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Abstract

Understanding the properties of the crust and the core as well as its interface is essential for accurate astrophysical
modelling of phenomena such as glitches, X-ray bursts or oscillations in neutron stars. To study the crust–core properties,
it is crucial to develop a unified and consistent scheme to describe both the clusterised matter in the crust and homogeneous
matter in the core. The low density regime in the neutron star crust is accessible to terrestrial nuclear experiments. In order
to develop a consistent description of the crust and the core of neutron stars within the same formalism, we use a density
functional scheme, with the model coefficients in homogeneous matter related directly to empirical nuclear observables.
In this work, we extend this scheme to non-homogeneous matter to describe nuclei in the crust. We then test this scheme
against nuclear observables.
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1 INTRODUCTION

Accurate description of the properties at the crust–core inter-
face of neutron stars (NS) is crucial for correct interpretation
of a wide range of astrophysical phenomena such as glitches
and X-ray bursts. However, modelling neutron stars across
their entire range of densities within the same framework is
a big challenge, as different types of matter appear at differ-
ent density regimes. The composition of the outer crust for
isolated NSs is given by the ground state of matter below
the neutron drip density (roughly ρ � 4 × 1011 g cm−3).
According to the cold catalysed matter hypothesis, matter is
in full thermodynamic equilibrium at zero temperature. At
the surface, the outer crust consists of a lattice of iron nu-
clei. As the density increases, the composition of the nuclei
becomes more and more neutron rich as a result of elec-
tron capture. Beyond the neutron drip density, the inner crust
consists of neutron-rich clusters in a gas of electrons and free
neutrons.

In general, different theoretical models are applied to de-
scribe separately the homogeneous matter in the core and the
clusterised matter in the crust. The outer crust is assumed to
be composed of perfect crystals with one representative nu-
clear species at lattice sites (bcc), embedded in a sea of elec-
trons. Each lattice volume is represented by a Wigner–Seitz
cell, assumed to be charge neutral and in chemical equilib-

rium. The determination of the composition of the outer crust
is largely sensitive to the experimentally determined nuclear
masses (Baym et al. 1971a; Salpeter 1961). Terrestrial nuclear
physics experiments may help to constrain the composition
of the subsaturation matter in the outer crust, but in the inner
crust, the neutron-rich nuclei are far away from the valley
of stability and hence beyond the reach of nuclear experi-
ments. Thus, for the description of the inner crust, one needs
to resort to theoretical models for the extrapolation to higher
densities. Some commonly used techniques are Compress-
ible Liquid Drop model (Baym, Bethe, & Pethick 1971b;
Douchin & Haensel 2001), Hartree–Fock/Hartree–Fock Bo-
goliubov (Negele & Vautherin 1973; Grill, Margueron, &
Sandulescu 2011), Extended Thomas–Fermi approximation
(Onsi et al. 2008), etc.

Usually, the crust–core matching is done in a way that the
pressure is always an increasing function of density. How-
ever, it was demonstrated recently (Fortin et al. 2016) that
the use of non-unified models at the crust–core boundary
leads to arbitrary results, with an uncertainty in the crust
thickness of up to 30% and up to 4% for the estimation of
the radius. Further the non-unified models show no or spuri-
ous correlations with experimentally determined observables
such as symmetry energy and its derivatives, as demonstrated
in the works by Khan & Margueron (2013) and Ducoin et al.
(2011).
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2 Chatterjee and Gulminelli

One of the main challenges for nuclear theory is therefore
to develop unified models that are able to reproduce both
clusterised matter in nuclei in the crust on one hand, and ho-
mogeneous matter in the core on the other, within the same
formalism. Despite the huge recent advancement in method-
ological and numerical techniques, ab-initio approaches,
which derive properties of nuclei from the underlying nu-
clear forces, are limited to relatively light nuclei (as far as
48Ca) (Hagen et al. 2016). An alternative approach is by em-
ploying the nuclear energy density functional (EDF) method.
There has been tremendous success in application of the
density functional theory (DFT) for the description of non-
relativistic many particle systems. DFT calculations involve
solving a system of non-interacting particles, which inter-
act through a self-consistent effective potential that could
be relativistic (Relativistic Mean Field) or non-relativistic
(employing local Skyrme or non-local Gogny potentials).
The parameters of the density functionals are optimised to
selected experimental data and known properties of homo-
geneous nuclear matter (HNM). However, there is no one-
to-one correlation between the parameters of the functional
and the physical properties of nuclear matter, implying that
the constraints obtained on nuclear matter are still model
dependent.

