basin of attraction for

f . Note that this is a complete circular domain (see also [23]).

Lemma 4.3. One has Ω = Ωf .

Proof. One can assume that (f (k)) converges to F on Ω. For every

λ ∈ C, |λ| < 1 one has f (k)(λz) −→ F (λz) as k −→ ∞. But f (k) is

homogeneous of degree dk and f (k)(λz) = λdk
f (k)(z) which converges to 0.

Hence, F = 0 on Ω and Ω ⊂ Ωf . But f is proper and f(∂Ω) ⊂ ∂Ω. Hence,

Ωf is contained in Ω.

Q.E.D.

In order to prove Theorem 1.2 , it suffices to prove that Vf is empty

([26]). Suppose by contradiction that it is not so. Then as it was just shown,

f is a homogeneous polynomial, which is not linear.

We denote by π : C
2\{0} −→ CP the canonical projection. Since f is

nondegenerate, it takes lines to lines in C
2 and naturally induces a rational
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mapping ϕ : CP −→ CP on the projective space. We claim that its Julia

set Jϕ does not coincide with CP . For the proof we apply an argument of

[14]. Suppose by contradiction it does. This is known (see [15], pp.56-58)

that in this case for every point a ∈ Jϕ there exists a neighborhood U and

a positive integer n such that ∪n
k=1ϕ

(k)(U) covers CP . Take a such that

π−1(a) contains a strictly pseudoconvex point p in ∂Ω. Then there exists

a neighborhood W of p in C
2 such that ∪n

k=1f
(k)(W ) covers ∂Ω . Since f

takes any strictly pseudoconvex point to a strictly pseudoconvex one, we

get that Ω is strictly pseudoconvex and by [26] Vf is empty: a contradiction.

Thus, Jϕ is different from CP . But then by the classical results Jϕ is

a closed subset of CP with empty interior ([15], Theorem 1.9). Therefore

∂Ω\π−1(Jϕ) is a nonempty open subset of ∂Ω which in view of [23], Propo-

sition 7.1, is foliated by Riemann surfaces: this is impossible since Ω is of

finite type. This completes the proof of the theorem.

In conclusion we note that if Ω is a circular , but not complete circular

domain, then the circled action in general is not transversal as shows the

domain D = (|z|2 − 1)2 + (|w|2 − 1)2 < ε for ε > 0 small enough. But if the

action is transversal, the former proof is still valid with slight modifications

(one has consider proper holomorphic mappings of annuli in linear sections).
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