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Abstract: Anovel profile detectionmethod is proposed for astronomical fiber spectrum datawith low signal-

to-noise ratio. This approach can be applied to the pretreatment for 2-D astronomical spectrum data before

the extraction of spectra. The Wigner bispectrum, a classical higher-order spectrum analysis method, is

introduced and applied to deal with the spectrum signal in this article. After analyzing theWigner higher-order

spectra distribution of the target profile signal, the combination of the Wigner bispectrum algorithm and the

fast Fourier transform algorithm is used to weaken the effect of the noise to obtain more accurate information.

Both the reconstruction method of the Wigner bispectrum and inverse fast Fourier transform are used to

acquire the detection signal. At the end of this paper, experiments with both simulated and observed data based

on the Large Sky Area Multi-Object Fiber Spectroscopy Telescope project are presented to demonstrate the

effectiveness of the proposed method.
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1 Introduction

It is well known that 2-D astronomical fiber spectrum

images are a kind of special signal, which is the optical

signal through the telescope and other instruments pro-

jected onto the charge-coupled device (CCD). It is often

affected by many factors, including instrument aberra-

tion, atmospheric turbulence, and detector noise, during

the observation process. Hence, it makes the astronomical

spectrum data have the following characteristics.

There are the spatial orientation and wavelength orien-

tation,which are orthogonal in the fiber spectrum image. In

the spatial orientation, the spectrum energy of each fiber

diffuses to its adjacent pixels as a form of point-spread

function (PSF) to form the respective profiles. These

profiles have similar distributions, which are usually con-

sidered to be Gaussian distributions (Rhoads 2000). In the

wavelength orientation, smoothing processing is usually

not allowed because it will destroy the integrity of

the spectrum information. Therefore, we usually process

the spectrum image in its spatial orientation.

The noise which can easily pollute the observed

astronomical spectrum images is mainly considered as

having a Poisson distribution in statistics (Pych 2004),

which is related to the intensity of the signal. If the signal

has a low signal-to-noise ratio (SNR), the spectrum

profiles will be polluted so heavily that the centers of

profiles deviate from the ideal locations, and the shapes of

contours are not smooth and regular anymore, especially

when the observed targets are dark celestial bodies. This

situation makes extracting the profile information by

using traditional filtering algorithms difficult. Moreover,

these adverse factors will hinder the extraction of spectra,

which is an important step in the processing of 2-D

astronomical fiber spectrum images.

There are twomain kinds of spectra extractionmethods.

A direct and rapid method is the aperture extraction

method (deBoer& Snijders 1981),which just accumulates

the flux within a certain aperture around the center of the

fiber profile. Another modified algorithm was proposed

later in which each pixel has a different weight during the

flux extraction (Horne 1986; Robertson 1986; Marsh

1989). The benefit of this kind of method is that it does

not need profile detection, which makes the processing

simple. But the drawback is that the noise is also extracted

with the signal in this algorithm, which makes the result of

spectrum extraction imprecise, especially when the signal

has low SNR. The other kind of approaches are profile-

fitting methods (Piskunov & Valenti 2002; Blondin et al.

2005), which fit the fiber profile by using the flux in the

spatial orientation. These kind of methods can reach a

better accuracy but depend on the quality of fiber profiles

and the SNR of the data (Sanchez 2006).

Due to the effectsmentioned above, the profile detection

becomes necessary to getmore accurate profile information

for low SNR signals. To meet this challenge, a detection

method based on the fast Fourier transform (FFT) algorithm

(Cui et al. 2008) was proposed, in which the fiber profile

signal in the spatial orientation is transformed to the
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frequency domain by the FFT algorithm, and then 0.2% of

the energy of the high-frequency component is filtered out

as noise. Its effectiveness is limited and not all the compo-

nents of noise are filtered out. Zhu et al. (2010) described an

algorithm in which the stationary wavelet transform was

used to detect fiber profiles. The method shows good

performance in detection.