There are quite a few experimental observables that serve
to constrain the nuclear Equation of State (EoS) at subsat-
uration densities (Fortin et al. 2016), such as neutron-skin
thickness, heavy ion collisions, electric dipole polarisabil-
ity, Giant Dipole Resonances (GDR) of neutron-rich nuclei,
measurement of nuclear masses, isobaric analog states, etc.
Of these, the weak charge form factor, neutron skins, dipole
polarisability, etc. are good indicators of the isovector depen-
dence, while giant resonance energies, isoscalar and isovector
effective masses, incompressibility and saturation density are
weakly dependent on asymmetry.

In this work, we use a recently proposed (Margueron,
Casali, & Gulminelli 2017a, 2017b) empirical EoS for HNM
for the neutron star core, that incorporates the most recent
empirical knowledge of nuclear experimental observables.
The functional, when extended to non-homogeneous matter
in finite nuclei, contains more parameters that take into ac-
count surface properties and spin-orbit effects, but still the
one-to-one correspondence between model parameters and
EoS empirical parameters is kept. Recently, an analytical
mass formula was developed (Aymard, Gulminelli, & Mar-
gueron 2016a, 2016b; Aymard, Gulminelli, & Margueron
2014) based on the analytical integration of the Skyrme func-
tional in the ETF approximation. In this study, we will utilise
this analytical formula to describe finite nuclei, but we use the
empirical functional instead of the Skyrme parametrisation.
We will show that one requires, in addition to the empiri-
cal coefficients, only one extra effective parameter to obtain
a reasonable description of nuclear masses, bypassing the
more sophisticated and rigorous full ETF calculations. The
advantage of this minimal formalism is that one is able to
single out the influence of the EoS parameters.

2 FORMALISM

2.1. Unified description of the NS crust and core

Using the DFT, the energy density of a nuclear system can
be expressed as an algebraic function of densities such as
nucleon density, kinetic energy density, spin-orbit densities,
etc., and their gradients:

H = H[ρq(�r),∇k
q′ρq(�r)]. (1)

The ground state can then be determined by minimisation
of energy, and the parameters of the functional optimised to
reproduce certain selected observables of finite nuclei (such
as experimental nuclear mass, charge radii) and of nuclear
matter (saturation properties). In general, there can be an in-
finite number of gradients in the functional. In the case of
HNM, the functional consists only of density terms (k = 0),
the so-called Thomas–Fermi approximation. For finite nu-
clei, restricting non-zero number of gradient terms up to k in
the expansion results in the so-called kth order ETF approach.
The advantage of this approach is that the energy density of
a nuclear system can be calculated if the neutron and proton
densities are given in a parametrised form. This allows the
development of an analytical mass formula (Aymard et al.
2016a, 2016b; Aymard et al. 2014), to link directly the form
of the functional and the parameters of the interaction in the
ETF approximation. In this study, we employ this analytical
mass formula for the calculation of the energies in the ETF
approximation. We describe this in detail in the following
section.

2.2. Empirical EoS for NS core: Homogeneous matter

We describe the energy density of homogeneous matter by
an ‘Empirical’ EoS, whose parameters are related directly to
nuclear observables. The energy per particle in asymmetric
nuclear matter can be separated into isoscalar and isovector
channels, as

e(ρ, δ) = eIS(ρ ) + δ2eIV(ρ ). (2)

Here, δ = (ρp − ρn)/ρ is the asymmetry of bulk nuclear
matter, the density ρ being the sum of proton and neutron
densities ρp and ρn, respectively. The empirical parameters
appear as the coefficients of the series expansion around sat-
uration density ρsat in terms of a dimensionless parameter
x = (ρ − ρsat)/3ρsat, i.e.,

eIS = Esat + 1

2
Ksatx

2 + 1

3!
Qsatx

3 + 1

4!
Zsatx

4 (3)

eIV = Esym + Lsymx + 1

2
Ksymx2 + 1

3!
Qsymx3 + 1

4!
Zsymx4. (4)

