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SUMMARY

The self-controlled case-series method was originally developed to investigate potential

associations between vaccines and adverse events, and is now commonly used for this purpose.

This study reviews applications of the method to vaccine safety investigations in the period

1995–2010. In total, 40 studies were reviewed. The application of the self-controlled case-series

method in these studies is critically examined, with particular reference to the definition of

observation and risk periods, control of confounders, assumptions and potential biases,

methodological and presentation issues, power and sample size, and software. Comparisons

with other study designs undertaken in the papers reviewed are also highlighted. Some

recommendations are presented, with the emphasis on promoting good practice.
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INTRODUCTION

Evaluation of vaccine safety is an important aspect of

any vaccination programme [1]. Although vaccines

are tested extensively for relatively common adverse

events in clinical trials before they are licensed for use,

not enough people are usually included in such trials

to detect adverse reactions that occur only rarely.

Post-licensure studies also enable the evaluation of

vaccine safety within groups such as the elderly,

those with chronic medical conditions, and pregnant

women, who might be deliberately excluded from

clinical vaccine trials. Finally, by providing accumu-

lating evidence of safety, they can help to maintain the

public confidence needed to keep vaccination uptake

high enough to prevent disease outbreaks.

Cohort and case-control study designs are com-

monly used to investigate vaccine safety, but

confounding by variables related both to avoidance

of vaccination and to the outcome of interest is a

potential problem [2]. An alternative study design,

the self-controlled case-series (SCCS) method, often

combines the power and simplicity of the cohort de-

sign and the economy of the case-control method,

while eliminating confounding by all time-

independent variables [3, 4]. This method, which uses

only information from cases, i.e. individuals with an

adverse event, was developed specifically for use in

vaccine safety studies, but has since been applied

in non-vaccine pharmacoepidemiology and in other

areas of epidemiology [5]. The method is briefly de-

scribed at the end of this section.

The purpose of this paper is to review how the

SCCS method has been used in vaccine studies since

its publication in 1995. Our aim is to highlight good

practice, and, based on experience accumulated

over the past 15 years, to attempt to give some clear

direction on how the method should be used and

reported. We also seek, briefly, to clarify some
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misconceptions about the SCCS method and how

it relates to other case-only study designs. Our aims,

however, fall short of developing fully-fledged guide-

lines on reporting SCCS studies, which require

detailed consideration of other applications in phar-

macoepidemiology. Nevertheless, we hope that this

review will contribute towards the eventual elabor-

ation of such guidelines.

The paper has four sections. In section 2 our review

criteria and methods are described. In section 3 we

present the results of our review, including specific

discussion on: data description and accuracy, choice

of observation and risk periods, potential biases,

comparison of SCCS with other methods such as

cohort and case-control, methodological issues,

sensitivity analyses, software and good practice.

Where appropriate, we also include general comments

about the method and make recommendations.

Section 4 is a brief discussion of our findings and areas

for further research on the SCCSmethod. First, we set

the scene with a brief description of the SCCSmethod.

The SCCS method

The SCCS method was originally developed to

estimate the relative incidence of an acute event in a

pre-defined post-vaccination risk period, compared to

other times, which constitute the control period [3]. It

is applied as follows.

An overall study time-window, usually defined by

age and calendar time boundaries (but also, some-

times, in terms of vaccination date), is chosen, ideally

such that the chance that individuals experience both

risk and control periods is maximized. Then, all or a

random sample of individuals with at least one event

(independent recurrences are permitted) within this

study time-window are identified: these are the cases.

The study time-window also determines individual

observation periods for each case, namely the time

spent by each individual within the study time-

window (the observation periods generally differ be-

tween individuals). Next, the vaccination histories of

the cases are collected: as in other epidemiological

designs, ascertainment of cases must be independent

of vaccination histories. The vaccination dates of

each case are used to define one or more risk periods,

during which individuals are hypothesized to be at

increased (or reduced) risk of the event of interest

after (or, for reasons to be discussed later, before)

vaccination. All other time within an individual’s

observation period, that does not fall within a risk

period, is included in that individual’s control period,

which forms the study baseline.

So far, the description of the method is in many

ways similar to that of a risk-interval cohort study, i.e.

a cohort study in which individuals experience suc-

cessive ‘at risk’ periods and ‘not at risk ’ or control

periods over a defined follow-up period. Typically,

in such a study, the cohort is recreated retrospectively

from event and exposure data stored in an electronic

database. The big difference with the SCCS method

is that only the cases from this retrospective risk-

interval cohort study need be sampled or available.

