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Abstract

Incorporating genetic data from diverse populations is crucial for understanding genetic contributions to diseases and ensuring health equity
in healthcare practices. However, existing reference panels either capture a limited number of populations or have small sample sizes. We
examine the UK Biobank’s performance as a reference for clustering genetically similar individuals. Leveraging data from participants of
diverse origins, we aim to improve population representation andmitigate bias caused by the limited number of populations in other reference
panels. We combined countries of birth and ethnic backgrounds data fields from the UK Biobank and genetic information to infer genetically
similar population labels. A random forest model was then trained on genetic principal components to identify each individual’s most
genetically similar population. The model’s performance was validated using the 1000 Genomes and the CARTaGENE biobank data. We
identified more diverse reference populations than present in datasets such as 1000 Genomes, covering 19 populations worldwide. Our model
achieved medium to high precision and recall for most labeled populations, although lower rates were observed in closely related groups. For
instance, we identified 519 people in CARTaGENEmost genetically similar to theMiddle Eastern reference sample derived in the UK Biobank
(there are noMiddle Eastern samples in 1000 Genomes), yielding an 81.1% precision and a 97.0% recall rate compared to demographic-based
information. This practical approach of clustering genetically similar individuals utilizing existing biobank data may facilitate downstream
analyses, such as genomewide association studies or polygenic risk scores in underrepresented populations in genetic studies.
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Embracing diverse genetic data plays an important role in
advancing our understanding of the genetic contribution to the
development of diseases and ensuring health equity when
translating genetic findings into practice. The presence of
evolutionary driving forces, including genetic drift, mutation,
migration, natural selection, and recombination, has led to genetic
structure differences between populations, which might create
disparities in genetic association findings. Including genetic data
from diverse backgrounds, therefore, can help improve our
knowledge of genetic contributions to diseases and inferences
across populations. Furthermore, this can avoid potential bias
resulting from using single-population genetic findings and
prevent health disparities for underrepresented populations.

Many public genetic variation catalogues have attempted to
capture genetic diversity across various geographic areas and/or
ethnic groups (Fairley et al., 2020; International HapMap
Consortium, 2003; 1000 Genomes Project Consortium et al.,
2015). However, no single reference panel covers all potential
populations of research interest and simultaneously provides

genetic data with large sample sizes. In addition, while the majority
of current ancestry inference tools have been designed and
validated to work on estimating continental or broad geographical
populations (Alexander et al., 2009; Price et al., 2006; Pritchard
et al., 2000), studies on the transferability of genetic findings such
as polygenic risk scores (PRSs) have shown inconsistent results
that occur not only in different superpopulations but also at the
subcontinental level (Gola et al., 2020; Kerminen et al., 2019). This
impedes the adoption of genetic research in clinical practice,
especially in ethnically diverse countries. Furthermore, some of
these groups cannot be fully captured by population labels from
existing reference panels such as 1000 Genomes. Hence, it may be
advantageous to include a larger number of subcontinental
populations for ancestry estimation.

The UK Biobank is a vast resource of genetic and phenotypic
data that has made significant contributions to health studies
(Sudlow et al., 2015). The cohort contains participants from
various ethnic backgrounds (self-reported) and countries of origin,
and as such represents a potential repository of population
diversity across the world. Moreover, the UK Biobank population
clusters defined in a previous study have been observed to correlate
with regions of birth (Constantinescu et al., 2022), which is also in
alignment with the correspondence of genetic variations and
geographical locations in general. This underpins the potential of
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the UK Biobank as a reference dataset for ancestry estimation on a
global scale. There are several studies that used unsupervised
algorithms (Constantinescu et al., 2022; Diaz-Papkovich et al.,
2023) and identity-by-descent (IBD)-based haplotype clustering
(Gilbert et al., 2022) to capture the population structure of the UKB
data at the subcontinental level. The limitation of these approaches
is their exploratory nature, meaning that the clusters formed are
not predetermined and are significantly dependent on tuning
parameters (e.g., the chosen number of clusters, distance metric,
and length of IBD segments) and the patterns of genetic data.
Although additional information can be used to identify the
common patterns of resulting clusters, formed clusters may only
present the specific patterns of the studied dataset and not align
with predefined population categories. This unpredicted discrep-
ancymakes it challenging to compare and/or integrate results from
different studies and datasets, limiting the practical significance of
these findings (Constantinescu et al., 2022; Diaz-Papkovich et al.,
2023; Gilbert et al., 2022) within the studied cohort (i.e., UKB), and
hindering their transferability to new data. In contrast, supervised
learning using a reference panel can provide more interpretable
results, with outputs directly corresponding to specific reference
samples, facilitating the generalizability and transferability of the
clustering approach across different datasets, while being less
computationally intensive compared to the IBD-based method.
This is especially beneficial for the common practice of genetic
epidemiology where studies have been conducted in discrete
population groups. By leveraging UKB data as a reference dataset
for a supervised model, we can apply a consistent clustering
approach to different datasets, making the most efficient use of the
available data resources to group individuals who are genetically
similar to each other and the reference samples. This consequently
assists with performing genetic analyses such as genomewide
association studies (GWAS) or PRSs in populations of interest,
especially underrepresented population groups.

