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Abstract

In this paper the concept of length as denned for groups by Lausch-Nobauer
in their book Algebra of Polynomials (North Holland, Amsterdam, 1973)
is generalized in several ways. It turns out that the main results of Lausch-
Nobauer concerning it remain valid for this generalization.

Subject classification (Amer. Math. Soc. (MOS), 1970): 08 A 25, 20 N 99.

The concept of length as defined below has been introduced by Scott (1969) in the
case that the variety "f considered is the variety of groups, the set X of indetermi-
nates is a one-element set and the subgroup A of the group A equals A. It was
generalized by Lausch-Nobauer (1973) to the case in which Xis an arbitrary finite
set. This concept turned out to be very useful in the investigation of certain problems
concerning direct products of algebras of polynomial functions over groups. The
purpose of this paper is to generalize some results of Lausch-Nobauer (1973) and
to exhibit the categorical aspects of the theory with the heavy use of diagrams.

1. Let "V be a variety of Q-algebras in the sense of Cohn (1965) (for the other
concepts of universal algebra used in the following see also Cohn (1965) and
Lausch-Nobauer (1973)), A a ^-algebra and X a set. A ^-algebra B will be
called a "^"-polynomial algebra in X ostv A and denoted by A(X, ir) if and only if
B is a free "^-composition (often also called coproduct or free union) of A and
the free "^"-algebra F(X, "T) with T -̂free generating set X, that is, if and only if
there are homomorphisms <px: A-+B and <pt: F(X, "V)->• B such that for any
"^"-algebra C and any homomorphisms <p±: A -> C, if/2: F(X, ~f) -> C there exists a
unique homomorphism p: B^-C with ipt = p<pt, i = 1,2. It is easy to see that <px

is injective and—except in the trivial case that | A \ — 1 and no ^-algebra with
more than one element contains a one-element subalgebra—the restriction <p2\X
is injective, too. Therefore, in the following, we usually identify <pxA with A and
9?2 X with X. Furthermore, it is easy to see that A u Zis a generating set of A(X, "T).
If t]: A -> C is a homomorphism from A to the ^"-algebra C, then by the definition
of a "^-polynomial algebra there exists a unique homomorphism r](X):
A(X, -f)^C{X, y ) with rj(X)a = -qa for all aeA and r)(X)x = x for all xeX.
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Furthermore, let A be a subalgebra of A and a: X->A an arbitrary mapping,
then there exists a unique homomorphism aa: A(X, ir)->A with aaa = a for all
aeA and aax = oac for all x e l . Let 5 be the homomorphism from A(X, "f)
into the direct power AA* defined by dp = (aap)aeAx for peA{X,ir). The
image of a will be called the algebra of Z-place polynomial functions over A with
coefficients in A and denoted by PX(A,A). The homomorphism

which is obtained from a by restriction of the codomain is called the canonical
homomorphism from A(X, TT) onto PX{A,A) and denoted by ax{A,A) if it is
necessary to indicate the dependence of a on X, A and A. Clearly PX(A,A) is
generated by a A u aX, i.e. the set of the constant functions from Ax to A with
values in A (in the following constant function with value a will also be denoted
by a) and the projections nx, xeX, from Ax onto A. This concept of polynomial
function algebras includes the polynomial function algebras in Lausch-Nobauer
(1973) and the polynomial algebras of Gratzer (1968) as special cases.

If 7): A -> C is a surjective homomorphism from A onto the T^-algebra C and
C = 7]A, then it is easy to see (cf. Lausch-Nobauer, 1973) that there exists a unique
homomorphism Px{rj): PX(A,A)->PX(C, C) such that PX(J))TTX = nx for all xeX
(the projections of Ax and Cx are denoted by the same symbol) and Px(v) a = -qa
for all a eA, that is, that the diagram

(1)

is the homomorphism obtained from t] byis commutative where i;
restriction.