Justification for using only cases stems from the

analytical strategy, which treats as fixed the number

of events each individual experiences within the ob-

servation period: this is called conditioning on the

number of events. This may be explained heuristically

as follows. Having fixed the total number of events

an individual has experienced over the observation

period, and the risk and control intervals that each

individual has progressed through (both before and

after experiencing any events), the only quantity that

remains undetermined is the interval or intervals (risk

period or control) in which that individual’s event or

events actually occurred. Thus, in a SCCS analysis,

only this information contributes to the estimation of

the vaccine effect (whereas in a standard cohort study,

the number of events experienced by each individual

also contributes to the estimation). If an individual in

the cohort happens to have experienced zero events,

then there is no information on when events occurred,

and so that individual contributes nothing to the

estimation. Thus, a consequence of the conditioning

is that non-cases contribute no information, and

therefore need not be sampled.

A further consequence of the conditioning de-

scribed above (whereby the number of events experi-

enced by each individual is regarded as fixed) is that

the analysis is within-individuals and, as a result, in the

SCCS method all fixed confounding factors, known

and unknown, are controlled for implicitly. To see

this, recall that the only information used in the esti-

mation relates to when events occurred, within each

individual’s observation period. Since the possible

event times are all chosen from that same individual’s

history, the estimation is unaffected by confounding

factors that multiply the event rate by a quantity

that remains fixed over time. In this sense, the esti-

mation is within-individuals, and controls for fixed

confounders. Time-varying confounding factors,

such as age, can be accounted for by subdividing
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each individual’s observation period into age cat-

egories, which are modelled explicitly. Alternatively, a

semi-parametric approach, for which the age groups

do not need to be specified, is available, although it is

not suitable for large studies [4].

Estimation of parameters in the SCCS method

is most readily achieved by fitting a conditional

Poisson regression model (it is essential that it should

be a conditional model, in order to justify sampling

only cases). The parameter of interest is the re-

lative incidence, i.e. the incidence in a risk period

relative to the control or baseline periods. A tutorial

is available with full practical details and worked

examples [5].

Three key assumptions are made by the SCCS

method: these are (1) that events are recurrent and

independent, or are unique and uncommon over the

observation periods ; (2) that the occurrence of an

event must not alter the probability of subsequent

exposure; and (3) that the occurrence of the event of

interest must not censor or affect the observation

period [3–6]. Elaborations of the method to weaken

these assumptions are mentioned in the Discussion.

METHODS

We identified SCCS studies which included a vaccine

as an exposure, first published (in print or electro-

nically) between 1995, when the SCCS method was

first introduced, and end of 2010. We identified papers

by searching for those citing references [1–8] in the

following databases : Scopus, JSTOR, Science Direct,

British Library and all those within the ISI Web of

Knowledge.

We excluded all methodological papers published

in statistics journals. We also excluded methodologi-

cal papers published in epidemiology journals, unless

they included a specific application using SCCS not

reported elsewhere, and sufficient detail of this appli-

cation was provided.

Each paper was reviewed against a standard form

which was piloted on 13 papers. The form included

details on: vaccines and adverse events studied, data

collection and description, study population, sample

size, observation period, age groups, the allowance

for any other temporal confounders, risk periods

and their rationale, sensitivity analyses undertaken,

statistical features, reporting of results, whether key

SCCS assumptions were met, any good, bad or un-

usual practice, and comparison with other study

methods used in addition to SCCS.

RESULTS

We identified 40 studies which met our selection

criteria [9–48]. Four of these [9, 14, 17, 20] were

papers with a methodological flavour, aimed at vali-

dating a surveillance system, but including a specific

SCCS application. There were three notable exclu-

sions. The first planned to use the SCCS method

to study a possible association between vaccination

and acute cerebellar ataxia [49]. However, that

analysis was not undertaken owing to sparseness of

the data, and for this reason we excluded the paper.

Two further papers [50, 51] were excluded because,

while referencing the SCCS literature, it was not

clear that they intended to use it, and instead used

a ‘before and after vaccination’ design. As it turns

out, this is in fact a special case of the SCCS design;

we shall return to this issue later in the paper. The

papers were excluded because the authors could not

be expected to report the study as if it were a SCCS

study.