In this paper, we propose a novel profile detect-

ion method based on the Wigner bispectrum analysis

(Fonollosa & Nikias 1991) to process the fiber spectrum

profile signals in the spatial orientation. We can analyze

the distribution of noise in the Wigner bispectrum of the

profile signals. A group of reference data (flat signals)

with similar PSF and profile centers for each observed

target can be applied to design filters with adaptive cut-off

frequencies. The reconstruction method of the Wigner

bispectrum is used to reconstruct the detection signal. We

can acquire more accurate signal by the FFT filtering

method. The experiment data are simulated based on

the parameters of the Large Sky Area Multi-Object

Fiber Spectroscopy Telescope (LAMOST, China) and

the observed LAMOST data are also used.

In Section 2, the introduction and analysis of theWigner

bispectrum are provided and the profile detection algorithm

is described. Experiments and results are given in Section 3.

The summary is presented in the last section of this article.

2 Profile Detection Algorithm for Spectrum Image

2.1 Wigner Distribution and Wigner Bispectrum

The third-order Wigner distribution called the Wigner

bispectrumwas proposed byGerr (1988). Thismixed time–

frequency–frequency representation extends the standard

Wigner distribution to higher-order statistics domains.

The Wigner distribution is the most commonly used

time–frequency analysis tool. This distribution was pro-

posed in quantum mechanics by Wigner in 1932 and first

applied in the signal processing field byVille in 1948. It is

widely used because of its ability to concurrently describe

the signal in terms of its intensity in both the time and

frequency domains (Chernogor et al. 2006).

The Wigner time–frequency distribution function of a

signal x(t) is described as follows

W2x t;oð Þ ¼
Z1
�1

x tþ t
2

� �
x� t� t

2

� �
e�jotdt; ð1Þ

where v is the parameter of frequency domain, x*(t) is

the complex conjugate of the input signal and t is the lag
parameter of the time domain.

Analogous to equation (1), the third-order Wigner

distribution, orWigner bispectrum, of a real-valued signal

x(t) is defined as follows

W3x t;o1;o2ð Þ ¼
Z Z

x tþ a t1; t2ð Þð Þ
� x tþ b t1; t2ð Þð Þx tþ c t1; t2ð Þð Þ
� exp �j o1 þo2ð Þt1 � jo2t2f gdt1dt2;

ð2Þ

where the lag functions are given by

a t1; t2ð Þ ¼ � 2
3
t1 � 1

3
t2

b t1; t2ð Þ ¼ 1
3
t1 � 1

3
t2

c t1; t2ð Þ ¼ 1
3
t1 þ 2

3
t2:

ð3Þ

The lag functions (3) should satisfy the constraints as

follows

a t1; t2ð Þ þ b t1; t2ð Þ þ c t1; t2ð Þ ¼ 0

b t1; t2ð Þ � a t1; t2ð Þ ¼ t1
c t1; t2ð Þ � b t1; t2ð Þ ¼ t2: ð4Þ

The bispectrum can extract more detailed spectral infor-

mation about a signal, while the Wigner distribution has

the ability of obtaining greater time resolution than that

provided by conventional spectrograms. The Wigner

bispectrum is useful for extracting time-varying phase

information or phase coupling between frequency com-

ponents, as well as for detection and classification of

deterministic signals in stochastic noise.

For computer programming, the discrete version of the

Wigner bispectrum is also designed. For a discrete time

signal x(m), the discrete time and frequency Wigner

bispectrum is described as follows

W3x m;n1;n2ð Þ ¼ 1

N
exp j

2pm
3N

n1 þ n2ð Þ
� �

�
XN�1

k1¼0

XN�1

k2¼0

x m� k1 � k2ð Þx k1ð Þx k2ð Þ

� exp �j
2p
N

k1n1 þ k2n2ð Þ
� �

; ð5Þ

where N is the length of the input signal x(m).

The spectrum profile signals with noise and without

noise shown in Figure 1 can be transformed into new

3-D signals via the Wigner bispectrum function. The

Wigner bispectrum of the spectrum profile signal has

three components, one time domain and two frequency
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Figure 1 The spectrum profile signals. (a) The profile signal with
noise; (b) The profile signal without noise.
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domains. Some slices of the Wigner bispectrum (time

component m¼ 10 and 50) are illustrated in Figure 2.