Let (Ai)ieI and (At)ieI be families of T^-algebras such that At is a subalgebra of
At for all iel. Furthermore let A = JlieIAi, A = J[ieIAi with projections 7rf.
Clearly the mapping T l : ̂ '(A", ^ - ^ I l i e i ^ i ^ , 1H defined by T ^ = (TTi(X)p)isI

foipeA(X, V) is a homomorphism, and similarly we can define a homomorphism
T2: Px(A,A)-^Uieipx(Ai'Ai) by T2f=(Px(Tri)f)ieI for / e P ^ , ^ ) . By the
definition of TX and T2 and by (1) the diagram

(2)

iel

is commutative showing that T2 is surjective if TX is.
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The following assertion is a generalization of Proposition 3.53 in Lausch-
N6bauer(1973):

PROPOSITION 1. T2 W injective.

PROOF. Let f2: YluiPxiAi, A^)^- AAX be the mapping denned by

of PX(A, A) into
, axsA. One easily checks that f2r2 is the inclusion mapping
AA*. This clearly implies the injectivity of T2.

REMARK. The question whether TX is injective or not cannot be answered in
general. By the use of normal form systems it can be shown that TX is injective for
the variety of commutative rings with identity and for the variety of abelian groups,
whereas for the variety of groups TX is injective only in the trivial case that
|4-1.

2. From now on let "V be a variety of groups with multiple operators such that
the group identity 0 is the only nullary operation. If there is no danger of confusion,
in the following we shall drop the fixed variety V from our notations.

It is easy to see that the ^-polynomial algebra {0}(X) is the free T^-algebra
F(X) with T^-free generating set X. Let A be a ^-algebra and XX(A):
A(X)->F(X) the unique homomorphism such that \x(A)a = 0 for all a eA and
XX(A) x = x for all xeX. Clearly XX(A) is a retraction. For a subalgebra A of A
the ideal Xx(A)ker ax{A,A) of F(X) is called the length of A with respect to A
and X and denoted by LX(A, A). It is easy to see that LX(A, A) is fully invariant.

The following two propositions are generalizations of results in Lausch-
Nobauer (1973).

PROPOSITION 2. A(X)/(kerax(A,A) + ker \X(A))^F(X)/LX(A,A).

PROOF.

F(X)/LX(A,A)

= XX(A) A(X)/XX(A) ker ax[A, A) s A(X)/(keT GX(A, A)+ker XX(A))

by the second isomorphism theorem.

PROPOSITION 3. If TJ-.A-^-B is a surjective homomorphism, rjA = B, then
LX(A,A)^LX{B,B), and equality holds if and only if

rj(X) ker ox(A, A)+ker ox(B, E) n ker A^CS) = ker ax(B, B)

where ij: A-+B is obtained from 17 by restriction.
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PROOF. With the notations from above this is an easy consequence of the
commutativity of the diagram

terox(A,Ay
->A(X)

(3)

>F(X)

XX(B)

ker ax(B, >B(X)

where t{ is obtained from -q(X) by restriction and arrows of the form c^. denote
inclusion homomorphisms.

Let ax(A,A): F(X)->F(X)ILX(A,A) be the natural homomorphism and
XX(A,A): PX(A,A)->F(X)/LX(A,A) the mapping defined in the following way.
If fePx(A,A) and w(a1,...,an,irXl,...,TrxJ is a representation o f / b y a word,
then Xx{A,A)f= w(0, ...,0,*i» ...,Xj^+Lx(A,A). One easily checks that XX(A,A)
is well defined and a homomorphism. By these definitions, the following diagram

LX(A,A)C F(X)

(4)

J
-> A(X)

ax(A,A)

ker ax(A, A) n ker XX(A)c > ker XX(A) - ^ > ker X%(A, A)
is commutative where X'X(A,A) and a'x{A,A) are obtained from XX(A) and
ax(A, A), respectively, by restriction (and clearly are surjective).

3. One easily checks the commutativity of the diagram

F(X)/LX(A,A)
iel

(5)
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where rlt T2 have the same meaning as in Section 1, r'v T2 are obtained from rx, T2

respectively by restriction, T\ is the diagonal mapping and r\ is denned by
r*(f+Lx(A,A)) = (f+Lx(Ai,Ai))ieI for feF(X) (in the diagram the notations
of some mappings have been simplified in an unambiguous manner).

PROPOSITION 4. If I is finite, then r[ is surjective.