Figure 1 presents the distribution by year of publi-

cation of these 40 studies (references [10] and [38]

appeared in 2002, even though the journals are

dated 2001; reference [21] was published electronically

in 2010). Thirty-eight of the 40 papers appeared in

2000–2010; Figure 1 suggests a moderate increase

over this period. All but three studies were under-

taken in high median-income countries ; these three

studies were undertaken in Vietnam [9], Brazil [16]

and Cuba [38].
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Fig. 1. Distribution of vaccine studies using self-controlled
case-series by year of publication.
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Vaccines and adverse events studied

Table 1 presents the vaccines and the adverse events

studied. For ease of presentation, adverse events have

been grouped, as for example purpura (which includes

idiopathic thrombocytopenic purpura (ITP), allergic

purpura, and other purpura). Similarly, vaccine types

(e.g. intranasal and parenteral influenza vaccines)

Table 1. Vaccines and adverse events studied

Vaccine Adverse effect Reference

Any concurrent Hospitalization [37]

DT, Td Convulsion [12]

Myocardial infraction, stroke [39]

DTP, DTaP Convulsion [12, 17, 20, 24]

Encephalitis [47]

Immune haemolytic anaemia [36]

Wheeze onset [33]

DTP/Hib,

DTP/Hib/IPV

Apnoea, convulsion, crying,

diarrhoea, feeding problem,

fever

[13]

HBV Demyelination onset [23]

Immune haemolytic anaemia [36]

Wheeze onset [33]

Hib Wheeze onset [33]

Influenza Asthma exacerbation [27, 28, 44]

Bell’s palsy [35, 41]

Cellulitis or abscess, UTI [14]

COPD exacerbation [44]

Gastritis/duodenitis [22]

Guillain–Barré syndrome [25, 26, 42]

Myasthenia gravis [48]

Myocardial infraction, stroke [21, 39]

MCCV Convulsions, purpura [12]

Encephalitis [47]

Nephritic syndrome relapse [46]

Measles Acute respiratory tract

infection, arthropod-borne

viral fever, gastroenteritis,

pneumonia, tonsillitis

[9]

Autism [18, 45]

MMR Aseptic meningitis [16, 17, 31]

Autism [11, 18, 45]

Bacterial or viral infection [29, 43]

Convulsion [12, 17, 20, 31]

Encephalitis [47]

Gait disturbance [30]

Purpura (including ITP) [12, 17, 19, 20, 32, 40]

Wheeze onset [33]

OPV Intussusception [10, 15, 38]

Wheeze onset [33]

Pneumococcal Bell’s palsy [41]

Cellulitis or abscess, UTI [14]

Guillain–Barré syndrome [42]

Myocardial infarction, stroke [39]

Rotavirus Intussusception [34]

COPD, Chronic obstructive pulmonary disease; DT, diphtheria/tetanus vaccine;

DTaP, diphtheria/tetanus/acellular pertussis vaccine; DTP, diphtheria/tetanus/

pertussis vaccine; HBV hepatitis B virus vaccine; Hib, Haemophilus influenzae type

b vaccine; IPV, inactivated poliovirus vaccine; ITP, idiopathic thrombocytopenic

purpura; MCCV, meningococcal group C conjugate vaccine; MMR, measles/mumps/

rubella vaccine; OPV, oral poliovirus vaccine; Td, tetanus/diphtheria booster vaccine;

UTI, urinary tract infection.
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have been listed under the same heading. Measles/

mumps/rubella (MMR) and other measles-containing

vaccines were the most frequently studied (17 studies),

followed by influenza vaccines (13 studies) and vac-

cines containing pertussis antigens (eight studies). The

sample sizes (cases or numbers of events) included

in SCCS analyses ranged from the very small (only

seven events in one analysis in [17]) to the very large

(8180 cases in [21], 22 400 in [39]).

Typically, several vaccines and/or adverse events

were studied at the same time. One study [37] in-

vestigated concurrency of vaccination (administration

of at least two vaccines on the same or adjacent days)

as a risk factor. When several vaccines potentially re-

lated to the same outcome are administered at similar

ages, their effects should be studied within the same

model, as was done in [12]. This also applies to non-

vaccine exposures, as with influenza vaccination and

influenza-like illness in Guillain–Barré syndrome

(GBS) [42]. In 22 studies, vaccines were given in mul-

tiple doses; in 12 of these, dose-specific effects were

investigated.

The SCCS method can only cope with a single

outcome variable at a time. The most frequently

studied events were convulsion (including febrile

convulsion and aseptic meningitis) and purpura (six

studies each). There were four studies of intussuscep-

tion, and three each of autism and GBS.

Data description and data accuracy

In common with other epidemiological methods,

it is essential that ascertainment of events should be

independent of vaccination history; in SCCS studies,

this also applies to the timing of events in relation

to vaccination. A clear description of how the data

were obtained is therefore important in order for the

reader to be able to assess any possible dependence.

All 40 studies were felt to provide sufficient detail in

this respect. Sixteen obtained data on vaccinations

and outcomes from a single database [of these, seven

studies used the United Kingdom’s General Practice

Research Database (GPRD) and six the United

States’ Vaccine Safety Datalink], 14 linked two or

more databases, and in 10 data were obtained from

other sources.

