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EXISTENCE RESULTS FOR SEMILINEAR DIFFERENTIAL
INCLUSIONS

ZHENBIN FAN AND GANG L I

In this paper we study the existence of mild solutions for Cauchy problem

u'(t) e A{t)u(t) + F{t,u(t)),0 < t ^ T,u{0) = "o-

We derive conditions under which the mild solutions exist, and also get the relative
compactness of the solution set, which extend and improve some existing results in
this area.

1. INTRODUCTION

The theory of nonlinear differential inclusions in Banach spaces has been developing
fast because of its extensive practical applications such as free boundary problems and
moving boundary problems for partial differential equations (see [1, 20, 21]), feedback
stabilisation and optimal control problems (see [2, 5, 8, 9, 22]).

In this paper we study the existence of solutions to the following semilinear evolution
differential inclusion

(1.1) u'(t) e A(t)u(t) + F(t,u{t)), almost everywhere t,

(1.2) «(0) = «o,

in a real Banach space X. Here {-4(*)}t€[Or] is a family of linear operators and F is a
multifunction.

Different versions of this system have been investigated by many authors. Bressan
[6], Kisielewicz [13], Fryszkowski [11] and Papageorgiou [18] discussed the existence
results in the case when A(t) = 0. Vrabie [23] considered the case when A(t) = A
generates a compact Co-semigroup and F(t, •) is continuous. In [7, 12], the authors
supposed that F has convex and compact values and proved the existence results of
(1.1), (1.2) without assuming necessarily that evolution system generated by A(t) is
equicontinuous, which extended the main results in [14, 19, 23].
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228 Z. Fan and G. Li [2]

The purpose of this paper is to state that we can solve the differential inclusion
(1.1), (1.2) when F has nonconvex values. Techniques employed in [7, 12], have been
generalised to the study of (1.1), (1.2) in this situation. That is, local existence of
mild solutions is first proved, using the theory of continuous selection and a fixed point
argument. Then, by careful analysis, we extend the local mild solution of (1.1), (1.2) to
a maximal interval. Finally, under a stronger boundedness condition on F, we obtain
that the set of all global solutions defined on [0, T] is nonempty and relatively compact
in C(Q,T;X). Therefore, our work extends and improves those in [7, 12, 14, 19, 23],
and maybe give a way to remove the compactness for the nonlocal Cauchy problems and
the periodic problems of evolution inclusions (see [3, 15, 16, 17, 24]).

The main tools in the approach followed in this work are measure of noncompactness,
the theory of semilinear differential equations and multivalued analysis. A brief reminder
of these is provided in Section 2. Our main results are given in Section 3.

2. PRELIMINARIES

Let Y and Z be topological spaces, we shall use the following notations:

P(Z) ={ACZ: nonempty };

Pb(Z) = {A C Z : nonempty, bounded };

Pkc{Z) = {AC Z : nonempty, compact, convex }.

A multifunction F : Y —• P{Z) is said to be upper-semicontinuous if the set
{y G Y;F(y) C V} is open in Y for every open V C Z; F is said to be lower-
semicontinuous if the set {y G Y; F(y) D V ^ 0} is open in Y for every open V C Z; F is
said to be closed if its graph grF = {(y, z); z G F(y)} is closed in Y x Z, that is, Vy G Y,
if sequence (yn, zn) G grF satisfying (yn, zn) -* (y, z) in Y x Z, we have z G F(y).

Let (X, || • ||) be a real Banach Space.
We recall the following definitions.

DEFINITION 2.1: Let E+ be the positive cone of an order Banach space (E, ^ ) . A
function $ defined on the set of all bounded subsets of the Banach space X with values
in E+ is called a measure of noncompactness on X if $(cof2) = $(fi) for all bounded
subsets Q C X, where coQ, stands for the closed convex hull of Q.

The measure of noncompactness $ is said:

(i) monotone if for all bounded subsets fix, CI2 of X we have:

(n! c n2) => ($(nj) < $(n2));

(ii) nonsingular if $({a} U fi) = $(17) for every a G X, fi G Pb(X);

(iii) regular if $(fi) = 0 if and only if Q is relatively compact in X.
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[3] Existence results 229

One of the most important examples of measure of noncompactness is the noncom-
pactness measure of Hausdorff x defined on each bounded subset SI of X by

x(fl) = inf{e > 0; Q, has a finite e — net in X}.

It is well known that measure of noncompactness x enjoys the above properties
(i)-(iii) and other properties (see [4, 12]).