PROOF. Let (Pi)iei^Hiei^eTXx(Ai) be arbitrary. One easily checks that
HieiH(X)Pi (li i s ^ e canonical injection of A\ into A) is an element of ker XX(A)
and is mapped onto

PROPOSITION 5. If I is finite, then T2 is an isomorphism.

PROOF. This is an immediate consequence of the injectivity of T2 and the sur-
jectivity of r'x by the commutativity of diagram (5).

REMARK. Since ker \x(A,A)^(keT\x(A)+ker(jx(A,A))/keTox(A,A), Propo-
sition 5 is a generalization of Proposition 1.21 in Lausch-Nobauer (1973),
chapter 5.

Another generalization of a result of Lausch-Nobauer (1973) is the following.

THEOREM 6. If I is finite, then Tjf is injective and as a consequence

iel

PROOF. This is again an easy consequence of the injectivity of T2 and the sur-
jectivity of T2 by simple diagram chasing in the diagram (5) (actually, this is a very
special case of the well-known 5-lemma).

The following theorem generalizes Corollary 1.22 in Lausch-Nobauer (1973).

THEOREM 1. If I is finite, say / = { 1 , . . . , « } , then the following conditions are
equivalent:
(1) T2 is surjective.
(2) rf is surjective.
(3) The system of congruences / s ^ m o d L x ( / 4 f , At), iel, is solvable for any choice

(4) (n«si-TO£x(4,4))+£x<4.4) = *W for

(6)
Furthermore, if X=£0 each of the conditions (l)-(6) holds if and only if it holds

for all one-element sets X.
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PROOF. ( 1 ) O ( 2 ) : Trivially, (1) implies (2). The proof of the other direction is
done by simple diagram chasing using the surjectivity of T | and T'2 (which is again
a special case of the 5-lemma).

(2)-t>(3): This is trivial by definition of rf.
(3)<s>(4): It is clear that (3) can be weakened to the condition that the system

of congruences in (3) can be solved for all (fi)ieieJlieIF(X) with the property
that all components are 0 with the possible exception of one, because these (fi){ez
form a generating set of Y[isIF(X). This is easily seen to be equivalent to
condition (4).

(4)o(5): This is a well-known result of the theory of modular lattices (cf.
Kuros, 1963).

(5)o(6): Since Zis a generating set of F(X), the equivalence holds.
To prove the final assertion, we first observe that the unique extension

a: F(X)^-F(X) of a map a: X^-X maps Lx(At,A^ into L^iA^A^), i= \,...,n.
Suppose now that the condition (5) in Theorem 7 holds for an Z / 0. Applying
5: F{X)->F{X) to (5) with X a one-element set yields the condition (5) for X.
Conversely, assume that (5) holds for all one-element sets X. For an arbitrary
set X^ 0 one easily checks, using the same argument as above, that each F(X),
where Xis a one-element subset of X, is contained in the left side of (5). Since F(X)
is generated by these F{X), condition (5) holds for X, too. Since (l)-(6) are
equivalent, this is all that is required for the proof.

In case that one (and therefore each) of the conditions (l)-(6) holds, we say that
Ax, •••,An are independent with respect to Ax, ...,An and X (cf. Foster, 1955). If
each two At, Ajt i^j, are independent with respect to At, Aj and X, we speak of
pairwise independence. Clearly, independence implies pairwise independence. We
do not know whether the converse holds (for general varieties TT a counter-
example has been given by Froemke, 1971), but we shall prove

COROLLARY 1. If "f is one of the following varieties, then pairwise independence
implies independence:

(1) the variety of groups (cf. Froemke, 1971),
(2) the variety of lattice ordered groups {regarded as algebras of type (2,1,0,2,2)),
(3) the variety of unitary left R-modules,
(4) the variety of rings.

PROOF: If X=0 there is nothing to prove. Therefore, because of the final
assertion of Theorem 7 we may assume that X = {x}. Then the statement in cases (1)
and (2) is a simple consequence of the distributivity of the ideal lattice of F({x}).