Case-note reviews were undertaken in 18 studies,

and in two of these the review was commendably re-

ported as blinded to vaccine history. In one study [12],

case notes were used to identify vaccinations. This

may bias results towards a positive association, in as

much as vaccinations prior to the event are more

likely to be ascertained by case-note review than vac-

cinations after the event. However, in this study the

association was not significant, and so the ascertain-

ment procedure in this instance leant further weight to

the conclusions reached.

Most studies had full information on the day of

vaccination and the day of event (studies [18] and [45]

used month as the time unit for analysis, but with long

risk periods). In [14] and [16], dates of vaccination

were imputed rather than observed exactly. The sen-

sitivity to imputation errors depends on the lengths of

the risk periods used, and it would be advisable to

study this by sensitivity analyses, although none were

reported. In [13], vaccination dates were known ex-

actly, but the types of vaccines used at different times

were derived indirectly.

Observation periods and risk periods

A well-conducted SCCS study requires great rigour in

the definition of observation periods and risk periods

for each case. The observation period, in particular,

must be defined so that, had an event occurred at any

point within it, the case would have been ascertained.

Often, the observation period is determined by a

combination of calendar time and age constraints,

defined precisely in the time units of the study. Risk

periods are defined in terms of time since vaccination

(with, preferably, a stated convention to describe the

day of vaccination, for example day 0). A similarly

rigorous report of these choices provides confidence

that care was taken in the analysis, and enables

the reader, in theory at least, to reconstruct the study

exactly.

In all 40 studies, observation periods were defined

with sufficient detail to reconstruct the study. The

idiosyncrasies of specific databases need to be allowed

for appropriately in defining observation periods.

Thus, some studies excluded day of vaccination (or

allocated it a special parameter) owing to the fact

that, in some information systems, past events are

retrospectively recorded on day of vaccination; left

uncorrected, this would induce spurious associations

on day of vaccination. This effect is illustrated

graphically in marked fashion in [44]. In one study in

the GPRD [13], events on day of vaccination were

validated by case-note review.

The risk periods were defined explicitly in all

40 studies. The choice of risk periods should be made

a priori and its rationale explained. Typically, the
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choice will be motivated by reference to previous

studies or hypotheses, as in [19] for example; by bio-

logically plausible mechanisms [17] ; or by expert

opinion [30]. Different risk periods may sometimes

reflect different scientific questions. For example, in

[17], the 6- to 11-day risk period post-MMR was

chosen to capture febrile convulsions associated with

the measles component of the vaccine, while the 15- to

35-day risk period was chosen to capture convulsions

associated with the mumps component. Inevitably, in

some circumstances the risk period is not known, and

so the choice is arbitrary ; if so this should be stated

[18]. Three studies [18, 23, 28] used indefinite post-

vaccination risk periods. In several studies (e.g. [26]) a

sensitivity analysis was undertaken by varying the risk

period. A further approach is to use several adjacent

risk periods in the same analysis. For example, to in-

vestigate seizures and acellular pertussis vaccines,

study [24] used the risk periods 0 days (i.e. day of

vaccination) and 1–3 days after vaccination. When

results are similar across risk periods, or when data

are lacking, contiguous risk periods can be combined.

When a relatively long risk period is used, it is ad-

visable to undertake secondary analyses to identify

clustering or otherwise of cases within that risk

period. Examples include [32], where a clustering of

ITP cases was found 15–28 days within the 0- to

42-day risk period studied, and [18], where no clus-

tering of autism cases was found in adjacent 2-year

intervals within the unlimited post-MMR risk period.

Confounders

SCCS studies adjust automatically for time-invariant

multiplicative confounders. However, effect modifi-

cation by fixed covariates can be investigated through

interactions with the vaccine effect : for example in

[21] such effects were investigated, for sex and age at

start of observation.

The SCCS method, in common with other epi-

demiological methods, is prone to bias from uncon-

trolled age- or time-varying confounders. In vaccine

studies, particularly those undertaken in children, age

(or in some cases season, or both) is likely to be the

major confounder, and should, as a rule, be adjusted

for in the analysis, unless observation periods are ex-

tremely short. Seven studies did not report using any

kind of temporal adjustment; in four of these, the

observation period was less than a year. Of the re-

maining 33 studies, 19 adjusted for age only, three for

season only, one for calendar time only, six for age

and season, one for age and calendar time, and two

for age, season and calendar time (e.g. [24]).

Only one study [23] used the semi-parametric model

[4], in which it is not necessary to specify age classes.