More details of the Wigner bispectrum are shown in

Figure 3.

We can see that the signal is mainly distributed in the

corners while most of the noise converges in the middle

area. The frequency spectra of signal and noise overlap in

a certain frequency range.

2.2 Adaptive Filtering

To separate the noise from the profile signal, we design a

filter to weaken the spectrum of noise, especially in the

overlap part in two frequency domains as follows:

H n1;n2ð Þ ¼

a; o1on1;n2oN �o1

b; o2on1;n2oo1 or

N �o1on1;n2oN �o2

1; other

8>>><
>>>:

ð6Þ

whereN denotes the length of the signal,v1,v2 are the cut-

off frequencies of the filter and 0,v2,v1 , (Nþ 1)/2.

a, b are the coefficients of the filter and 0 # a# b# 1.

TheWigner bispectrum has three components, includ-

ing one time domain and two frequency domains, and

there are a lot of slices of theWigner bispectrumwhen the

time parameter m takes different values. For each slice,

the cut-off frequencies and coefficients of the filter may

be different.

The reference signal (flat signal) is applied to deter-

mine the optimal cut-off frequencies and coefficients

because it has similar PSF and profile centers for the

input profile signal. The Pearson correlation coefficient

(PCC; Benesty et al. 2008) is adopted here by satisfying

the condition: the detection signal after filtering and

reconstruction has the best correlation with the reference

signal. The PCC between detection signal and the corre-

sponding reference signal is defined by

Rx̂x ¼
N
PN
i¼1

x̂ ið Þx ið Þ �PN
i¼1

x̂ ið ÞPN
i¼1

x ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðx̂Þ �VarðxÞp ; ð7Þ

where

Varðx̂Þ ¼ N
XN
i¼1

x̂2 ið Þ �
XN
i¼1

x̂ ið Þ
" #2

; ð8Þ

where N denotes the length of the signal, x̂ denotes the

detection signal and x denotes the reference signal.

2.3 Signal Reconstruction of Wigner Bispectrum

The reconstruction algorithm of the Wigner bispectrum

is used to acquire the detection signal of the fiber profile

signal. Considering the Wigner bispectrum distribution

function defined by equation (5), the signal reconstruction

method is given as follows:

An inverse discrete Fourier transform (IDFT) is

applied to deal with both sides of equation (5). Therefore,

equation (5) is changed as follows

Figure 2 Magnitude of the Wigner bispectrum. (a) Wigner bispec-
trum of the profile signal with noise (m¼ 10); (b)Wigner bispectrum
of the profile signal without noise (m¼ 10); (c)Wigner bispectrum of
the profile signal with noise (m¼ 50); (d) Wigner bispectrum of the
profile signal without noise (m¼ 50).
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n2n1

(a) (b)

(c) (d)

n2

n1
n2 n1

n2

Figure 3 Details of the Wigner bispectrum (m¼ 50). (a) and (c)
are parts of the Wigner bispectrum of the profile signal with noise;
(b) and (d) are parts of the Wigner bispectrum of the profile signal
without noise.
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N
XN
n1¼1

XN
n2¼1

W3x m;n1;n2ð Þ exp j
2p
N

k1n1 þ k2n2ð Þ
� �

� exp �j
2pm
3N

n1 þ n2ð Þ
� �

¼ x m� k1 � k2ð Þx k1ð Þx k2 ð9Þ

When k1¼ k2¼ 1, equation (9) can be simplified by

x m� 2ð Þ ¼ N

x2 1ð Þ
XN
n1¼1

XN
n2¼1

W3x m;n1;n2ð Þ

� exp j
2p 3�mð Þ

3N
n1 þ n2ð Þ

� �
ð10Þ

which shows that the detection profile signal x(m) can be

reconstructed by equation (10).