To prove (3), for notational convenience we set L{ : = L^(Af,A^), i= l,...,n.
Since the Lt are fully invariant, they are ideals of F({x}) = RR and pairwise
independence means then that they are pairwise comaximal. Therefore we have
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i)£Li...Z.,+.LH.1£.L1n... nLj+Lj+1cR for all
j= 1,...,«—1, which clearly implies independence by Theorem 7 (5).

For the proof of (4), we first observe that the elements of F({x}) are all of the
form a1x+azx

2+... + amxm, ateZ, OTGN, where aix
i means the atth additive

power of JC*. Let je{l,...,n — 1}. Suppose we had already proved that

I(x)+lj+1(x) = x for some l{x)eL1n...nLii \^i<j, and lj+1(x)eLj+1 (the case
i = 1 is settled by the independence of Ax, Ai+1 with respect to Ax, Ai+1 and X).
Substituting x = Ii+1(x) + l'j+1(x) with li+1(x)eLi+1 and l'j+1(x)eLi+1 (such a
representation for x exists because of the assumed pairwise independence) and
using the normal forms from above yields

Kh+i oo+/;+iW)+w w*)+/;+i(*»=/(w*»+/;+iW+ww+'y+i(*»

for some l"j+1{x)ELi+1. Since the Lk, k= \,...,n, are fully invariant, we have
l(li+i(x))eL1n...nLi+1 and l',+1(x)+li+1(li+1(x) + !'i+1(x))eLt+1, that is

By induction it follows that condition (6) in Theorem 7 holds, which completes
the proof.

Further examples for the application of Theorem 7 are given by the following
three corollaries.

COROLLARY 2. Let "T' be a variety of groups with multiple operators which
arises from "T by possibly adding non-nullary operations to the operation set Cl
of "f and (or) enlarging the set of laws of "V. Then the "^"'-algebras Av...,An

are independent with respect to Ax,...,An and X, if they are independent regarded
as "^"-algebras.

PROOF. Let F(X, "T) and F(, *f~') be the free algebras with free generating set X
with respect to "f and "f"', respectively. Regarding F(X, "V1) as a "^"-algebra
there exists a unique T^-homomorphism <p: F{X,ir)^-F{X,ir') which fixes X
elementwise. Clearly, <p maps the length Lx{AifA^) with respect to "f" into the
length Lxi/iftAf) with respect to "V1, i= 1,...,«. Applying <p to the inclusion in
Theorem 7(6) yields the corresponding inclusion for "V'.

COROLLARY 3. Assume that among the operations of "t" there is a binary
operation . satisfying the law 0. x = 0. If A{ is a "^"-algebra containing a left
identity et with respect to . and At a subalgebra of At such that eieAi,i= 1,...,«,
then Ar,...,An are independent with respect to A±,...,An and X.

PROOF. Let xeX, then x—q.xeker0-^(^4i,^) and therefore xeLx(At,A^)
showing that Lx(AitA^) = F(X) for / = !,...,«.
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Let the exponent exp A of a group A with multiple operators be defined to be
the least common multiple of the group-orders of its elements if these orders are
bounded, and 0 otherwise, then we obtain the following

COROLLARY 4. IfexpAt, i= 1,...,«, are pairwise relatively prime, then Alt ...,An

are independent with respect to any subalgebras Ax,...,An, respectively, and X.
Conversely, exp At,i = l,...,n, are pairwise relatively prime, if either of the following
hold

(1) y is the variety of groups and Ax, ...,An are independent with respect to the
subalgebras Ai = {0}, z= 1,...,«, and any set X^0 {cf. Froemke, 1971).

(2) y is the variety of abelian groups and Ax, ...,An are independent with respect
to any subalgebras Ax, ...,An, respectively, and any set

PROOF. Suppose et:=expA{, i= \,...,n, are pairwise relatively prime and let
W> = (II?=i^i)/^> j = 1> •••,«. Then there are integers n^m^ such set

and therefore x = (nje^x+Qn^e^x for ally = 1, ...,n. Since

Lx{At,A£

and (mje^xeLxiApAj), we conclude from Theorem 7(4) that T2 is an iso-
morphism.

The second part of the assertion is a simple consequence of Theorem 7 and the
fact that in both cases mentioned in the corollary Lixy(Ai,Ai) = {(ke^)
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