Hence, we propose a clustering approach that applies a
supervised classification algorithm and dimensionality reduction
technique to the UK Biobank genetic data to cluster individuals
with high genetic similarity. It is important to clarify here that we
are not introducing a novel method, but rather a practical approach
to exploit existing biobank data for finer grouping of genetically
similar individuals. Group labels were defined using a combination
of self-reported ancestries and countries of birth information. By
leveraging an available source of genetic data, we aim to assign
more fine-scaled population labels for a wider range of individuals,
extending beyond those that fall into the groups represented in
1000 Genomes. This will ultimately help alleviate bias arising from
the underrepresentation of populations in the reference panel and
improve the accuracy of genetic similarity clustering.

Although the term ‘ancestry’ is widely used and ancestry
estimation is a critical step in genetic analyses, ancestry definition
is loosely defined and therefore can lead to confusion or
misinterpretation. A recent publication discussed the statements
of genetic similarity and genetic ancestry groups in research on
human genetics (Coop, 2023). The article recommended using
genetic similarity to provide better descriptions of samples’
genomic data (Coop, 2023). The US National Academies of
Sciences, Engineering, and Medicine also proposed the use of
genetic similarity as preferred population descriptors in all types of
genetics and genomics research (National Academies of Sciences,
Engineering, and Medicine, 2023). Furthermore, they stated that
‘any description of the genetic ancestry of an individual entails a
decision about the relevant time depth at which to describe it’,

while the ancestry grouping process in genetic studies was often
derived from measuring genetic similarity instead of direct
observation (National Academies of Sciences, Engineering, and
Medicine, 2023). Therefore, in this study, we did not emphasize
inferring the detailed genetic ancestry of each individual. Instead,
we focused on identifying sets of individuals who are more
genetically similar to each other, bearing in mind that this
represents only an approximation to the true continuous nature of
genetic variation. However, we considered this approach to be
more practical and feasible for the downstream application of
clustering study participants for population-based studies, as it
allows us to account for genetic differences among populations in
the development and validation of genetic testing, facilitating its
translation to practice while avoiding the computational complex-
ity of treating genetic variation as a continuum. Accordingly, all of
the following ancestry inference results should be understood as
‘most genetically similar to the sample X in the reference panel’.
Additionally, it is important to note that all labels used to refer to
our results, as well as previous findings we mentioned, should not
be taken as ‘genetic ancestry’ but rather as ‘study population/
sample’ of respective studies and reference panels, which describe
the shared characteristics of participants.