The isoscalar channel is written in terms of the energy per
particle at saturation Esat, the isoscalar incompressibility Ksat,
the skewness Qsat, etc. The isovector channel is defined
in terms of the symmetry energy Esym and its derivatives
Lsym, Ksym, etc. In principle, there is an infinite number of
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An empirical NS crust–core description 3

terms in the series expansion. However, it was shown (Mar-
gueron et al. 2017a, 2017b) that for nuclear densities less than
0.2 fm−3, the convergence of the expansion is achieved al-
ready at the second order in x. Therefore, in this study that
is limited to finite nuclei, i.e., subsaturation densities, we re-
strict the expansion up to to second order.

In the development of the empirical EoS, to account for
the correct isospin dependence beyond the parabolic approx-
imation, the density dependence of the kinetic energy term is
separated from that of the potential term:

e(x, δ) = ekin(x, δ) + epot (x, δ). (5)

The kinetic energy term is given by the Fermi gas expression:

ekin = tFG
0 (1 + 3x)2/3 1

2

[
(1 + δ)5/3 m

m∗
n

+ (1 − δ)5/3 m

m∗
p

]
, (6)

where the constant tFG
0 is given by

tFG
0 = 3

5

�
2

2m

(
3π 2

2

)2/3

ρ
2/3
sat , (7)

where � and m are the usual reduced Planck’s constant and
inertial nucleon mass, respectively. However, the interaction
in nuclear matter modifies the inertial mass of the nucleons.
The in-medium effective mass m∗

q for a nucleon q = n, p can
be expanded in terms of the density parameter x as

m

m∗
q

=
1∑

α=0

mq
α (δ)

xα

α!
. (8)

For asymmetric nuclear matter, we can define two parameters
to characterise the in-medium effective mass:

m̄ = mq
0 (δ = 0) − 1,

�̄ = 1

2
[mn

0(δ = 1) − mp
0 (δ = 1)]. (9)

Here, �̄ is the isospin splitting of the nucleon masses. The
effective mass in nuclear medium can then be expressed as

m

m∗
q

= 1 + (m̄ + τ3q �̄δ)(1 + 3x), (10)

where τ 3q is the Pauli vector ( = 1 for neutrons and −1 for
protons).

Similarly, we may write the potential part of the energy per
particle as a Taylor series expansion separated into isoscalar
and isovector contributions aα0 and aα2, up to second order in
the parameter x as follows (Margueron et al. 2017a, 2017b):

epot =
2∑

α=0

(aα0 + aα2δ
2)

xα

α!
uα (x), (11)

where the form of the correction factor uα(x) = 1 − ( −
3x)3e−b(3x + 1) is chosen such that the energy per particle goes
to zero at ρ = 0. The parameter b is determined by imposing
that the value of the exponential function is 1/2 at ρ = 0.1ρsat,
giving b = 10ln 2.

Comparing with Equations (3) and (4), the isoscalar coef-
ficients in the expansion can be written in terms of the known

empirical parameters:

a00 = Esat − tFG
0 (1 + m̄), (12)

a10 = −tFG
0 (2 + 5m̄), (13)

a20 = Ksat − 2tFG
0 (5m̄ − 1), (14)

and similarly for the isovector coefficients in the expansion

a02 = Esym − 5

9
tFG
0 (1 + (m̄ + 3�̄)), (15)

a12 = Lsym − 5

9
tFG
0 (2 + 5(m̄ + 3�̄)), (16)

a22 = Ksym − 10

9
tFG
0 (−1 + 5(m̄ + 3�̄)). (17)

The present uncertainty in empirical parameters (see
Table 1) was compiled recently from a large number of
Skyrme, Relativistic Mean Field and Relativistic Hartree–
Fock models (Margueron et al. 2017a, 2017b) and their aver-
age and standard deviation were estimated. It may be noted
from Table 1 that the saturation density and energy/particle
at saturation are very well constrained. The uncertainties of
incompressibility, symmetry energy and its first derivative lie
within a relatively small interval, while for higher derivatives
of the symmetry energy the uncertainty is large.