If a parametric method of age adjustment is used, it

is good practice to check that the age model used is

adequate, by varying the number of age classes used.

Two studies reported such sensitivity analyses [23, 39].

One study [25] controlled for age as a continuous

covariate, although no details of how this was achieved

were given; such a method of control is not straight-

forward owing to the conditioning (see further details

under the Software for SCCS analyses subsection).

Control for age-varying or time-varying con-

founders other than age or season require the con-

founder to be measured over time. For example, in

an analysis of influenza vaccine and GBS [42], the au-

thors controlled for the possible confounding effect of

influenza-like illness. However, it is often impractical

to measure time-varying confounders. For example,

the healthy vaccine effect is a form of confounding

by an unmeasured time-varying factor. This affects

SCCS studies as well as other study designs. The po-

tential impact of such bias therefore requires careful

discussion.

Discussion of potential biases

The three key assumptions of the the SCCS method

listed in the Introduction should be checked, as far

as possible, and discussed. We consider these three

assumptions in turn.

Assumption (1) : that the events are either recurrent

and independent within individuals, or non-recurrent

and uncommon, is not usually problematic. For

recurrent events, sensitivity to the independence

assumption can readily be tested by restricting the

analysis to first events, provided these are uncommon

in the population considered; see [4, 5] for an example

with MMR and ITP. More complex approaches to

correcting for non-independence of recurrent events

are discussed in [52]. Simulations studies in [53] show

that the bias is negligible when the risk that an un-

vaccinated individual will experience an event over

the observation period is under 10%. Most adverse

events of interest in post-licensure studies are much

less common that this.

Assumption (2) : that the event should not affect the

subsequent probability of vaccination, is perhaps the
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most important for vaccine studies. This assumption

fails if the event is a contra-indication for vaccination

(as with intussusception and rotavirus vaccination

since the publication of [34]), or if vaccination after

the event is more or less likely (as with GBS and in-

fluenza vaccination). A third possibility is that vacci-

nation is deferred after (or more rarely, precipitated

by) an event, so that the impact of the event on vac-

cination is short-lived. Nevertheless, an important

feature of such biases is that their direction is pre-

dictable: if the event reduces the probability of sub-

sequent vaccination, then the relative incidence

associated with vaccination will be biased upwards.

This is because vaccinations are then less likely to

arise after the event.

There are three main ways of coping with such

bias: including pre-vaccination ‘risk’ periods to allow

for short-term deferral of vaccination (or indeed to

investigate the presence of longer term effects) ;

exclusion of all pre-vaccination time (so that the

observation period begins with vaccination), which

works provided the vaccine can only be given at most

once during the projected observation period; and

the use of more complex analytic techniques [54].

Of the studies reviewed, 16 used pre-vaccination ‘risk’

periods (see, e.g. [10] and [38]), and three [26, 39, 48]

started observation at vaccination for some analyses.

Assumption (3) : that the observation periods are not

event-dependent, may be violated, for example, if

events increase short-term mortality, or the event of

interest is death. This was not an issue in any of the

40 studies reviewed. SCCS methods for dealing with

such situations are discussed in [53–55].

Comparisons with other statistical methods

In addition to implementing the SCCS method,

12 studies used or reported results obtained on the

same data using other study designs. These included

cohort, case-control, and ecological methods. The

different methods should produce the same results,

provided that all confounding has been controlled

and that the assumptions required are met. Using

several methods of analysis is recommended, as it can

reinforce conclusions or shed light on possible sources

of bias, when these differ for different study designs.

Table 2 presents the results obtained using SCCS and

other methods, for a selection of analyses.

The results obtained using SCCS were broadly

similar to those obtained by other methods, with the

exception of studies of influenza vaccine and asthma

exacerbation [27, 28] where the SCCS method found a

protective or null effect, but a cohort analysis found

a positive association. The most likely explanation

for this discrepancy is residual indication bias in the

cohort study, children with more severe asthma

being more likely to receive influenza vaccine. In the

cohort study, underlying asthma severity was quanti-

fied using available proxy variables ; self-control in the

SCCS study was arguably more effective in correcting

for indication bias. More generally, the results of a

Table 2. Selected relative incidence (RI) estimates from self-controlled case series method and RI or odds ratio

(OR) from other study designs applied to the same case data, and 95% confidence interval (CI)

Vaccine (adverse effect) [ref.]

