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SEPARATION OF FUNCTIONS

BY
L. E. MAY

1. Introduction. Eames [2], and Jeffery [5], consider separation of sets in a
measure space and show that, if 4 is separated from B, then

m*(4A U B) = m*4A+m*B,
where m* denotes outer measure.

In this paper we consider the class, &+, of nonnegative bounded real-valued
functions of a real variable. We define an outer integral of f over E, I*(f; E),
which satisfies

I*(f+8; E) < I*(f; E)+1*(g; E),
for all f, g € #+. A definition of separation of functions is introduced, so that, if
fis separated from g, then

I*(f+g; E) = I*(f; E)+1*(g; E),
forallf,ge #*and E < R.

2. Preliminaries. The Lebesgue outer and inner linear measure of the linear
set 4 is denoted by m*A4 and m, A4 respectively. We also denote the outer and inner
planar Lebesgue measure of the planar set 4 by m*4 and m, A4, respectively. It is
understood from the context whether m* denotes planar or linear outer Lebesgue
measure.

The set M is a measurable cover of the set 4 if M is a measurable superset of
A which satisfies m, (M —A4)=0. It is shown in [1] that if M is a measurable cover
of A and E is measurable then M N E is a measurable cover of 4 N E.

Let fe #+. We denote by f the measurable cover function introduced in [3]. It
is shown in [3] that f satisfies the following:

(i) fis measurable and f(x)> f(x), for all x;

(i) if A4(x) is measurable and A(x)> f(x), for all x, then A(x)> f(x), a.e. (thus
if fis measurable, then f(x)= f(x), a.e.).

Let D(x, A) denote either the strong or symmetric Lebesgue upper density of
the linear set A4 at the point x. The bounded function fis called measurable at the
point x if

D(x, {y:f(») # f»)) = 0.
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We then write fe C,. If f is measurable then it is measurable at every point, i.e.
C,=0.

It is shown in [3] that, for any bounded function f, the set F={x:fe C,} is
measurable.

THEOREM 1. If f is bounded, then the restriction of f to F={x:f € C,} is
measurable.

Proof. We show that f(x)= f(x), for almost all x € F, so that since F is a measur-
able set and fis a measurable function, the result follows.

Suppose otherwise, then there is a subset 4 of F such that m*4>0 and, if
y € A, then f(y)# f(y). By the Lebesgue density theorem, there exists x € A such
that D(x, A)>0. Thus D(x, {y:f (»)# f()})>0, so that f¢ C,. Since x € F, this
is a contradiction.

THEOREM 2. If f is measurable and g is any bounded function, then ft+g=
f+8, ae.

Proof. By (i), f+g<f+&. Therefore, by (ii), ﬁgg f+&, ae. By (i) and the
measurability of f, f+g=/+g<f+g. Thus g<f+g—f and therefore, by (ii),

g<f+g—f Thus f+g=f+3, a..
Let fe Z*, and let E be a linear set. The inner ordinate set of [ relative to E
is defined to be

{(x,y):xeEand 0 < y < f(x)},

and is denoted by 0(f; E).
The outer integral of f over E is defined to be

m*{0(f; B)},
and is denoted by I*(f; E). In case the set E and the function f are measurable, the
above definition agrees with the usual definition of the Lebesgue integral of a
nonnegative function (see, for example, [6]) and in this case we write I*(f; E)=
I(f; E). Thus, if D and E are disjoint measurable sets and f and g are measurable
functions, then
I(f+3; E) = I(f; E)+1(g; E),
and
I(f; D VY E) = I(f; D)+I(f; E).
The following theorem is essential to the work of this paper. A proof may be
found in [6].

THEOREM 3. Let A and E be linear sets and let y, be the characteristic function
of A. Let a be any nonnegative real number. Then

I*(ay,; E) = al*(y4; E) = am™(4 N E).
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Also, 0(y4; E) is a planar measurable set if and only if A N E is a linear measurable
set.

3. Properties of I*.

THEOREM 4. Let f€ F and let E be a measurable linear set. Then M=0(f; E)
is a measurable cover of A=0(f; E) in the plane and

I*(f; E) = I(f; E).

Proof. It is clear that M is a superset of 4. If M is not a measurable cover of 4,
then there is a measurable set D & M —A, with mD>0. For a planar set E we
use the notation E*={x:(x, y) € E, for some y}, and for a linear set F we write
c(F)={(x,y):x e F & y>0}.

Let K be a measurable kernel of D® Then D=[D N ¢(K)] V [D N ¢(D*—K)].
We then have

mD = m*[D N e(K)4+m,[D N e(D*—K)],

(see [4, p. 61]). Since m,(D*—K)=0, we have m,[D N ¢(D*—K)]=0. Also
D N ¢(K) is measurable and we therefore have

mD = m[D N ¢(K)].

Thus replacing D by D N ¢(K), if necessary, we may assume that D is measurable.
Now let g, be the measurable function defined by

g2,(x) = max{f(x)-—l ;0}, if x e D%
n
g.(x) = f(x), if xe E—D"
Then {0(g,, E)}, is an increasing sequence of sets with limit M. Hence
lim m[0(g,,, E) N D] = mD,
and therefore, for some N, m[0(gy, E) N D]>O0.

Let H be a measurable kernel of {x:gy(x)>y for some (x, y) € D}. Then mH >0,
and we note that for x € H, gn(x)=f(x)—1/N. Now we define

g(x) = f(x), ifxe E—H;
2(x) = gy(x) =f(x)—§ , ifxeH.