Materials and Methods

UK Biobank Data and Labeling Genetically Similar Groups

We used the UK Biobank dataset with available imputed genetic
data (N = 487,180 individuals) as the reference for population
clustering based on genetic similarity. The cohort covers
individuals from four main self-reported ethnic background
groups: White, Asian or Asian British, Black or Black British,
and Mixed. Included in each group are different populations:
British and Irish in White; Indian, Pakistani, Bangladeshi, and
Chinese in Asian; Caribbean and African in Black. Initially, we
combined the self-reported ethnic background (Data-Field 21000)
and the country of birth (non-UK origin; Data-Field 20115) to
create country-based labels. Each group was constructed to contain
individuals with self-reported ethnic-label subgroups compatible
with countries of birth. For countries located in areas with ethnic
backgrounds that are not well defined in the UK Biobank’s ethnic
background field, such as the Middle East and South America, we
considered that participants’ answers could vary based on personal
views or experiences. For example, a Latin American might
identify himself as ‘White’, ‘Black’, ‘Mixed’, or ‘Other ethnic group’
in the UK Biobank Ethnic background field. Therefore, in these
cases, only individuals who self-identified as one of the
incompatible ethnic background groups (e.g., Asian in the case
of Latin American) or subgroups such as British, Irish, Indian,
Pakistani, Bangladeshi, or Chinese were removed from country-
based groups. To ensure analysis power and accuracy, we excluded
countries of birth with modern diverse-descent population
structures and country-based groups with less than 50 individuals.
After exclusion, 56 country-based population groups remained.
Phylogenic tree and admixture plots from FRAPPE (FRequentist
APProach for Estimating individual ancestry proportion), a
software program that estimates founding allele frequencies and
individual admixture using maximum likelihood model, separated
different regional ancestral groups including Sub-Saharan African,
North African-Near East/Middle East, South/Central Asian,
European, East Asian, South East Asian-Oceania, and American
(natives) (Duda & Jan Zrzavý, 2016; Li et al., 2008). Accordingly,
we merged all country-based groups in the Sub-Sahara, North
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African, and Middle East regions into respective larger groups. For
East Asian and South East Asian subclades, we only had one
available group each, namely Chinese and Filipino. For the
Central/South Asian subclade, we had three country-based groups,
which remained in broader classified groups due to a lack of
information about geography-based substructure. For the
European subclade, a study on European genetic structure
identified four main distinct regions, including (1) Finland, (2)
the Baltic region, Eastern Russia, and Poland, (3) Central and
Western Europe, and (4) Italy. Additionally, correlating genetic
distance and geography, they also created four regional barriers
separating (1) Finland and the rest, followed by (2) South Italy and
the other, then (3) Lithuania, Poland, and Western Russia from
Bulgaria, and finally (4) Baltic region and Poland from Sweden and
the remainder (Nelis et al., 2009). Considering these results and the
insular and peninsular geography, we reclassified our European
country-based groups into eight main groups, namely, (1) Finnish,
(2) Baltic and Eastern European, (3) Balkan (except Greek), (4)
Northern and Western European (except British and Irish), (5)
Iberian, (6) Italian, (7) Greek, and (8) British and Irish. The
remaining country-based groups only included countries in South
America and thus were merged into one Latin American group. In
general, using research findings of genetic substructures and
population differentiation within continents and data availability,
we merged the original 56 country-based into 19 groups for further
genetic similarity clustering analysis. These 19 population labels
were then used as target classes for a multiclass random forest
model that was trained on principal components of genetic data to
assign individuals’ genetically similar labels.

CARTaGENE Data

To validate our model, we used data from CARTaGENE (https://
cartagene.qc.ca/en/; Awadalla et al., 2013), a population-based
biobank of around 40,000 individuals in Québec, Canada.
CARTaGENE contains a diverse population with participants
and their parents coming from 258 countries and 12 ethnicities
(self-reported) covering all 19 genetically similar population
groups we created. First, we used the father’s and mother’s
countries of birth as the main criteria to assign individuals to
population groups. People who had individuals’ or parents’ self-
reported ethnicity that did not match the assumed ethnicity
derived from countries of birth were removed. For example, an
individual with both parents born in Barbados but had East Asian
ethnicity information was excluded. We also removed individuals
where their (or their parents’) first languages learned, or languages
spoken most often at home were not the official languages of
Canada or their countries of birth. Individuals whowere not able to
be classified as any of our 19 groups were likewise omitted.