SCCS Other study type

RI (95% CI) Study type RI or OR (95% CI)

MMR (aseptic meningitis) [16] 30.4 (11.5–80.8) Before/after ecological analysis 14.3 (7.9–25.7)
MMR (ITP) [19] 5.38 (2.72–10.62) Cohort 3.94 (2.01–7.69)

Influenza (gastritis/duodenitis) [22] 4.54 (1.90–10.86) ‘Case crossover ’* 4.33 (1.23–15.21)
HBV (first demyelination) [23] 1.68 (0.77–3.68) Case-control 1.8 (0.7–4.6)
DTaP (seizure) [24] 0.91 (0.75–1.10) Cohort 0.87 (0.72–1.05)

Influenza (asthma exacerbation) [27] 0.98 (0.76–1.27) Cohort 1.39 (1.08–1.77)
Influenza (asthma exacerbation) [28] 0.65 (0.52–0.80) Cohort 1.4 (1.2–1.5)
HBV (wheezing onset) [33] 0.41 (0.24–0.70) Case-control 0.59 (0.22–1.59)

Oral rotavirus (intussusception) [34] 29.4 (16.1–53.6) Case-control 21.7 (9.6–48.9)
Intranasal flu vaccine (Bell’s palsy) [35] 35.6 (14.1–89.8) Case-control 84.0 (20.1–351.9)
Concurrent vaccines (hospitalization) [37] ‘Identical ’ Cox regression 0.90 (0.75–1.09)
MCCV (nephritic syndrome relapse) [46] 0.95 (0.61–1.47) Before/after ecological analysis 1.05 (0.95–1.15)

For abbreviations see Table 1 note.

* This description is incorrect : it is actually another SCCS (see text).
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SCCS study should be unaffected by unmeasured or

incompletely controlled confounders, and in this

sense ought to be more reliable, provided that the

assumptions of the method are satisfied.

In a study of hepatitis B vaccine (HBV) and

wheezing onset [33], the point estimates from SCCS

and a case-control study were of the same order, but

the greater precision of the SCCS method in this case

produced a statistically significant effect. The better

precision of the SCCS method was also noted in an-

other study of HBV [23], where it was pointed out that

some cases cannot be used in matched case-control

studies owing to lack of matching controls ; the SCCS

method does not suffer from this problem.

In one study [22] the alternative method was in-

correctly described as a case-crossover design, when

in fact it was another SCCS with a ‘before and after

vaccination’ observation period. The distinction be-

tween SCCS and case-crossover methods [56] stems

from the fact that, as described above, SCCS studies

are based on cohort designs, whereas case-crossover

studies are based on case-control designs. The use of

case-crossover methods for vaccine safety studies is

discussed briefly in [1].

The SCCS method is never exactly as powerful

(and therefore, does not yield as precise estimates) as

a cohort study with the same cases, unless, as often

occurs in practice, there is unexplained between-

individual variation in the cohort study which inflates

the uncertainty. However, when risk periods are short

relative to observation periods, the power of the

SCCS method approaches that of a cohort study.

However, SCCS studies with long or indefinite risk

periods [18] may have substantially lower power than

a cohort study with the same cases (see the discussion

of [4]). A SCCS study is usually more powerful than

a case-control study with the same cases and with a

single control per case [2]. (As the number of controls

increases, the power of the case-control study in-

creases.)

Methodological issues

An unusual feature of the SCCS method is that

post-event time is included in the analysis. This is a

consequence of the fact that the method works by

conditioning, for each individual, on that person’s

vaccination history over the entire observation

period, and on the number of events arising within

that period. It follows that observation time should

not be censored at the event. One study [25] did censor

observation at the event, in this instance GBS, osten-

sibly because patients who have had GBS may be

advised not to have further immunizations. If GBS

patients are less likely to receive immunizations after

experiencing the adverse event then, as noted above, a

standard SCCS analysis would have resulted in an

overestimate of the relative incidence. Censoring

at event, however, produces bias of unpredictable

direction, and is not recommended.

Several studies of potentially recurrent events, such

as convulsions [24], ITP [32] or GBS [42], considered

repeat events to be part of the same episode if sep-

arated by less than some minimum time period t. This

presents the methodological problem that, after an

event, no other event can then occur for a time inter-

val t : an instance of immortal time, which, if included

in the analysis, may result in bias [57]. Generally t is

short and repeat events are relatively uncommon, so

any such bias is likely to be small. A simple approach

is to perform a sensitivity analysis restricted to first

events, which also sidesteps the requirement for re-

peat episodes to be independent. One interesting

study [19] excluded person-time for a period t after

each episode; however, the performance of such a

strategy requires further investigation.

Several SCCS studies defined observation periods

relative to the day of vaccination, either starting with

vaccination and ending a fixed number of days after

vaccination [26, 48], or starting and ending some fixed

number of days before and after vaccination [9, 14] ;

we refer to such studies as ‘before and after ’ designs.