Let [0,T], T > 0, be a fixed interval and denote

A = {(*,«) € [0,T] x [0,T] : 0 < s < t ^ T).

We recall the following basic definition (see [21]).

DEFINITION 2.2: A two parameter family {U(t,s)}.ta)€A, U(t,s) : X -* X
bounded linear operator, (t, s) 6 A, is called an evolution system if the following condi-
tions are satisfied:

(1) U{s, s) = I, U{t, r)U{r, s) = U(t, s) for 0 ^ s ^ r < t < T;

(2) (£, s) -> U(t, s) is strongly continuous on A.

For any evolution system, we can consider the respective evolution operator U : A
—• L(X), where L(X) is the space of all bounded linear operators in X.

We denote by (7(0, T; X) the space of X-valued continuous functions on [0, T] with
the norm ||x|| = sup|| |i(t)| | ,t G [0,T]\ and by L^O.T;*) the space of X-valued

Bochner integrable functions on [0, T] with the norm ||/||ti = / ||/(*)|| di.
Jo

Consider the Cauchy problem:

(2.1) u'(t) = A(t)u{t) + h{t), 0 < t < T,

(2.2) u(0) = uo,

where u0 G X, A(t) satisfy the following condition:
(A) {A(t)}t ,QT, is a family of linear (not necessarily bounded or closed) operators,

A(t) : D(A) C X -> X, D(A) not depending on t and dense subset of X, generating an
evolution operator U : A ->• L(X) (see [21]).

DEFINITION 2.3: A function u e C(0, T; X) is a mild solution of (2.1), (2.2) if:

(i) u(t) = U(t, O)uo + / U(t, s)h{s) ds, t € [0, T\,
Jo

(ii) u(0) = uo-
We know that there is a unique mild solution of (2.1), (2.2) when h e Ll{Q,T\X).

We define the mild solution operator S as follows: for h € Ll(0,T;X), we denote by
S(h) the unique mild solution of Cauchy problem (2.1), (2.2). We shall use the following
conclusion (see [7, 12]):
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LEMMA 2 . 1 . Let { / n } ^ be a sequence of functions in Ll{0, T; X). Assume that
there exist n,n in L^O.T; if1") satisfying

sup\\fn(t)\\ s^ n(t) and x({fn{t)}+Z) ** nit) almost everywhere t e [0,T\.

Then for allte [0, T], we have

where M equals to sup ||£/(*,s)|
(M)€A

Now, we recall some results in the theory of measurable multivalued mappings (see
[22]).

The mapping F : [0, T] —• P(X) is called a strongly measurable mapping if it is
almost everywhere in [0,T] a pointwise limit of the sequence Fn : [0,T] -¥ P(X), n ^ 1,
of step mappings. Every strongly measurable multivalued mapping F admits a strongly
measurable selection / : [0, T] —> X, that is, / is strongly measurable and f(t) G F(t)
for almost everywhere t G [0,T].

Let V be a subset of X.
The mapping r : [0, T] x X -»• Pp f ) will be called a Caratheodory type of mapping

on [0, T] x V if it is strongly measurable in t for every x G V and continuous in x for
almost every * € [0,T].

The mapping r : [0, T] x X -»• P(A") is integrally bounded on [0, T] x V if there exists
a function \{t) > 0 summable on [0,T] such that ||r(f, V)|| = sup{||g|| : g € F(t,x),
x G V} ^ X(t) almost everywhere on [0, T\.

Next, we shall assume that X is separable.
Let (fi, 5D» M) De a measure space and F : 12 -> P{X) be closed valued. We say

that F is measurable if the function u; —• d{x, F(LJ)) is measurable, for all x 6 A", where
d(x, v4) = inf {||a; — a|| : a € A}. In the case when F : Si x X -t P(X), the measurability
is understood in the sense of 53 *B(X), where B(X) is the u-algebra of Borel subsets of
X.

We call a set A C Ll(0,T\X) decomposable if for all u,v e. A and each measurable
subset / in [0,T], we have ae/u + ae[o,r)-/w G A where ae/ stands for the characteristic
function of set / . A multimap is decomposable if its image is a decomposable subset of
Ll(0,T;X).