1000 Genomes Phase 3 Data

To further validate our model, we used data from the 1000 Genomes
Project, a global catalogue of genetic variations present in the human
population. Phase 3 of the project provides 26 ethnic/ethnolinguistic
populations in five geographic regions (Supplementary Table S1;
Sudmant et al., 2015). Besides using 1000 Genomes as validating data,
we also employed it as a reference panel for genetic similarity
clustering.More specifically, we utilized 1000Genomes 26 population
labels as target classes for a random forest model trained on genetic
principal components to identify genetically similar groups of
individuals in testing data, namely CARTaGENE. We then used
1000 Genomes as the reference panel and applied the same approach

of combining the random forest algorithm and principal component
analysis of genetic data to further evaluate the role of population
representation in clustering genetically similar populations.

Statistical Analysis

Merging training and validating dataset. We used UK Biobank
and 1000 Genomes imputed data and CARTaGENE directly
genotyped data derived from the Global Screening Array (GSA) for
the genetic analyses of this study. The hard-called genotypes for
imputed data were assigned based on the highest genotype
probability. Since the majority of UK Biobank data participants are
British and Irish, we avoided the significant imbalance among
classified genetically similar groups derived from the UK Biobank
reference by randomly selecting 1000 British and 1000 Irish
individuals as the training samples for genetic analysis. Before
merging, the training data and the validating data were checked for
strand, alleles, position, reference/alternative allele assignment,
allele frequencies, variant ID, palindromic and duplicated SNPs to
ensure consistency using https://www.chg.ox.ac.uk/∼wrayner/
tools/. Subsequently, the training genetic data (e.g., UK Biobank
imputed data) were filtered to keep only variants in the validating
dataset (e.g., CARTaGENE GSA-based directly genotyped data).
Data then were merged using Plink v1.9 (Purcell et al., 2007).

Quality control procedure. After merging the prepared data,
variant genotypes were filtered for individual missing call rate
(<5%) andminor allele frequency (MAF;>0.05). Subsequently, we
removed individuals with low genotype call rate (<90%) before
performing linkage disequilibrium (LD) pruning to create an
independent SNP set for further analysis. A 200-kilobase window
size, a 50-kilobase step size, and an r2 threshold of .25 were used to
reduce the SNP set to avoid potential bias arising from the
confounding effects of LD when capturing genetic variation across
populations. The quality control and LD pruning process were
performed using Plink v1.9.

Estimating genetically similar groups. Using the set of cleaned
independent SNPs in the merged data, we ran principal
component analysis (PCA) to summarize genetic variation across
different population groups with reduced data dimensionality.
Subsequently, we inferred genetic similarity information by
applying the random forest approach to 80 principal components
of cleaned genotype data, a sufficiently large number to capture
genetic variation among different groups. PCA was performed
using Plink v1.9 and the random forest model was run via the
randomForest() R package (Liaw &Wiener, 2022) with the default
setting of 500 decision trees and bootstrap sampling, which
generated satisfactory precision and recall in validation datasets.
Individuals’ most genetically similar groups were identified by
majority voting. The accuracy of the approach was validated using
precision and recall rate.

Measures of fixation index (FST). To quantify the genetic differ-
entiation between 19 labeled populations in the training UK
Biobank data, we calculated pairwise FST between samples using
Plink v2.00a5LM. For each sample, we removed variants with
missing call rates exceeding 10%, MAF below 1%, and Hardy-
Weinberg equilibrium exact test p-value below 10-6. We also
excluded from each sample individuals with missing call rates
above 10% and possible cryptic relationships (pi-hat> 0.25). We
then merged postcleaning data from each sample. The set of
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variants that were genotyped on all individuals was kept for FST
calculation. We measured pair-wise FST between 19 labeled
populations using the Weir-Cockerham method. Standard errors
were estimated with the block size of 50 adjacent variants.

We applied the same approach to calculate pairwise FST
between 19 demographic-based imputed populations in the
CARTaGENE data and between 26 available populations in
1000 Genomes data.

Results

Combining the ethnic background and country of birth
information as the new standard for population labeling, we
identified 19 genetically similar groups represented in the UK. We
applied geography-based names to the 19 groups, including North
African, Greek, Balkan (except Greek), Baltic and Eastern
European, Bangladeshi, Caribbean, Chinese, Filipino, Finnish,
Latin American, Iberian (comprising Spanish and Portuguese),
Indian, Italian, Middle Eastern, Northern and Western European
(except British and Irish), Pakistani, Sri Lankan, Sub Saharan,
British and Irish. The total dataset used as the reference panel
comprises 20,846 individuals, with the sample size of each group
ranging from 134 to 2959 (details in Table 1).

