Canad. Math. Bull. Vol. 18 (1), 1975

SOME ADMISSIBLE ESTIMATORS IN EXTREME VALUE DENSITIES

by R. SINGH

Let X be a random variable having the extreme value density of the form

(1)
$$f(x; \theta) = \begin{cases} q(\theta)r(x), & 0 \le x \le \theta \\ 0, & \text{otherwise} \end{cases}$$

where r is assumed to be a positive Lebesgue measurable function of x and the function q is defined by

$$1/q(\theta) = \int_0^\theta r(x) \, dx < \infty$$

for all θ in $\Omega = (0, \infty)$. It is further assumed that $q(\theta)$ approaches zero as $\theta \rightarrow \infty$.

In this note we are concerned with estimating parametric functions $g(\theta)$ of the form $[1/q(\theta)]^{\alpha}$, α any real number. The loss function is assumed to be squared error and the estimators are assumed to be functions of a single observation X. The case of estimators based on a sample of size $n \ge 1$ is discussed in Remark 1.

In our search for a 'good' estimator for $g(\theta) = [1/q(\theta)]^{\alpha}$ we calculate $E[1/q(X)]^{\alpha} = \int_{0}^{\theta} [1/q(x)]^{\alpha} q(\theta)r(x) dx$. Since $r(x) = -q'(x)/q^{2}(X)$ almost everywhere we find that for every $\alpha > -1$, $E[1/q(X)]^{\alpha}$ exists and is given by $E[1/q(X)]^{\alpha} = (1/\alpha+1)[1/q(\theta)]^{\alpha}$. This leads us to consider the class $\Lambda_{\alpha} = \{\delta_{K}(X) = K[1/q(X)]^{\alpha}$: K real} of estimators, which are constant multiples of $[1/q(X)]^{\alpha}$, for estimating the given parametric function $[1/q(\theta)]^{\alpha}$. Which of these estimators in Λ_{α} has the smallest risk uniformly for all θ in Ω ? Since $E[1/q(X)]^{l} = [1/(l+1)]^{2}[1/q(\theta)]^{l}$ if l > -1 and $=\infty$ if $l \leq -1$, it follows easily that for any δ_{K} in Λ_{α} ,

(2)
$$R(\delta_{K}, \theta) = E[K(1/q(X))^{\alpha} - (1/q(\theta))^{\alpha}]^{2}$$
$$= \begin{cases} [1/q(\theta)]^{2\alpha}, \quad K = 0, \quad \text{all } \alpha \\ \left(\frac{K^{2}}{2\alpha + 1} - \frac{2K}{\alpha + 1} + 1\right) [1/q(\theta)]^{2\alpha}, \quad \alpha > -\frac{1}{2}, \quad \text{all } K \\ \infty, \quad \alpha \le -\frac{1}{2}, \quad K \ne 0 \end{cases}$$

where throughout this paper ∞ stands for $+\infty$. If $\alpha > -\frac{1}{2}$, the quadratic expression $[K^2/(2\alpha+1)] - [2K/(\alpha+1)] + 1$ in K achieves its minimum at $K = (2\alpha+1)/(\alpha+1)$. It follows from this that for estimating $[1/q(\theta)]^{\alpha}$, $\alpha > -\frac{1}{2}$, the minimum risk estimator in Λ_{α} is $T_{\alpha}(X) = [(2\alpha+1)/(\alpha+1)][1/q(X)]^{\alpha}$ corresponding to $K = (2\alpha+1)/(\alpha+1)$

Received by the editors July 7, 1972 and, in revised form, October 15, 1973.

105

R. SINGH

 $(\alpha+1)$ with risk

(3)
$$R(\delta_K, \theta) = [\alpha/(\alpha+1)]^2 [1/q(\theta)]^{2\alpha}.$$

Is T_{α} an admissible estimator of $[1/q(\theta)]^{\alpha}$ for all α ? We have the following

THEOREM 1. Let the random variable X have density (1) and let the loss be quadratic. Then the estimator

$$T_{\alpha}(X) = \frac{2\alpha + 1}{\alpha + 1} \left[1/q(X) \right]^{\alpha}$$

is admissible for estimating $[1/q()]^{\alpha}$ for every $\alpha > -\frac{1}{2}$ and is inadmissible for all $\alpha \le -\frac{1}{2}$.