For some studies this was done for convenience of

data collection. While not invalid, this approach

results in short observation periods, which is not

optimal, as information from events occurring at

other times is not used. In addition, the short control

periods may only include time when the risk of

temporal bias is high. For example, bias from delayed

vaccination following an event may artificially depress

the incidence in the period immediately preceding

vaccination. This effect is very apparent on the plots

of intervals between vaccination and events in [14],

which shows a marked trough of hospitalizations in

the week preceding vaccination (this week was, right-

ly, excluded from the analysis).

As explained in the Introduction, the SCCS method

is derived from a cohort model by conditioning on the

number of events observed, as well as on vaccination

history. Thus, a conditional (Poisson) model is used

to estimate the parameters. Fewer than half of the

40 studies indicated that a conditional Poisson
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regressionmodelwas used, either explicitly (e.g. [19, 21,

22]) or with words to that effect (as in [20, 48]). In

a few studies it was unclear whether a conditional

or unconditional model was fitted (e.g. [37]). The only

circumstance in which an unconditional Poisson

model (i.e. one in which the number of events per

individual is not regarded as fixed) may be used in a

SCCS analysis is when all individuals have identical

observation periods and vaccination histories. In

this special case, the conditional and unconditional

methods give the same results. In two further in-

stances, the method of analysis appeared somewhat

idiosyncratic [14, 25].

Useful plots

Several studies (e.g. [16, 43, 44]) included plots show-

ing the intervals between events and vaccination;

these are useful for visualizing the association be-

tween exposure and event (although they are also

prone to censoring effects), and for identifying pre-

vaccination troughs. Such plots are trickier to draw

for multi-dose vaccines, but are useful nonetheless

[34]. Other studies (e.g. [19, 36]) illustrated the case

ascertainment procedure using a flow diagram, which

presents clearly the inclusions and exclusions applied

to assemble the cases, and hence can help the reader

assess any biases that may have arisen in the process.

Further useful plots include those illustrating the risk

periods used [21, 39], those showing estimated age or

season effects [23] and, for complex analyses with

many endpoints, graphical representation of the rela-

tive incidences [13].

Power and sample size issues

In studies involving very uncommon events, power

and sample size considerations are particularly im-

portant [8]. One study [21] reported checking the

sample size required to achieve 90% power to detect

at least a doubling of risk. The relevant sample size is

the number of events, and if this is too small the esti-

mates and confidence intervals may not be accurate.

To aid interpretation, it is important to report the

numbers of events in risk and control periods. The

larger the imbalance in the expected numbers of

events in the risk and control periods, the worse the

small sample bias. This is most likely to affect studies

with very short risk periods. Simulation studies re-

ported in [58] suggest that the small sample bias is

likely to be small provided at least 2.5 events are

expected in the risk period. Note also that a small

sample size may adversely affect the ability to control

effectively for the effect of age and other time-varying

confounders.

Sensitivity analyses

Sensitivity analyses have been mentioned throughout

this paper. They provide a simple way of evaluating

the robustness of the results ; we focus here on where

they may be used (other useful sensitivity analyses

than those described here can doubtless be per-

formed).

When the SCCS model is used with parametric

adjustment for age we recommend checking the

sensitivity of exposure risk estimates to choice of

age group, by increasing the number of age groups

[23, 39].

Sensitivity analyses of risk periods should be moti-

vated explicitly (as in [26]). Researchers may also wish

to consider whether it would be sensible to explore

sensitivity of results by adding washout periods to the

chosen risk period, removing the day of vaccination

or including pre-vaccination risk periods.

If recurrent adverse events occur in episodes, and

there is a lack of clarity over whether repeat events

are part of the same episode, sensitivity to the choice

of definition of episodes can be checked. Note that

analyses of first events only can be carried out to

avoid any issue of lack of independence between

adverse events.

If exact dates or timings of exposures or events are

unknown and have to be imputed, sensitivity to how

these timings are imputed should be explored.

When sensitivity analyses are performed, they

should be reported, with full details when they relate

to risk periods, washout periods and pre-vaccination

periods. It is important to distinguish between them

and the pre-planned primary analyses. If sensitivity

analyses suggest possible departures from the assump-

tions of the method, this should be stated explicitly. If

it is thought that departure from assumptions might

affect the results, then, where possible, alternative

methods of analysis should be used in conjunction

with SCCS.

Software for SCCS analyses

Twelve studies reported which statistical package was

used to undertake the SCCS analysis. Six used Stata

(StataCorp, USA), five used SAS (SAS Institute Inc.,
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USA) and one used GLIM (NAG, UK). Further in-

formation about fitting SCCS models using these

packages and other standard software may be found

in [5] and on the associated website (http://statistics.

open.ac.uk/sccs).