We applied the random forest model to estimate genetically
similar groups based on principal components of genetic data. The
training model generated an out-of-bag (OOB) error of 9.87%,
which was relatively low considering the setting of the 19-group
classification. The confusion matrix demonstrating the detailed
classifiers’ predictions for unseen training data is shown in
Supplementary Table S2. To measure genetic differentiation
between these 19 clusters, we calculated pairwise FST between
samples (Supplementary Table S3). Among sub-European clusters,
Finnish was the most distinct population, with paired FST values
between Finnish and any of the other sub-European groups greater
than 0.005. Among intercontinental groups, considerable over-
lapping values were observed between South Asian groups, Latin
American, North African, Middle Eastern, and European
populations, as well as between Chinese and Filipino groups, with
FST ranging from 0.01 to 0.04.

We validated our prediction model on two independent
cohorts, CARTaGENE, and 1000 Genomes. Genetically similar
clustering performance was evaluated via precision and recall rate.
Although CARTaGENE data contains nearly 40,000 individuals,
genetic data needed for clustering is only available in 29,248
individuals. We only imputed population labels for this subset of
people using the father’s and mother’s countries of birth as the
main criteria. Of these 29,248 individuals, 26,350 had parents
whose countries of birth either were not covered in 19 UK
Biobank-derived population labels (e.g., Canada, USA, Malaysia)
or belonged to two different labelled groups and therefore were
excluded from validation. The remaining 2898 individuals fell into
one of the 19 groups we created. While CARTaGENE participants’
population labels were imputed using the 19-label classification
derived from the UK Biobank, the 1000 Genomes project covers 26
populations based on ethnic/ethnolinguistic backgrounds that do
not exactly match our training 19 classes. However, the majority of
these are associated with countries or regions that we used to create
genetically similar labels. Therefore, ESN, GWD, LWK, MSL, YRI
were expected to be in the Sub-Saharan group; GBR in British and
Irish; CEU in Northern and Western European; FIN in Finnish;
IBS in Iberian; TSI in Italian; BEB in Bangladeshi; GIH, ITU in
Indian; PJL in Pakistani; STU in Sri Lankan; CDX, CHB, CHS in

Chinese; ACB in Caribbean; CLM, MXL, PEL, PUR in Latin
American. The three 1000 Genomes populations absent from the
training samples, including KHV (Kinh in Vietnam), JPT
(Japanese), and ASW (African American), were excluded when
calculating precision and recall.

The validation results showed the possibility of identifying
people from groups that are underrepresented in commonly used
reference panels such as Filipino, Middle Eastern, Baltic and
Eastern European, and Balkan people. In CARTaGENE, precision
for all genetically similar groups ranged from 69.1% to 100%, while
recall exceeded 60%, except for Greek (Table 2). In particular, 11
out of 19 populations demonstrated good performance with both
precision and recall of greater than 80%. Results are specifically
high for populations with distinct genetic profiles such as Finnish
and Filipino. In contrast, Greek had a high precision, at 91.9%, but
a low recall of only 48.6% since half of the Greek individuals were
assigned to the Italian group (confusion matrix in Supplementary
Table S4). Looking further at pairwise FST between demographic-
based imputed populations in CARTaGENE (Supplementary
Table S5), Greek and Italian clusters showed little differentiation,
with an FST value of 0.0004 (SE= 4.66e-05). Similarly, a large
proportion of Bangladeshi and Pakistani individuals were
predicted to be most genetically similar to the Indian group,
resulting in low recall rates in Bangladesh (61.5%) and Pakistan

Table 1. Training data for random forest model

Genetically similar
ancestry label

Sample
size

Countries of birth included in the UK
Biobank data

North African 525 Egypt, Algeria, Morocco, Libya, Somali,
Sudan

Balkan 177 Bulgaria, Romania, Serbia and
Montenegro

Baltic and Eastern
European

1013 Latvia, Lithuania, Russia, Poland, Ukraine,
Hungaria

Bangladeshi 197 Bangladesh

Caribbean 2934 Barbados, Guyana, and other Caribbean
countries (not specified)