2.3. Inhomogeneous matter in NS crust: Finite nuclei

Given a parametrised density profile ρ(r), the energy of a
spherical nucleus can be determined using the ETF energy
functional

E =
∫

drHETF[ρ(r)]. (18)

The mean field potential for the nucleons inside the atomic
nucleus can be described by a Woods–Saxon potential. A
reasonable choice for the neutron and proton density profiles
(q = n, p) is ρq(r) = ρ0qF(r), with the Fermi function defined
as F (r) = (1 + e(r−Rq )/aq )−1. The parameters ρq and Rq are
obtained by fitting the Fermi function to Hartree–Fock calcu-
lations (Papakonstantinou et al. 2013): ρ0q = ρ0(δ)(1 ± δ)/2.
In the above expression, the saturation density for asymmet-
ric nuclei depends on the asymmetry δ and can be written as
(Papakonstantinou et al. 2013)

ρ0(δ) = ρsat

(
1 − 3Lsym

Ksat + Ksymδ2

)
. (19)

In addition, one needs to make the hypothesis that both
neutron and protons have the same diffuseness of the den-
sity profile, i.e., an = ap = a. The diffuseness a can
then be determined by the minimisation of the energy, i.e.,
∂E/∂a = 0.

One can choose to work with any two parametrised density
profiles: here, we choose the total density ρ(r) and proton
density profile ρp(r) (Aymard et al. 2016b):

ρ(r) = ρ0F (r) (20)
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4 Chatterjee and Gulminelli

Table 1. Empirical parameters obtained from various effective approaches (Margueron et al. 2017a).

ρsat Esat Ksat Esym Lsym Ksym

Parameter (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) m∗/m

Average 0.1540 − 16.04 255.91 33.43 77.92 − 2.19 0.7
Standard deviation, σ 0.0051 0.20 34.39 2.64 30.84 142.71 0.15

and

ρp(r) = ρ0pFp(r). (21)

The saturation densities are related by the bulk asymmetry:

δ = 1 − 2
ρ0p

ρ0
. (22)

The bulk asymmetry differs from the global asymmetry
I = 1 − 2Z/A, as is evident from the relation obtained from
the droplet model (Myers & Swiatecki 1980; Centelles, Del
Estal, & Viñas 1998; Warda et al. 2009)

δ =
I + 3acZ2

8QA5/3

1 + 9Jsym

4QA1/3

, (23)

where ac is the Coulomb parameter and Q is the surface stiff-
ness parameter. In finite nuclei, in addition to the bulk con-
tribution Eb, there are contributions to the energy from the
finite size, i.e., surface effects Es:

E (A, δ) = Eb(A, δ) + Es(A, δ).

The bulk energy is the energy of a homogeneous nuclear
matter without finite size effects

Eb(A, δ) = EsatA, (24)

where Esat(δ)= e(x, δ) is the energy per particle of asymmetric
homogeneous nuclear matter defined in Equation (5), calcu-
lated at the saturation density of asymmetric nuclear matter,
x = (ρ0(δ) − ρsat)/3ρsat. The surface energy can be decom-
posed into an isoscalar-like part, where the isospin depen-
dence only comes from the variation of the saturation density
with the isospin parameter δ, and an explicitly isovector part,
which accounts for the residual isospin dependence:

Es(A, δ) = E IS
s (A, δ) + E IV

s (A, δ)δ2.

Both isoscalar and isovector terms of the surface energy Es

contain contributions from the gradient terms in the energy
functional. These can be separated into local and non-local
terms:

Es = EL
s + ENL

s .

The local terms, which depend only on the density, can
be expressed directly in terms of the EoS parameters. The
non-local terms arise from the gradient terms in the func-
tional, such as the finite size term Cfin(∇ρ)2 + Dfin(∇ρ3)2,
spin-orbit term Cso �J · ∇ρ + Dso �J3 · ∇ρ3, spin gradient term
CsgJ2 + Dso �J2

3 , etc. (here, ρ3 = ρδ is the isovector particle
density and J and J3 are the isoscalar and isovector spin-orbit
density vectors, see Aymard et al. 2016b).