2.4 Summary of Our Algorithm

For the observed spectrum image, each 1-D signal in the

spatial orientation is processed as follows:

(i) The original observed signal is extended to a 3-D

signal via the Wigner bispectrum function. We can

obtain several slices of the Wigner bispectrum by

changing the value of the time parameter m.

(ii) A filter (described in equation (6)) is applied to

weaken the noise spectrum. The optimal cut-off

frequencies and coefficients are determined by the

adaptive method. For different slices, the cut-off

frequencies and coefficients of the filters may not

be the same.

(iii) The reconstruction algorithm of theWigner bispec-

trum is used to acquire the processed signal.

(iv) The FFT algorithm is used to transform the pro-

cessed signal acquired in step (iii) to the frequency

domain.

(v) An ideal low-pass filter with a certain cut-off

frequency, such as

H oð Þ ¼ 0; o > oc

1; o � oc

�
ð11Þ

where vc is the cut-off frequency, is used to further

remove residual noise from the signal. The adaptive

method to estimate the cut-off frequency is applied.

(vi) The inverse fast Fourier transform (IFFT) algorithm

is used to restore the detection signal by dealing

with the filtered result.

3 Experiment and Results

The Pearson correlation coefficient has the ability to

reflect the similarity and smoothness between two sig-

nals. Therefore, it is adopted to evaluate the experimental

results in this section. The variance between the detected

signal and the original signal without noise is also applied

for evaluation, which is defined by

Vx̂x ¼ 1

N

XN
i¼1

erri � 1

N

XN
i¼1

erri

 !2

; ð12Þ

erri ¼ x̂ ið Þ � x ið Þ; ð13Þ

where N denotes the length of the signal, x̂ denotes the

detection signal and x denotes the reference signal.

Owing to the fact that the original signals without noise

are unknown for the observed data, the simulated signals

are adopted for the experiments. The simulated profile

signal is based on the parameters of LAMOST. An

experiment for the observed LAMOST data is also given

to demonstrate the effectiveness of our method.

According to the detection method based on the FFT

algorithm (Cui et al. 2008), only 0.2% of the energy of

the high-frequency component is filtered out as noise.We

adopt an improved FFT method as the contrast experi-

ment by combining the adaptive filtering in which more

high-frequency components can be filtered out and per-

formance can be improved.

3.1 Experiments Based on Simulated LAMOST Data

In this subsection, the model of the simulation data with a

Gaussian PSF is based on the LAMOST project, which is

one of the national major scientific projects of China.

There are 4000 optical fibers in LAMOST, which are

medially distributed to 16 multi-object fiber spectro-

graphs. The full width at half-maximum (FWHM) is ap-

proximately 8 pixels. The spacing of two adjacent fiber

centers is in a range of 14 to 16 pixels. The noise of the

simulated signals is mainly Poisson distributed with a low

SNR. Ten groups of profile signals and reference signals

are employed randomly with the length of 121 pixels.

For the simulated data, the profile signals without

noise are easily obtained for determining the optimal

cut-off frequencies v1, v2, vc and coefficients a, b. We

can get the approximate values of cut-off frequencies

and coefficients by analyzing the Wigner bispectrum and

Fourier spectrum of the profile signals without noise. For

the detection signals, several Pearson correlation coeffi-

cients between the processed signals and the signals

without noise can be obtained by changing the cut-off

frequencies and coefficients around the approximate

values. The choice of the threshold is to find themaximum

value point of the Pearson correlation coefficient.

In this subsection, the thresholds of adaptive filters are

different for different groups of profile signals. v1 is in a

range of 20 to 24, v2 is about 14 to 17 and vc is about 20.

The coefficients a, b of adaptive filters are about 0 to 0.2

and 0.7 to 0.8.

Two groups of the detection results are illustrated

in Figure 4, and the data of contrast experiments are

shown in Table 1, Figure 5, and Figure 6. In the table and

figures, R1, V1 represent the correlation coefficient and

the variance between the observed signal and the original

signal without noise, respectively. R2, V2 represent the

correlation coefficient and the variance between the
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signal detected by our method and the original signal

without noise, and R3, V3 denote the results by the FFT

method.