Chinese 1504 China

Filipino 134 Philippines

Finnish 153 Finland

Greek 206 Greece and Cyprus

Latin American 294 Mexico, Peru, Argentina, Chile

Iberian 605 Spain, Portugal (White background)

Indian 2959 India

Italian 732 Italy

Middle Eastern 1054 Iran, Iraq, Turkey, Israel, Lebanon

Northern and
Western European

2595 Austria, Belgium, Czech, Denmark,
Netherlands, Germany, Norway, Sweden,
Switzerland

Pakistani 1239 Pakistan

Sri Lankan 545 Sri Lanka

Sub Saharan 2052 Ghana, Nigeria, Uganda, Zambia, Sierra
Leone, Congo

British and Irish 1928 UK
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(60%) and low precision in the Indian group (69.1%). The
Pakistani cluster also exhibited minimal differentiation from the
Indian group in both training data (FST= 0.0005, SE= 5.77e-05)
and the validating CARTaGENE data (FST= 0.0010, SE= 0.0002).

In 1000 Genomes, 23 populations were assigned to one of 13
genetically similar groups as expected. Genetic similarity clustering
performance across all populations is illustrated in Table 3. Among
the 13 groups analyzed, Chinese, Finnish, Latin American, Iberian,
Italian, and Sub-Saharan achieved both precision and recall of

greater than 90%. Low precision in the Indian group (67.6%) and
low recall in the Pakistani group (33.3%) were observed, which is
similar to the validation results in CARTaGENE. In addition, more
than half of the CEU population was assigned to the British and
Irish group (confusion matrix in Supplementary Table S6), leading
to low precision in the British and Irish group (56.9%) and low
recall in the Northern and Western Europe group (43.4%).
However, the CEU population, which represents people residing in
Utah with Northern and Western European origin, may include
Irish. Moreover, the observed results may be attributed to factors
like location sampling, environmental influences, and migration
patterns, all of which could be encapsulated by the genetically
similar label. Indeed, the CEU and GBR population in 1000
Genomes showed an extremely low level of genetic differentiation,
with an FST value of 0.0003 (SE= 1.76e-05; Supplementary
Table S7).

To further evaluate the role of population representation in
clustering genetically similar individuals, we applied the same
approach of integrating multiclass random forest and PCA of
genetic data using 1000 Genomes phase 3 as the reference dataset
to cluster genetically similar individuals in CARTaGENE (con-
fusion matrix results in Supplementary Table S8). Among 19
imputed populations in CARTaGENE, over 90% of individuals in
Bangladeshi, Finnish, Latin American, Iberian, Pakistani, and Sub-
Saharan groups were assigned to 1000 Genomes’ most closely
related populations. Expected results were also seen in partially
overlapping groups. For example, 50.6% of Caribbean individuals
were more similar to ACB, whereas 31.0% were more similar to
ASW compared to other reference samples. British and Irish
individuals were mainly estimated to be most genetically similar to
the GBR (71.4%) and CEU (26.7%) groups. All Indian individuals
were predicted to be most genetically similar to South Asian
samples, although only 26.9% were assigned to Indian samples,
including ITU and GIH. Considering population groups that were
not present in the 1000 Genomes reference samples, 93.8% of
Filipino individuals were most genetically similar to the KHV
sample, while 98.6% of Greek and 99.6% of Middle Eastern
individuals were most genetically similar to the TSI sample.
Meanwhile, the majority of the three remaining absent groups,
North African, Balkan, Baltic and East European, were assigned to
different European populations. We increased the prediction
threshold to evaluate whether individuals in absent populations
were removed from incompatible groups. After replacing majority
voting with the prediction probability threshold of 0.8, all North
African and 99.3%Middle Eastern individuals were removed from
the prediction. However, 25% of Filipinos and 58% of Greeks
remained assigned to KHV and TSI samples, respectively. The
results suggest that using UK Biobank data enables us to identify
missing populations in 1000 Genomes, thus providing a more
comprehensive population reference that allows us to match
individuals to more genetically similar groups.