Clearly g(x)< f(x) on E and {x:g(x)< f(x)}=H has positive measure. Also
g>f on E, since on E—H, g=f> fand for x € H, we have g(x)=gn(x)>y, for
some (x, y) € D and y>f(x). Hence the properties of g contradicts (i) and (ii) and
therefore M is a measurable cover of 4.

By the definition of 7 and I* it follows that I*(f, E)=I(f, E).
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THEOREM 5. Let fe F+ and let f(x)=0 for x ¢ E. Let M be a measurable cover
of E. Then

I*(f; E) = I*(f; M) = I(f; M).
Hence O( f; M) is a measurable cover of O(f, E).

Proof. Since f(x)=0, if x ¢ E, we have 0(f; E)=0(f; M), so that I*(f; E)=
I*(f; M). By the previous theorem, the result follows.

THEOREM 6. If E is measurable, then, for all A < R and fe F+,
I*(f; A) = I*(f; A N E)+I*(f; A—E).

Proof. The theorem follows easily from the measurability of ¢(E).

THEOREM 7. Let f, g € #* and let E < R. Then
I*(f+g; E) < I*(f; E)+1*(g; E).

Proof. Let E;={x:f(x)>0} and E,={x:g(x)>0}, and let M; and M, be measur-
able covers of E; and E,, respectively. Then M; U M, is a measurable cover of
E, U E, = {x:f(x)+g(x)>0}. _

Using Theorems 4 and 5 and the fact that f+g< f+g, we have

I*(f+g; E) = I*(f+g; E; U Ey)
= I(f+g; M, U M,)
LS I(f+8; My U My).
Since I(f+g; M, U M,) is a Lebesgue integral it follows that I*(f+g; E)<
I(fs M)+I(g; My)+I(f; My—M,)+I1(g; M;—M,). The function f is bounded
and there is therefore a constant ¢ such that 0< f <¢Xm,- Hence, by (i), 0< <
Cfm,» a.¢. Thus f(x)=0 for almost all x ¢ M. Thus I(f; My—M;)=0, and
similarly I(g; M;—M,;)=0. Also, by Theorem 5, I(f; M)=I*(f;E,) and
I(g; My)=I*(g; E,). It follows that

I*(f+g; E) < I*(f; E)+1%(g; E»)
= I*(f; E)+I*(g; E).

4. Separation of functions.

DerNITION. Let f,ge F+. Let F={x:f¢ C,} and let G={x:g¢ C,}. The
function f is separated from the function g if m(F N G)=0.

THEOREM 8. Let f, g € F+ and E < R. Then, if f is separated from g,
I*(f+g; E) = I*(f; E)+1*(g; E).
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Proof. We first prove the theorem under the assumption that g is measurable,
(so that certainly fis separated from g, since G=0).
Let fz=fxz. Then, if M is a measurable cover of E, by Theorem 5, we have

I*(f; E)+1%(g; E) = I*(fg; E)+1%(g; E)
= I(fg; M)+1(g; M).
Now, using Theorem 2, and the fact that the terms on the right-hand side of the
above equation are Lebesgue integrals, we have,

I*(f; E)+1*(g; E) = I(fg+g; M)
= I*(fg+gg; E)
where gz=gyz, and we have used Theorem 5. Since O(fz+gx; E)=0(f+g; E),
the result follows in the case when g is measurable.We note that, if the restriction
of g to a measurable superset 4 of E is measurable, then the result also holds by

replacing g by gy 4.
In the general case, by Theorem 1, fand g are measurable on the complements

of the measurable sets F and G, respectively. Since m(F N G)=0, the restriction
of g to F is measurable. Using the first part of this theorem and using Theorem 6,
it therefore follows that

I*(f; E)+1*(g; E) = I*(f; E 0 F)+I*(f; E-F)+1*(g; E N F)+I1*(g; E-F)
= I*(f+g; E N F)+I*(f+g; E—F)
= I*(f+g; E).

THEOREM 9. Let A and B be linear sets which satisfy m(A N B)=0. Let M and N
be measurable covers of A and B respectively. Then the characteristic functions of
A and B are separated if and only if m(M N N)=0.

Proof. We note that y, p=yx4+y5 a.e., since m(4 N B)=0. We therefore
have, by the previous theorem, that if y , is separated from yp, then

I*(xaup; E) = I*(y 43 E)+1*(xp; E),
for all E < R. Thus, by Theorem 3,
m*((4A U B) N E) = m*(4 N E)+m*(B N E)
Now, if m*(4 U B) is finite, we put E=A4 U B. We have
m*(A U B) = m*4A+m*B
= mM+mN

= m(M U N)+m(M N N)
> m*(4 U B),
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so that m(M N N)=0.If m*(4 U B) is not finite, we put E,=(4 U B) N (—n, n)
and we conclude that m(M N N N (—n, n))=0, for all natural numbers », so
that m(M N N)=0.

Now suppose that m(M N N)=0, then we show that y, is separated from yp.
By Theorems 1 and 2, y 4= 4, a.e. on the M complement of {x:y, ¢ C,}=F < M.
Similarly, {x:xp ¢ C,}=G < M. Therefore m(F N G)=0, so that y, is separated.
from yp.

The above theorem shows that the characteristic functions of sets are separated
if and only if the sets are separated in the sense of the definition given in [2].
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