We shall use the following selection theorem (see [10]):

LEMMA 2 . 2 . Let X be a separable real Banach space, K a compact subset in
C(0,T;X), and G : K -»• P(Ll(0,T;X)) a nonempty, closed valued mapping which
is lower-semicontinuous and decomposable. Then there exists at least one continuous
function g : K -* Ll{0, T; X) such that g(u) G G(u), for each u&K.
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3. M A I N RESULTS

In this Section, we shall consider the following Cauchy problem for system governed
by a semilinear evolution differential inclusion:

(3.1) «'(*) e A(t)u(t) + F(t, u(t)), 0 < t < T,

(3.2) ti(0) = tio,

where A(t) satisfies (̂ 4), F satisfies the following conditions:

(Fl) F : [ 0 , T ] x I - > P(X) be a measurable, closed valued multifunction such
that F(t, •) is lower-semicontinuous for almost all t € [0,T];

(F2) the mapping F is integrally bounded on bounded subset of [0, T) x X,
that is, for every nonempty bounded set B C X, there exists a function
wB € Ll{Q,T\if") such that for every x e B,

\\F{t,x)\\£UB(t)

for almost all* e [0,T\;

(F3) there exists a function A; € L1(0,T;il+) such that for every bounded
DC X,

for almost everywhere t G [0, T], where x is tf le Hausdorff measure of
noncompactness.

REMARK 3.1. Applying the Lemma 2.2 and using the condition (Fl) and (F2), for
every continuous function x € C(0, T;X) we have an integral selection / € L ^ T ; X)
of F(-,z(-)). Therefore, the set Sj^.^.n is nonempty.

DEFINITION 3.1: A function u e C(0, b; X) (0 < b < T) is a mild solution of (3.1),
(3.2) if:

(i) u(0)=uo,

(ii) u(t) = U(t, 0)uo + I U{t, s)f{s) ds, t € [0, b],
Jo

with / € 5i,(.u(.)).

First, we introduce some noncompact measures. For Q C C(0, T; X), we define

where A(fi) denotes the collection of all denumerable subsets of f2 and E(t) = {u(t) :

u € E}. Then a is well defined and from the corresponding properties of HausdorflF
measure of noncompactness x it is clear that a is a monotone and nonsingular measure
of noncompactness.
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We also define

= max ( sup modc(E(t))Y

where modc(E(t)) is the modulus of equicontinuity of the set of functions E at point t
given by the formula

modc(£(t)) = limsup|||u(ti) - u(t2)\\ : tu t2 e (t -S,t + 6), u G E\.

Then 0 is well defined and also is a monotone and nonsingular measure of noncompact-
ness. Similar definitions with a, /? can be found in [8] or [12].

Now, we define
H{Q) = a(O) + 0(Q).

Then we have the following conclusion.

LEMMA 3 . 1 . H is a monotone, aonsingular and regular measure of noncompact-
ness defined on bounded subsets ofC(0,T; X).

PROOF: It is easy to check that if is a monotone and aonsingular measure of non-
compactness. We shall show that H is regular.

Firstly, if Q C C(0, T; X) is relatively compact, then by the abstract version of
Arzela-Ascoli Theorem, we have H(Q) = 0.

On the other hand, suppose that if(fi) = 0, by the definition of H, we obtain

a(Q) = 0, 0(Q) = 0.

To prove the relative compactness of Q, it remains to show that fi is equicontinuous.
Assume on the contrary, that there are e0 > 0 and sequences

cfl, {*»}, {Uc[o,r]

such that tn —¥ to, tn —> to as n —• +oo and

for all n ^ 1. However,

||«n(*n) - «n(*n)|| < SUP{||u(tn) - u(tn)\\ : U € ft}.

Taking the upper limit, we get that

- un{in)\\ < modc(Q(to)) < £(fi) = 0,

which gives the contradiction 0 < e0 < 0. Thus fi C C(0, T; X) is equicontinuous. This
completes the proof. D
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R E M A R K 3.2. In the proof of our main results, we shall look for some nonempty convex
and compact subset W of C(0,T; X), which seems to be not a simple proof. Using the
above measure of noncompactness H, we can solve this difficulty.

Now, we give our main results in this paper.

THEOREM 3 . 1 . Let X be a real separable Banach space. Assume that the con-
ditions (A), (Fl), (F2), (F3) are satisfied. Then Cauchy problem (3.1), (3.2) hasatieast
one local mild solution.

PROOF: Since the evolution operator U is strongly continuous on the compact set
A, we have

(3.3) \\U(t,s)\\L(x)^M, (t,s)€A,

where M is defined as Lemma 2.1.

Let r = 4M||uo||) we consider the closed ball

(3.4) B = {x 6 X; \\x - Uo\\ < r } .