The SCCS model is most conveniently fitted using

software designed for Poisson regression models with

fixed effects (in this case, the levels of the fixed effects

represent distinct individuals). This method of fitting

the models exploits a convenient technical fact known

as the ‘Poisson trick’, whereby a multinomial likeli-

hood (which applies for the SCCS method, see [3, 4])

can be maximised using a Poisson model. However,

this trick has its limits : for example, fitting age as

a continuous variable cannot be done in this way,

because it does not allow for the fact that age varies

within each risk or control interval.

DISCUSSION

This review was based on papers quoting papers by the

second and third author on the case-series method.

We are aware of several independent reinventions of

the SCCS method in different contexts: the bidirec-

tional case-crossover method applied to fixed obser-

vation times [59] and the time-stratified case-crossover

approach [60], developed for the analysis of environ-

mental time-series (see [61, 62] for a discussion of the

connections with the SCCS method), and the method

of [63] applied to venous thromboembolism after

long-haul flights. None of these versions of SCCS

have so far been used in connection with vaccine

safety. Thus, to the best of our knowledge, we have

included all applications of SCCS methodology to

vaccine studies that appeared by the end of 2010.

We identified and reviewed 40 papers which applied

the SCCS method to vaccine studies. In general the

method was applied appropriately. All 40 studies

provided sufficient detail of how their data were col-

lected, which enabled the reader to make sure that

events are identified independently of vaccinations.

Moreover, observation and risk periods were gener-

ally carefully specified. Most studies adjusted for age

and/or season as appropriate.

The following key issues emerge when using the

SCCS method. Ascertainment of cases and collection

of data on exposure history should be independent, as

bias may result if case ascertainment was influenced

by knowledge of exposure status. The observation

and risk periods should be clearly defined, and the

choice of risk period should be justified. Where

necessary, age and season effects should be allowed

for, and when using the parametric model, sensitivity

to the choice of age and seasonal groups should

be checked. Other relevant time-varying covariates

(such as concurrent vaccinations and other exposures)

which may be associated with both the exposure

and outcome should be identified and, if possible,

taken into account in the analysis. The validity of the

assumptions required by the SCCS method should be

carefully considered and appropriate supplementary

sensitivity analyses undertaken where these come into

question.

A few papers suggest there remains a degree of

confusion about what a SCCS study entails, in par-

ticular how it differs from a ‘before and after vacci-

nation’ analysis or from the case-crossover paradigm.

This is wholly unsurprising, owing to the somewhat

abstruse and technical, yet fundamental, distinction

between conditional and unconditional analyses. A

recent methodological paper [64] also describes a

‘before and after’ design, described as a ‘risk interval

method’, which is in fact a special case of a SCCS

design. The term ‘case centred’ has also been used to

describe such designs [51]. We excluded two papers

[50, 51] with ‘before and after ’ analyses from our

review because they did not describe the design as

SCCS; several ‘before and after’ analyses that did

were included in the review. In fact, all these studies

are special cases of the SCCS design. Nevertheless, the

picture that emerges is dominated by the numerous

impressive and often imaginative applications of the

method.

The SCCS method has witnessed considerable

methodological development aimed at weakening

the assumptions it requires. Thus, methods have been

developed to handle event-dependent exposures

and deaths [55], dependent recurrences [52], event-

dependent observation periods [53]. The method has

also been extended to the prospective monitoring of

vaccine safety [65, 66]. Current research is underway

to fit SCCS models with smooth functions describing

age and vaccine effects.

This review has raised some further methodological

issues worthy of further study. One such is how best

to handle the ‘ immortal time’ after an event, during

which recurrences are classified as part of the same

episode, and whether ignoring this effect has any

substantive bearing on the results. Another is to study

and quantify the bias that results from censoring ob-

servation periods at events. Sensitivity analyses may

be indicated in both circumstances. Further, while
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the SCCS method is only applicable with a single

outcome variable at a time, it may be desirable to

study several outcomes jointly. A bivariate SCCS

method has been suggested for the analysis of anti-

biotic resistance [67] ; perhaps similar ideas can be

used for a multivariate SCCS applied to vaccine

safety, in which several possibly dependent outcomes

could be studied at the same time.

SCCS analysis is a relatively new statistical meth-

odology, and the issues that require particular em-

phasis and care in reporting have, therefore, only

become apparent over time. The development of

suitable guidelines for reporting such studies, in vac-

cine safety and pharmacoepidemiology more widely,

may perhaps now be indicated.
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