Proof. Assume $\alpha > -\frac{1}{2}$. Let T be any estimator satisfying the inadmissibility inequality for T_{α} :

(4)
$$E[T - (1/q(\theta))^{\alpha}]^{2} \leq E[T_{\alpha} - (1/q(\theta))^{\alpha}]^{2}$$

Writing $m(\theta)$ for E(T) and $m^*(\theta)$ for $E(T_{\alpha})$ we have the following equivalent inequalities:

(5)
$$E[T - m(\theta)]^2 + [m(\theta) - (1/q(\theta))^{\alpha}]^2 \le [\alpha/(\alpha + 1)]^2 [q(\theta)]^{-2\alpha},$$

and

(6)
$$E(T-T_{\alpha}]^{2}+2E\{[T-T_{\alpha}][T_{\alpha}-(1/q(\theta))^{\alpha}]\} \leq 0.$$

Inequality (5) implies that

$$[m(\theta) - (1/q(\theta))^{\alpha}]^{2} \leq [\alpha/(\alpha+1)]^{2}[1/q(\theta)]^{2\alpha}$$

from which we get the bounds for the function m as

(7)
$$\frac{2\alpha+1}{\alpha+1} \frac{1}{[q(\theta)]^{\alpha}} \le m(\theta) \le \frac{1}{\alpha+1} \frac{1}{[q(\theta)]^{\alpha}} \quad \text{if} \quad -\frac{1}{2} < \alpha < 0$$
$$\frac{1}{\alpha+1} \frac{1}{[q(\theta)]^{\alpha}} \le m(\theta) \le \frac{2\alpha+1}{\alpha+1} \frac{1}{[q(\theta)]^{\alpha}} \quad \text{if} \quad \alpha \ge 0.$$

Since $1/q(\theta)$ tends to zero as θ tends to zero, it is clear from (7) that $m(\theta)/[q(\theta)]^{\delta \to \alpha} \to 0$ for every $\delta > 0$. Now the hypothesis $\alpha > -\frac{1}{2}$ guarantees some $\delta > 0$ such that $\alpha = (\delta/2) - (\frac{1}{2})$ i.e., $2\alpha + 1 = \delta$, i.e., $\alpha + 1 = \delta - \alpha$. Thus it follows that

(8)
$$m(\theta)/[q(\theta)]^{\alpha+1} \to 0 \text{ as } \theta \to 0$$

The rest of the proof consists in showing that the only solution of the inadmissibility inequality (6) is $m=m^*$. For this it is enough to show that $m=m^*$ is the only solution to the inequality

(9)
$$[m(\theta) - m^*(\theta)]^2 + 2E\{[T - T_{\alpha}][T_{\alpha} - (1/q(\theta))^{\alpha}]\} \le 0$$

106

which is relaxation of (6) obtained after replacing its LHS by something smaller. But (9) still has T in it. To express it in terms of m we use the identity $m(\theta) = q(\theta) \int_0^{\theta} T(x) r(x) dx$ to provide us the relation

(10)
$$T(x) = \frac{m'(x)}{q(x)r(x)} + m(x)$$

Substituting this value of T in (9) and performing the expectation of the expression therein, we obtain the inequality

(11)
$$[m(\theta) - m^*(\theta)]^2 + \frac{2\alpha}{\alpha+1} \frac{m(\theta)}{[q(\theta)]^{\alpha}} - \frac{2\alpha(2\alpha+1)}{\alpha+1} E\left\{\frac{m(X)}{[q(X)]^{\alpha}}\right\} \le 0$$

where in this derivation integration by parts and result (8) is used. This inequality still contains the integral $E\{m(X)/[q(X)]^{\alpha}\}$. If we write

$$u(\theta) = E\left\{\frac{m(X)}{[q(X)]^{\alpha}}\right\} = q(\theta) \int_{0}^{\theta} \frac{m(x)}{[q(x)]^{\alpha}} r(x) \, dx$$

we have

(12)
$$m(\theta) = u(\theta)q^{\alpha}(\theta) - \left[\frac{q^{\alpha+1}(\theta)}{q'(\theta)}\right]u'(\theta).$$

Introducing $u(\theta)$ in (11) we have the inequality

(13)
$$[m(\theta) - m^*(\theta)]^2 - \left[\frac{4\alpha^2}{\alpha+1}\right] u(\theta) - \frac{2\alpha}{\alpha+1} \left[\frac{q(\theta)}{q'(\theta)}\right] u'(\theta) \le 0$$

wherein $m(\theta)$ is to be replaced by its value in terms of $u(\theta)$ from (12). It is now shown that $u^*(\theta) = [1/(1+\alpha)^2][1/q(\theta)]^{2\alpha}$, corresponding to $m=m^*$, is the unique solution of (13). For convenience we write

$$\left[1/q(\theta)\right]^{2\alpha} v(\theta) = u(\theta) - \frac{1}{\left(1+\alpha\right)^2} \left[1/q(\theta)\right]^{2\alpha}$$

in (13) which becomes

(14)
$$\left[(1+2\alpha)v(\theta) - \frac{q(\theta)}{q'(\theta)}v'(\theta)\right]^2 - \frac{2\alpha}{\alpha+1}\frac{q(\theta)}{q'(\theta)}v'(\theta) \le 0.$$

The proof now consists in showing that $v(\theta) \equiv 0$ is the only solution of (14). This is done by using typical Hodges-Lehmann argument as follows:

(a) $v'(\theta) \ge 0$ for $-\frac{1}{2} < \alpha < 0$ and ≤ 0 for $\alpha > 0$. If $v'(\theta) < 0$, then, using the fact that $q'(\theta) < 0$, we find that the expression $-[2\alpha/(\alpha+1)][q(\theta)/q'(\theta)]v'(\theta)$ is positive for $-\frac{1}{2} < \alpha < 0$. But then inequality (14) is violated.