Discussion

By referring to the UK Biobank dataset as the reference, we
identified reliable categorizations for a wide range of populations
that are present in theUK.With 19 group labels, we covered amore
diverse set of genetically similar groups from all over the world
compared to existing datasets such as 1000 Genomes. It is now
possible to identify people from populations that are absent in
commonly used reference panels (e.g., the Middle East, the
Philippines, the Baltic states and Eastern Europe, and the Balkans).

Table 2. Genetic similarity clustering accuracy in CARTaGENE

Genetically similar label Precision Recall

North African 0.890 0.870

Balkan 0.934 0.733

Baltic and Eastern European 0.861 0.742

Bangladeshi 1.000 0.615

Caribbean 0.847 0.831

Chinese 0.983 0.991

Filipino 1.000 0.969

Finnish 1.000 0.833

Greek 0.919 0.486

Latin American 0.997 0.849

Iberian 0.920 0.977

Indian 0.691 0.904

Italian 0.887 0.995

Middle Eastern 0.811 0.970

Northern and Western European 0.750 0.892

Pakistani 0.750 0.600

Sri Lankan 0.889 1.000

Sub Saharan 0.785 0.843

British and Irish 0.951 0.924

Table 3. Genetic similarity clustering accuracy in 1000 Genomes

Genetically similar label Precision Recall

Bangladeshi 1.000 0.779

Caribbean 0.813 0.948

Chinese 1.000 1.000

Finnish 1.000 0.990

Latin American 1.000 0.942

Iberian 0.955 1.000

Indian 0.676 0.854

Italian 0.991 1.000

Northern and Western European 0.705 0.434

Pakistani 1.000 0.333

Sri Lankan 0.758 0.922

Sub Saharan 0.990 1.000

British and Irish 0.569 0.813
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Validating results on CARTaGENE and 1000 Genomes data
showed satisfactory precision and recall rates of greater than 70%
for most of the labeled groups. Nevertheless, it is still challenging to
distinguish closely related groups such as Greeks from Italians, and
Bangladeshi and Pakistani from Indians. A study on European
population genetic substructure reported the overlap between
Italian American and Greek American (FST= 0.000, SD= 0.0011)
as well as close relatedness between Greek American and Tuscany
(FST= 0.001, SD= 0.0025; Tian et al., 2009), which is consistent
with the historical event of Greek colonization in Southern Italy
(Tofanelli et al., 2016). Similar fixation indexes were observed in
our Italian and Greek clusters in both training data (FST= 0.0010,
SE= 2.29e-05) and validating data (FST= 0.0004, SE= 4.66e-05).
This can be the explanation for the overlapped prediction results of
Greek and Italian individuals that we observed. In the case of India,
Bangladesh, and Pakistan, the past and ongoingmigration patterns
with shared genetic history make it challenging to disentangle
genetic differences among the three country-based populations.
Genetic distance between Northwest Indian and Pakistani
populations was also found to be lower than the measures for
Northwest Indian and other North Indian groups (Pathak
et al., 2018).

Replicating the same approach but using 1000 Genomes as a
reference dataset demonstrated the importance of population
representation in improving genetic similarity clustering. Typical
examples are the results for Filipino and Greek. The prediction
model using 1000 Genomes reference, which did not cover Filipino
and Greek samples, assigned Filipino and Greek individuals in
CARTaGENE to KHV (Vietnam) and TSI (Italy) groups
respectively with high probabilities. This indicates that high
prediction probability does not necessarily mean an individual is a
member of that population. Hence, using more comprehensive
reference populations is the key to achieving more accurate genetic
similarity clustering and avoiding reference population bias.
However, in cases where the reference does not adequately
represent targeted populations, the results are still reasonable when
interpreting appropriately: for example as, ‘among all population
samples in the 1000 Genomes dataset, the individual is most
genetically similar to the TSI/KHV sample’. Furthermore, the lack
of the Middle Eastern population in 1000 Genomes is a big
limitation that we tried to overcome by leveraging the UK Biobank
as a reference dataset. Located at the intersection of Europe, Asia,
and Africa, the Middle East has a long history of intercontinental
migration and trading exchange, all of which are likely to enrich the
genetic diversity of the population (Elliott et al., 2022). From the
other perspective, the cultural practice of endogamy, consanguin-
eous marriage, and the prevalence of extended family structures
have led to a disproportionately high prevalence of Mendelian
recessive disorders (Abou Tayoun et al., 2021; Elliott et al., 2022).
Due to its unique genetic patterns, the Middle Eastern population
holds great potential for studying disease genetics and evaluating
the implementations of preventive medicine, early diagnostics, and
timely intervention (Abou Tayoun et al., 2021), making it an
important study population for genetic and genomic research.