Allowing analytic integration of Fermi functions, the local
isoscalar surface energy can be decomposed into a plane sur-
face, curvature and higher order terms (Aymard et al. 2016b):

E IS,L
s = CL

surf

a(A)

r0
A2/3

+ CL
curv

[
a(A)

r0

]2

A1/3

+ CL
ind

[
a(A)

r0

]3

, (25)

where r0 = (
4
3πρ0(δ)

)−1/3
, and the expressions for the co-

efficients C(δ) have been defined in Aymard et al. (2016a,
2016b). The coefficients depend only on the EoS parameters.
For the non-local surface energy E IS,NL

s :

E IS,NL
s = 1

a2(A)
CNL

surf

a(A)

r0
A2/3

+ 1

a2(A)
CNL

curv

[
a(A)

r0

]2

A1/3

+ 1

a2(A)
CNL

ind

[
a(A)

r0

]3

. (26)

The non-local coefficients defined in Aymard et al. (2016a,
2016b) depend on EoS parameters and also on two addi-
tional finite-size parameters Cfin and Cso. In order to isolate
the influence of the EoS parameters, we propose a single ‘ef-
fective’ parameter Cfin for the finite size effects. We constrain
this parameter in the next section using experimental nuclear
observables.

The decomposition of the surface energy into isoscalar and
isovector parts is not straight-forward, since both terms have
an implicit dependence on the asymmetry δ. If the explicit
isovector term E IV

s is ignored, the diffuseness aIS can be vari-
ationally obtained by solving ∂Es

∂a = 0, giving the following
estimation for the diffuseness:

3 CL
ind

(
aIS

r0

)4

+ 2CL
curvA1/3

(
aIS

r0

)3

+
(
CL

surf A
2/3 + 1

r2
0

CNL
ind

) (
aIS

r0

)2

− 1

r2
0

CNL
surf A

2/3 = 0. (27)

If one neglects the curvature and A-independent terms, one
obtains the simple solution for ‘slab’ geometry:

aslab =
√
CNL

surf

CL
surf

. (28)
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We can see from this simple equation that in the limit of purely
local energy functional, the optimal configuration would be a
homogeneous hard sphere a = 0. The presence of non-local
terms in the functional results in finite diffuseness for atomic
nuclei.

The total diffuseness a must however include the isovector
contribution. Unfortunately, the isovector surface part cannot
be written as simple integrals of Fermi functions (since the
isovector density ρ − ρp is not a Fermi function). Hence,
it cannot be integrated analytically to evaluate E IV

s , and one
requires approximations to develop an analytical expression.
Following Aymard et al. (2016b), we assume that the isovec-
tor energy density can be approximated by a Gaussian peaked
at r = R:

HIV
s (r) = A(A, δ)e

− (r−R)2

2σ2 (A,δ) , (29)

where A is the maximum amplitude of the Gaussian distribu-
tion and σ is the variance at R. The isovector surface energy
E IV

s in the Gaussian approximation can be written in terms of
a surface contribution and a contribution independent of A:

E IV
s = E IV

surf A
2/3 + E IV

ind , (30)

(see Aymard et al. 2016b for the full equations and detailed
derivation). The total diffuseness can then be determined by
mimimising the energy with respect to the diffuseness pa-
rameter a, i.e., ∂E

∂a = 0. In the Gaussian approximation is then
given by Aymard et al. (2016b):

a2(A, δ) = a2
IS (δ)

+
√

π

(1 − K1/2

18J1/2
)

ρsat

ρ0(δ)

3J1/2(δ − δ2)

CL
sur f (δ)

aslab�RHS (A, δ). (31)

In this expression, the coefficients J1/2, K1/2 represent
the value of the symmetry energy and its curvature at one
half of the saturation density, J1/2 = 2eIV(ρsat/2), K1/2 =
18( ρsat

2 )2∂2eIV/∂ρ2|ρsat/2, and

�RHS =
(

3

4π

)1/3
[(

A

ρ0(δ)

)1/3

−
(

Z

ρ0p(δ)

)1/3
]

(32)

is the difference between the mass radius RHS = r0(δ)A1/3

and the proton radius RHS, p = r0p(δ)Z1/3 in the hard sphere
limit. Once the diffuseness a(A) is known, one requires only
the value of the finite size parameter Cfin to evaluate the total
energy using Equations (25) and (26).