Hence the assertion for $-\frac{1}{2} < \alpha < 0$ follows. The conclusion for $\alpha > 0$ follows likewise.

(b) $v(\theta)$ is bounded. The inequality (7) for $-\frac{1}{2} < \alpha < 0$ can be written as

$$\frac{2\alpha+1}{\alpha+1} \left[\frac{1}{q(x)}\right]^{\alpha} \le m(x) \le \frac{1}{\alpha+1} \left[\frac{1}{q(x)}\right]^{\alpha}$$

R. SINGH

which after multiplying through by $[q(\theta)r(x)]/[q^{\alpha}(x)]$ and integrating from 0 to θ becomes

$$\frac{2\alpha+1}{\alpha+1} q(\theta) \int_0^\theta \frac{-q(x)}{[q(x)]^{2\alpha+2}} dx \le u(\theta) \le \frac{q(\theta)}{\alpha+1} \int_0^\theta \frac{-q(x)}{[q(x)]^{2\alpha+2}} dx$$
$$\frac{1}{\alpha+1} \left[\frac{1}{q(\theta)} \right]^{2\alpha} \le u(\theta) \le \frac{1}{(\alpha+1)(2\alpha+1)} \left[\frac{1}{q(\theta)} \right]^{2\alpha}$$

Expressed in terms of $v(\theta)$, it becomes

 $\alpha[1+\alpha]^{-2} \leq v(\theta) \leq -\alpha[(1+2\alpha)(1+\alpha)]^{-2}$

showing that $v(\theta)$ is bounded. The boundedness of $v(\theta)$ for $\alpha \ge 0$ follows likewise.

(c) $[q(\theta)/q'(\theta)]v'(\theta)$ is not bounded away from zero as $\theta \rightarrow 0$. For suppose there exists $\varepsilon > 0$ and $\theta_0 > 0$ such that $[q(\theta)/q'(\theta)]v'(\theta) < -\varepsilon$ for $\theta < \theta_0$. That is, $-v'(x) < \varepsilon [q'(x)/q(x)]$ for all $x < \theta_0$. Integrating this from θ to θ_0 we get $v(\theta) - v(\theta_0) < \varepsilon \ln[q(\theta_0)/q(\theta)]$ which shows that $v(\theta) \rightarrow -\infty$ as $\theta \rightarrow 0$. This violates (b). Thus there exists a sequence $\theta_i \rightarrow 0$ along which

$$[q(\theta_i)/q'(\theta_i)]v'(\theta_i) \to 0.$$

Similarly we can show

(d) $[q(\theta)/q'(\theta)]v'(\theta)$ is not bounded away from zero as $\theta \to \infty$.

Now from (c) and (d) there are sequences $\theta_i \rightarrow 0$ and $\theta_i \rightarrow \infty$ along which $[q(\theta)/q'(\theta)]v'(\theta) \rightarrow 0$. From (14) it follows that $v(\theta) \rightarrow 0$ along these sequences. Hence from (a) it follows that $v(\theta) \equiv 0$. This completes the proof of admissibility of T_{α} for $\alpha > -\frac{1}{2}$. That T_{α} is inadmissible for $\alpha \leq -\frac{1}{2}$ follows from the fact that its risk (as shown in (2)) is finite for each such α .

REMARKS 1. If X_1, \ldots, X_n are independent random variables each having density (1) then the sufficient statistic $T = \max X_i$ has density given by

$$[q(\theta)]^n n \left[\int_0^t r(x) \, dx \right]^{n-1} r(t) \quad \text{for} \quad 0 \le t \le \theta$$

which is a density of the form (1) with $q(\theta)$ replaced by $[q(\theta)]^n$ and r(x) replaced by $n[\int_0^x f(v) dv]^{n-1}r(x)$. So from Theorem 1 we have the conclusion that

$$\frac{2\beta+1}{\beta+1}\left\{n\left[\int_0^x r(v) \, dv\right]^{n-1} r(X)\right\}^{-\beta}$$

is an admissible estimator of $[q(\theta)]^{-n\beta}$ if and only if $\beta > -\frac{1}{2}$. That is, writing α for $n\beta$, we conclude that

$$\frac{2\alpha+n}{\alpha+n}\left\{n\left[\int_0^x r(v) \ dv\right]^{n-1}r(x)\right\}^{-\alpha/n}$$

108

i.e.