By (3.3), we obtain

(3.5) \\[U(t,0) - C/(0,0)]uo|| ^ r /2 for all t € (0,T],

and, we can choose hi 6 (0,T], such that

(3.6) Ml wB(s)ds^r/2,
Jo

and

(3.7) qd=2M I k(s)ds<l,' I k(s)da
Jo

where UJB is the function from assumption (F2) and k comes from (F3).

We consider also the closed set

Wo = {y € C(0,/ii; X) : \\y(t) - tio|| < r.V t € [0 ,^ ]} .

Now, we define the integral multioperator

T : Wo -+P(C(0, hi;X))

by

(3.8) T(i) = jy e C(0,/ii;X) : y(t) = U(t,O)uo +J U(t,s)f(s)dsJ € S
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It is easy to see that the fixed point of multioperator F is the mild solution of (3.1), (3.2)
on [0, hi]. To prove the existence of fixed point of F, we shall make use of the Schauder's
fixed point Theorem.
S T E P 1. We claim that the multioperator F maps Wo into itself.

Let x G Wo, then, ||x(*) - uo|| ^ r, V t G [0, hi], that is, x(t) G B, V t G [0, hi]. For
arbitrary y G F(x), we have that

y{t) = U{t, 0)uo + / U{t, s)f(s) ds, t G [0, hi],
Jo

with some / G Sp^.^y
So, from the hypothesis (F2) and (3.5), (3.6), it follows that

/
o

hrh

«,O)tio-tio|| + M /
Jo

^ r/2 + r/2
(3.9) < r

for every t G [0, /ii], which implies y G Wo, that is, multioperator F maps Wo into itself.

S T E P 2. We show that the integral multioperator F maps some nonempty convex and
compact set WCWo into itself.

For this purpose, we first let {yn}n^i ^ r(Wo) be the denumerable set which achieves
the maximum of a(T(Wo)), since it is a maximum.

Of course, there exists a set { x n } ^ C Wo such that yn G F(in), n ̂  1; that is,

(3.10) yn{t) = U(t, 0)uo + f U(t, «)/„(«) ds = (5/»)(t), t G [0, hi],
Jo

with /„ G 5J.(. IX-(. ) ) .

Now, we give an estimate for x({2/n(*)}n~J- By using condition (F3), we have

(3.11) x({/-W}^) ^ x(F(s,{xn(s)}^i)) < k(s)X({xn(s)}+
n~).

From (3.10) and Lemma 2.1, we obtain

(3.12) x({yn(t)}^) = x({(Sfn)(t)}
+Z) < 2M^(S)x({xn(S)}^~) ds.

From (3.7), it follows that

(313) « sup
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That is,

a(T{W0)) ^ a(W0)q.

Define

Wx = cor(W0) =co{y e C(O,hi;X)- y € T(x), x e Wo},

then it is easy to see that W\ is a nonempty, closed, convex subset of C(0, h\\X), and

Wl = coT{W0) C coW0 = Wo,

r(wk) c r(w0) c wi.

As the same reason, we have that

Define
W2 = SST(Wt) =.c5{» € C(0,fci;.Y);y 6 T(x),x € Wi},

then we have that W2 is a nonempty, closed, convex subset of C(0, hi\X), and

W2 C Wl C Wo,

a ( r (W a ) ) ^ a(Wo)93.

Continuing this way, we get a decreasing sequence {Wn}Jfj), which are nonempty,
closed, convex, bounded subsets ofC(0,hi\X), and

a(T(Wn)) < a ( ^ 0 ) g n + 1 ,

which implies that a(Wn) —* 0, as n -> +CXD.

Coming back to the definition of a, we obtain that

(3.14) x(En(t)) -> 0, n -»• +co,

uniformly in t € [0, /ii] with any countable subset En Q Wn.

Now, we consider 0(Wn). Suppose that the sequence {ym^tSi C r(VTn_i) achieves
the maximum of a(Wn) and ^(Wn). From (3.14), it follows that

(3-15) en i x({y^n)W}:ri) -^ 0, n ̂  +oo,

uniformly in t € [0, /ii].

For fixed t0 € (0, fti), we take So, 0 < SQ < min{t0, /»i — M such that

rto+fo
(3.16) / | | / (») | | ds ^ en, V f(s) €
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where B comes from (3.4).