3 DETERMINATION OF THE FINITE SIZE
PARAMETER

3.1. Estimate of finite size parameter using surface
energy coefficient

3.1.1. Method 1

To get a first estimate of the finite size parameter, we vary
Cfin in a reasonable range (40–140 MeV fm5) and calcu-
late the corresponding effective surface energy coefficient

 5
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 a
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 E
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A

2/
3  (

M
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) 
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Figure 1. Constraint on the finite size parameter using effective surface
energy coefficient from a compilation of Skyrme models (black lines).
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Figure 2. Constraint on finite size parameter using surface energy coeffi-
cient deduced from systematics of binding energies of finite nuclei (black
lines).

as
eff = Es/A2/3. We then compare it with data from a compila-

tion of Skyrme models (Danielewicz & Lee 2009) in Figure 1.
This leads to a value of Cfin ≈ 75 ± 25.

3.1.2. Method 2

An improved estimate of finite size parameter can be achieved
by comparing the isoscalar surface energy coefficient as =
E IS

s /A2/3 with the values deduced from systematics of binding
energies of finite nuclei (Jodon et al. 2016) in Figure 2. The
value of Cfin obtained using this method is roughly 77.5 ±
12.5.

3.1.3. Effect of uncertainty of empirical parameters on
nuclear surface properties

Using the estimated values of Cfin determined in the previous
section, we study the effect of uncertainty in the empirical
parameters, on the effective surface energy coefficient aeff

s
(Figure 3) and the diffuseness parameter a (Figure 4). We
vary each empirical parameter one by one keeping the others
fixed. We find that among the isoscalar empirical parameters,
uncertainties in the saturation density ρ0, finite size parameter
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Figure 3. Effect of uncertainty in empirical parameters on the variation of
effective surface energy coefficient with asymmetry I. (a) Uncertainty in
saturation density. (b) Uncertainty in finite size parameter. (c) Uncertainty
in effective mass.

Cfin and the effective mass m*/m have the largest effect on the
surface energy coefficient aeff

s . For the diffuseness parameter
a, the incompressbility Ksat as well as Cfin and m*/m has the
largest influence. The isovector empirical parameters only
have a significant influence at large asymmetry.
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Figure 4. Effect of uncertainty in empirical parameters on the variation of
diffuseness parameter with asymmetry I. (a) Uncertainty in incompressibil-
ity. (b) Uncertainty in finite size parameter. (c) Uncertainty in effective mass.

3.2. Estimate of finite size parameter using nuclear
masses

The estimation of Cfin in the previous section relies on the
uniqueness of the definition of the surface energy. Unfor-
tunately, the surface energy is not a direct experimental
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Figure 5. Difference between theoretical and experimental values of energy
of symmetric nuclei per particle, for the two choices of finite size parameters
in Section 3.2.

observable and the distinction between bulk and surface re-
quires some modelling. Therefore, we cannot be sure that the
functional obtained leads to a reasonable estimation of the
nuclear masses. In an alternative approach, we constrain Cfin

using a fit to experimental nuclear masses. For a range of nu-
clear masses A, we plot the difference in energy per particle,
calculated using ETF model (including Coulomb contribu-
tion) and experimental values from AME2012 mass table
(Audi et al. 2011; Wang et al. 2012).

To adjust the value of Cfin, we calculate the value of

χ2 = 1

N

N∑
i=1

(
Ei

th − Ei
exp

Ei
exp

)2

for different (ρsat, Cfin, Cso). The value corresponding to the
minimum of χ2 at ρsat = 0.154fm−3 is found to be Cfin =
61 corresponding to Cso = 40, while that corresponding to
Cso = 0 is Cfin = 59. The corresponding plot for the residuals
is displayed in Figure 5 for the two choices of finite size
parameters. It is evident from the figure that the effect of
changing the value of Cso on the minimum of the energy is
negligible.