[April

is an admissible estimator of $[q(\theta)]^{-\alpha}$ if and only if $\alpha > -n/2$. So for a given α we have admissibility for all sufficiently large sample sizes n.

2. Proof of Theorem 1 parallels the Blyth-Roberts [2] proof of the special case of the density (1) as

(15)
$$f(x;\theta) = \begin{cases} n\theta^{-n}x^{n-1}, & 0 \le x \le \theta \\ 0 & \text{otherwise} \end{cases}$$

In [2], the parametric function of interest is $g(\theta) = \theta$. If $g(\theta) = \theta^s$ then according to Theorem 1 the estimator $(n+2s)/(n+s)X^s$ is admissible (with respect to quadratic loss) for estimating θ^s for every s > -n/2 and is inadmissible for $s \le -n/2$.

3. In [5] Karlin proved Theorem 1 (of this paper) for all $\alpha > 0$ (see his Theorem 2, p. 418). His proof makes use of the fact that $\alpha > 0$. Theorem 1 of the present paper settles the question of the admissibility of T_{α} for all values of α .

4. An attempt was made in [6] to extend Karlin's Theorem 2 to all values of α but this was successful only for some special extreme value densities such as (15). The approach there is the limiting Bayes method, used by Blyth [1] and Karlin [5].

5. The following theorem extends Theorem 3 of Karlin [5] to all other values of α .

THEOREM 2. Let X have density

(16)
$$f(x;\theta) = \begin{cases} q(\theta)r(x), & x \ge \theta\\ 0, & \theta_0 < x < \theta, \end{cases}$$

where $q^{-1}(\theta) = \int_{\theta}^{\infty} r(x) dx$ and $q(\theta_0) = 0$. Then (with quadratic loss) the estimator $T_{\alpha} = [(2\alpha+1)/(\alpha+1)][1/q(x)]^{\alpha}$ is admissible for estimating $[1/q(\theta)]^{\alpha}$ for all $\alpha > -\frac{1}{2}$ and inadmissible for all $\alpha \le -\frac{1}{2}$.

6. If the loss function is given by $L_0(\delta, g) = [(\delta - g)/g]^2$, the estimator T_{α} is minimax and admissible for estimating $[1/q(\theta)]^{\alpha}$ for all $\alpha > -\frac{1}{2}$.

7. The estimator $(\alpha+1)[1/q(X)]^{\alpha}$ is the uniformly minimum variance unbiased estimator of $[1/q(\theta)]^{\alpha}$ for all $\alpha > -\frac{1}{2}$. This estimator, however, is inadmissible for it is uniformly improved upon by the estimator T_{α} .

8. In addition to the example of the density (15), Theorems 1 and 2 have the following applications:

(i) Pareto distribution. Let X have density of the form

17)
$$f(x; \theta) = \begin{cases} c\theta^{\circ} \frac{1}{x^{e+1}}, & x \ge \theta \\ 0 & \text{otherwise,} \end{cases}$$

where $c \ge 0$ is known and $g(\theta) = \theta^s$. If we take $r(x) = c/x^{c+1}$ then (17) is a special case of (16).

1975]

(ii) Let X have density

(18)
$$f(x;\theta) = \begin{cases} e^{-(x-\theta)}, & x \ge \theta\\ 0 & \text{otherwise,} \end{cases}$$

where $\theta \in (-\infty, \infty)$ and $g(\theta) = \theta^s$. If we set $r(x) = e^{-x}$ the (18) is a special case of (16).

ACKNOWLEDGEMENT. The author is extremely grateful to the referee for his many valuable comments and suggestions. The proof of the assertion ' $v(\theta)$ is bounded' (near the end of the proof of Theorem 1) is the one suggested by him. It is shorter and neater than the one given by the author.

References

1. C. R. Blyth, On minimax statistical decision procedures and their admissibility, Ann. Math. Statist. 22 (1951) pp. 22–42.

2. C. R. Blyth and D. M. Roberts, *On inequalities of Cramer-Rao type and admissibility proofs*, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 1 (1972) pp. 17-30.

3. M. A. Girshick and L. J. Savage, *Bayes and minimax estimates for quadratic loss functions*, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1 (1958) pp. 53–73.

4. J. L. Hodges and E.L. Lehmann, Some applications of the Cramer-Rao inequality, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1 (1951) pp. 13–22.

5. S. Karlin, Admissibility for estimation with quadratic loss, Ann. Math. Statist. 29 (1958) pp. 406-436.

6. R. Singh, Admissible estimators of θ^r in some extreme value densities, Can. Math. Bull. 14 (1971) pp. 411–414.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SASKATCHEWAN SASKATOON, SASKATCHEWAN

110