Further, from (3.15) and the definition of x, there exist v* G X, 1 < i ^ k, such that

(3.17) {i/W(to - So)}^ C ( J Bfa, 2eB).
i=l

And, for each y G { l / m ' } ^ , there exists x € Wn_i such that

/•ti
(3.18) y(ti)=U{tut0-6o)y(t0-60)+ U(tus)f{s)ds,

Jto-So

(3.19) y(t2) = U(t2, t0 - 60)y(t0 - * > ) + / £/(t2,«)/(«) ds

for t i , i2 € (t0 - <SOl to + <M, with / G 5 ^ ^

Now, we give an estimate for modc({ym KtSi(to))- By the strongly continuity of
evolution operator U, there exists S, 0 < 6 < 6o, such that

(3.20) ||tf(*i,*o - <5o)fi - U(t2,t0 - So)vi\\ ^ £„, i = 1, 2, • • • ,k

for t i , t2 G (t0 - <J.*o + 5). So, from (3.16)—(3.20), we have

\\U(ti,to-So)y(to-60)-U{tut0-60)vi\\

o - 6o)y(to - 50) - U(t2,t0 - (Jo)^||

i,to - 50)vi - U{t2,t0 - S0)vi\\ + 2Men

for all y G {yW}^ and tu h G (t0 - <J, t0 + <S). That is,

For t0 = 0 or hi, we can also verify the above inequality. Thus, from the definition
of H, it follows that

H(Wn) ^ (6M + 2)en -> 0, n -> +co.

Therefore, the set W = nn^oWn is a nonempty, convex, compact subset of
C(0, h\\X), since /f is a monotone, nonsingular and regular measure of noncompact-
ness (see Lemma 3.1 and [4]). Moreover, Y maps W into itself.

S T E P 3. We claim that Cauchy problem (3.1), (3.2) has a local mild solution.

Let G : W -> P^iO, h^X)) defined by

(u) = £}(.,„(.)) = {/ e Ll(0,fti;X): /(t) G ffauW), almost aU t} .
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Then it is easy to show that G is lower-semicontinuous and has closed decomposable
values due to the condition (Fl). Thus, by Lemma 2.2, there is a continuous function
g : W -» Ll(0, ht; X) such that g(u) € 5 ^ . ^ . ^ for every u € W.

So Sog :W —>W isa. single valued mapping and (Sog)(x) e T(x) for every x € W,

where 5 be the mild solution operator with initial value u0.

Moreover, S : LX(Q, h\\X) - • C(0, h\;X) also is a continuous mapping. Hence
S o g : W —• W is continuous.

Therefore, there exists at least one fixed point ui € C(0, hi; X) of 5 o g due to the
Schauder's fixed point Theorem, that is,

(3.21) Ul{t) = U{t,0)uo + / U(t,s)fl(s)ds
Jo

for every t € [0,hi] and almost everywhere s G [0,t], with /x(s) e F(s,Ui(s)), which is
the local mild solution of (3.1), (3.2). This completes the proof. D

Now, we can extend the local mild solution of (3.1), (3.2) to a maximal interval.

THEOREM 3 . 2 . Assume that the conditions of Theorem 3.1 are satisfied. Then
there exists a mild solution u of (3.1), (3.2) defined on a maximal interval of existence
[0, T] or [0, To), To ̂ T. In the second case, the solution u is unbounded on [0,T0).

PROOF: On account of Theorem 3.1, we get a local mild solution Ui e C(0, hi\X)
of (3.1), (3.2). So We can consider the following Cauchy problem

u'(t) € A(t)u(t) + F(t,«(*)), hi<t^T,

u(hi) =

Similarly, we can get a local mild solution u2 € C(h\, h?; X), that is,

(3.22) u2(t) = U(t, hjmihi) + f U(t, s)f2(s) ds

for t e [hi, h2] and almost everywhere s € [hx, t], with /2(s) € F(s, u2{s)).