In order to study the sensitivity of the energy per particle
to the uncertainty in the empirical parameters, the effect of
variations of the isoscalar empirical parameters (ρsat, Esat,
Ksat) within error bars on the energy residuals is displayed in
Figure 6. It is evident from the figure that apart from the effec-
tive mass, Cfin has the largest effect on the energy residuals.

3.3. Asymmetric nuclei

The uncertainty in isovector empirical parameters only af-
fects the energy residuals at large asymmetry I (Figure 7).

To study the effect of the finite size parameter on the energy
per particle of asymmetric nuclei, in Figure 8, we display the
residuals for Z = 20, 28, 50, 82. We find that the residuals
are close to zero even for finite asymmetry. Therefore, only
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Figure 6. Sensitivity of the difference between theoretical and experimen-
tal values of energy of symmetric nuclei per particle, to the uncertainty in
isoscalar empirical parameters.
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Figure 10. The rms charge radii vs asymmetry I for Z = 50, calculated
theoretically within uncertainty range of the finite size parameter, compared
with experimental values.

fixing Cfin leads to a good reproduction of energies even for
asymmetric nuclei. This justifies the use of a single finite size
parameter Cfin for symmetric as well as asymmetric nuclei.

The uncertainty in the finite size parameter Cfin is estimated
by varying Cfin such that the residuals (Eth − Eexp)/A lie within
± 0.5 MeV, which leads to an approximate error estimate
of 13 MeV (see Figure 9). One may vary Cfin within this
uncertainty range to reproduce with increasing precision the
energy residuals. However, as our simplified model does not
include contributions from shell effects and deformations, we
cannot aim for precision less than 0.1 MeV in the energy per
particle. We have checked that asking for a precision within
0.1 MeV instead than 0.5 MeV does not change the results
presented below.

4 TESTING THE MODEL AGAINST NUCLEAR
OBSERVABLES: STUDY OF RMS CHARGE
NUCLEI

Matter at subsaturation densities, such as that in the NS crust,
is accessible to terrestrial nuclear experiments. In order to
test the model developed in Section 3, we calculate the root-
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Figure 11. Comparison of calculated and experimental rms charge radii
with different asymmetry I for different Z nuclei. (a) Z = 20. (b) Z = 28.
(c) Z = 82.

mean-square (rms) radii of protons 〈rp〉 and neutrons 〈rn〉. To
compare with the observations, one must calculate the charge
radius that is related to the proton radius, using the following
relation:

〈r2〉1/2
ch = [〈r2〉p + S2

p

]1/2
,
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where Sp = 0.8 fm is the rms radius of charge distribution of
protons (Buchinger et al. 1994; Patyk et al. 1999).

For the previously estimated uncertainty in Cfin, we plot the
charge radii for Z = 50 and compare them with experimental
data (Angeli & Marinova 2013) in Figure 10. It is found that
the experimental values of charge radii span the uncertainty
band in Cfin: it overestimates the values at Cfin + σ , while it
underestimates the values at Cfin − σ .

Similarly, the rms charge radii calculated using the above
model for Z = 20, 28 and 82 are also compared with experi-
mental data in Figure 11.

5 SUMMARY AND OUTLOOK

In this work, we developed an empirical ‘unified’ formal-
ism to describe both homogeneous nuclear matter in the NS
core as well as asymmetric nuclei in the crust. We used DFT
in the ETF approximation to construct an energy functional
for homogeneous nuclear matter and clusterised matter. In
homogeneous nuclear matter, the coefficients of the energy
functional are directly related to experimentally determined
empirical parameters. We showed in this study that for non-
homogeneous matter, a single effective parameter is sufficient
(Cfin) to reproduce the experimental measurements of nu-
clear masses in symmetric and asymmetric nuclei. We also
tested our scheme against measurements of nuclear charge
radii.

In an associated work (Chatterjee et al. 2017), we employ
this model in order to perform a detailed systematic investi-
gation of the influence of uncertainties in empirical param-
eters scanning the entire available parameter space, subject
to the constraint of reproduction of nuclear mass measure-
ments. With the optimised model, we then predict nuclear
observables such as charge radii, neutron skin, and explore
the correlations among the different empirical parameters as
well as the nuclear observables.
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