It can be seen from the results that our method can

detect the fiber profile signal more accurately than the

FFT method. The detection profile based on our method

has a better smoothness and similarity with the original

signal without noise.

3.2 Experiments Based on Observed LAMOST Data

In order to prove that our method still performs well in

engineering practice, the observed data of the LAMOST
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Figure 4 The detection signals based on simulated LAMOST data.
(a) and (e) are the spectrum profile signals with noise; (b) and (f)
are the spectrum profile signals without noise; (c) and (g) are the
detection signals based on our method; (d) and (h) are the detection
signals based on the FFT method.
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Figure 6 The variances of contrast experiments based on simulated
LAMOST data.

Table 1. The Pearson correlation coefficients and the variances of contrast experiments based on simulated LAMOST data

Profile No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10

R1 0.8363 0.8374 0.8368 0.8862 0.8318 0.8540 0.7706 0.8423 0.7615 0.8066

R2 0.9633 0.9596 0.9627 0.9612 0.9714 0.9578 0.9114 0.9639 0.9157 0.9411

R3 0.9394 0.9227 0.9434 0.9555 0.9623 0.9340 0.8923 0.9584 0.9112 0.9347

V1 5.3681 5.4745 5.4054 3.9623 5.5873 3.3844 3.9907 7.2962 3.7540 2.5570

V2 1.3712 1.5166 1.3367 1.7165 1.9568 1.0493 1.6731 2.9193 1.4686 1.0379

V3 2.7558 3.7221 3.2216 2.2863 2.4576 2.0031 2.1257 4.1764 1.7588 1.1330

R1, V1: observed signal; R2, V2: our method; R3, V3: FFT method.
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Figure 5 The Pearson correlation coefficients of contrast experi-
ments based on simulated LAMOST data.
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project are used. The observed 2-D spectrum images are

4136� 4160 pixels in size. The FWHM of the spectra is

about 8 pixels.

For the observed data, the original signal without noise

is unknown. The flat signals are used to substitute for the

original signal without noise. By analyzing the Wigner

bispectrum and Fourier spectrum of the flat signals, the

approximate values of cut-off frequencies and coeffi-

cients can be acquired. The optimal threshold of adaptive

filter is determined when the Pearson correlation coeffi-

cient gets the largest value. In this subsection, v1 is in a

range of 18 to 20, v2 is about 13 to 15 and vc is about 21.

The coefficients a, b of adaptive filters are about 0 to 0.15

and 0.5 to 0.7.

The applied data are selected from the LAMOST test

database in which most of the observed targets are dark

celestial bodies. The effect of processing the observed

data by our method is displayed in Figure 7. For the signal

of dark celestial bodies which has low SNR, the detection

profile signal based on our method has a better smooth-

ness than the FFT method.

4 Conclusion

An efficient detection method is proposed based on the

Wigner bispectrum for the astronomical fiber spectrum

images with low SNR in this paper. The profile signals in

the spatial orientation are extended to 3-D signals via the

Wigner bispectrum function. Adaptive filters are

designed by using the corresponding reference signal to

filter out parts of noise. Combining the reconstruction

method of the Wigner bispectrum and the FFT algorithm,

the target profile signals are restored. Experiments based

on the LAMOST project are presented to demonstrate the

effectiveness of the proposed method. From the experi-

mental results, we can see that the proposed method

obtains a better result.
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Figure 7 The detection signals based on observed LAMOST data.
(a) ro-04r-20100121 (MJD¼79514244), Domain (2500,700:820);
(b) ro-13b-20100121 (MJD¼79514169), Domain (3600,710:830);
(c) ro-13b-20100121 (MJD¼79514169), Domain (3400,1300:
1420) and (d) ro-13b-20100121 (MJD¼79514169), Domain
(2240,3695:3815). In (a), (b), (c) and (d), from left to right, the three
subfigures are the spectrum profile signal, the detection signal based
on our method, and the detection signal based on the FFT method,
respectively.
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