Let

Hence, from (3.21) and (3.22), we get that

f U(t,s)fW(s)ds
Jo

https://doi.org/10.1017/S0004972700039629 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039629


238 Z. Fan and G. Li [12]

for each t e [0, /12], with

which implies that u(2) is a mild solution of (3.1), (3.2) on [0, h?].
We denote by 3 a collection of all continuous functions u defined on [0, hu],

0 < hu ^ T, with values in X such that u is a mild solution of (3.1), (3.2). Clearly,
the set 3 is nonempty. We introduce a partial order ^ on 3 in the following way: the
relation UW •< u<2> means that fc« ^ /i<2> and /<l>(t) = /(2>(*) for t e [0,/i(1)], with

Let (u(Q)(0)a
 b e a chain in (3 ,^ ) . Take ho = sup / iK For every t € [0,/io), we

define the function

u(t) = U(t,0)uo+ [ U(t,s)f(s)ds,
Jo

where f(s) € F(s,v.(a\s)) for some a and almost everywhere s € [0,i]. Then, it is easy
to check that u °̂̂  < u for every u^ in the chain. That is, u is the upper bound of the
chain. Thus, according to Zorn's lemma there exists a mild solution u" of (3.1), (3.2)
defined on a maximal interval of existence [0, T] or [0, To) with To < T. Suppose now
that u* is denned on [0, To) and is bounded. Then we can see that u* is a mild solution
on every interval [0, b] for 0 < 6 < To.

Now, for each e > 0, there exists Si > 0 such that

(3.23) u\t) = U(t,T0-6l)u*{T0-6l)+ [ U(t1s)f(s)ds
JTo-Si

for t € [T0-5i,T0) and

(3.24) f
JTo-61

with / € Sp, o . /« (noting that we have used the boundedness of u* here).
Let {tn}j[^i be a nondecreasing sequence such that tn —t To, as n —>• +00. Then

there exist 62, 0 < 62 < 61 and N > 0 such that

(3.25) \\U{tn,T0 - 6,)u'{T0 - fc) - U{tm,T0 - «i)tt'(T0 - *0 | | < £

for all m, n > AT, |tn - To| ^ S2, \tm - To\ < 62. So, from (3.23)-(3.25), it follows that

Therefore, the sequence {"*(*n)}^ is a Cauchy sequence and the Umit of u*(t) when
t -> To exists, contrary to the maximality of the interval [0, To). This completes the
proof. D
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REMARK 3.3. In the Step 2 of the proof of Theorem 3.1, we do not use the measure of
noncompactness a to get the compact set W directly, because a is not a regular measure
of noncompactness. However, we can calculate the modulus of equicontinuity of Wn at
every point t e [0, hi] through the Hausdorff measure of noncompactness of the section
of Wn. So we define the regular measure of noncompactness H which makes us to obtain
the compact set W.

REMARK 3.4. The results of above two Theorems extend and improve those in [5, 6,
9, 11, 13, 18], where A{t) = 0.

Finally, under a stronger boundedness condition on F, we obtain the global existence
result.

COROLLARY 3 . 1 . Let X be a reai separable Banach space. Assume that the
conditions (A), (Fl), (F3) are satisfied, and that

(F2)' there exists a function rj € Ll(0, T; X) such that for every x € X we have

;)|| < r?(t)(l + ||x||) ahnost all t € [0,T].

Then the mild solutions of (3.1), (3.2) on the whole [0, T] is a nonempty and relatively
compact subset of the space C(0, T; X).

PROOF: If we suppose that u is a mild solution of (3.1), (3.2) defined on [0, T], then
we have

u(t) = U(t, 0)uo + f U(t, s)f(s) ds, t e [0, T],
Jo

with / € $£•(.,„(.))• From (F2)', it follows that

||u(0|| < Af|HI + M\\V\\# +** [\{s)\\u{s)\\As.
Jo

By using the Gronwall inequality, we get that

that is, u is bounded on the whole interval [0,T], which implies that the mild solution
of (3.1), (3.2) on the whole interval [0,T] is nonempty due to the Theorem 3.2. More-
over, from the proof of Theorem 3.1, we can see that every local solution of (3.1), (3.2)
belongs to a compact set. So, every section of solution set on the whole interval [0, T] is
relatively compact, and the modulus of equicontinuity of which at every point t equals
zero. Therefore, on account of the proof of Lemma 3.1, the mild solutions of (3.1), (3.2)
on the whole interval [0,T] is relatively compact subset of the space C(0, T; X). This
completes the proof. D
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REMARK 3.5. Our existence results of solutions to differential inclusion do not need
the compactness of the evolution system U(t,s), even its equicontinuity. Moreover, we
get the maximal interval of existence of mild solutions in the case when F satisfies a
weaker growth condition (F2) and the relative compactness of the set of all global mild
solutions when F satisfies a stronger boundedness condition (F2)'. Therefore, our work
extends and improves those in [7, 12, 14, 19, 23], and also gives a way to remove
the compactness for the nonlocal initial problem and the periodic problem of evolution
inclusions in Banach space.
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