The number of clusters we created for random forest
classification to generate satisfactory precision and recall rates
was lower than the cluster number obtained using the Uniform
Manifold Approximation and Projection (UMAP) and the
Hierarchical Density-Based Spatial 88 Clustering of Applications
with Noise (HDBSCAN; Diaz-Papkovich et al., 2023; 19 vs. 26) and
the IBD-based method (Gilbert et al., 2022); 8 versus 41 sub-
European populations). However, while these unsupervised

approaches identified more fine-scale population structures within
the UK Biobank cohort, distinguishing formed clusters from each
other and labeling them proved challenging. For example, clusters
3 and 4 created by the UMAP-HDBSCAN approach exhibited
overlapping patterns, with the majority of individuals being born
in England and having a white background (including both British
and other white backgrounds). Similarly, high proportions of both
clusters 17 and 20 were born in England (>80%) and had a British
background (>90%). Clusters 9 and 14, on the other hand,
contained individuals from various ethnic backgrounds, compli-
cating their characterization. Regarding the IBD-based clustering,
among 41 sub-European populations, 15 groups included British
and Irish members without further distinguishable characteristics.
The lack of clear labels and characterization when using these
unsupervised approaches limits the use of the UK Biobank as a
reference dataset for genetic similarity clustering in new data and
generally hinders the comparison and integration of resulting
clusters across different datasets. Although the IBD-based method
produced hierarchical results with broader, distinguishable
clusters, which were similar to our created clusters, haplotype
construction is more computationally intensive, especially for
large-scale studies.

Therefore, while these unsupervised clustering approaches
reveal more detailed population structures within the UK Biobank,
our approach of leveraging UK Biobank data as a reference dataset
for genetic similarity clustering offers greater generalizability and
transferability in genetic epidemiology studies. It provides a more
straightforward means to cluster individuals who are genetically
similar to the predefined reference populations of study interest in
new data without requiring additional characterization. This
allows better comparison and integration across different studies,
as well as better matching of genetically similar individuals across
different datasets using the same reference. Our approach, hence,
holds promising use in not only handling population stratification
but also selecting external control for various downstream genetic
analyses. Population stratification, which involves differences in
allele frequencies, has significant impacts on variant-trait
association in GWAS. By providing more detailed genetic
similarity information compared to existing resources such as
1000 Genomes, our approach can assist with handling population
structure at a smaller scale and correcting its confounding effects.
Furthermore, with the inclusion of diverse, predefined reference
populations, our approachmay also be useful in allocating controls
from different datasets to perform GWAS and PRS in under-
represented populations, reducing health disparities and improv-
ing overall healthcare outcomes. This is beneficial, especially for
diverse nations such as Australia, Canada, the USA, and Fiji. We
took Australia as an example. According to the Australian 2021
Census of Population and Housing, Australia was populated by
residents of over 300 different ancestries. Noticeably, among the
key groups that formed relatively large proportions of the
Australian population were underrepresented populations, namely
Greek, Italian, Filipino, and Lebanese. Our approach can assist
with clustering these populations in genetic studies, facilitating the
translation of genetic findings into practice for a wider range of
populations.

Our approach has several limitations. First, countries of birth
and self-reported ethnic backgrounds at a broad scale are
incomplete information to assign ancestry labels. However, the
UK Biobank has limited demographic information that we can use
to impute individuals’ origins. In addition to that, collecting
information on ethnic backgrounds at a subregional scale is
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difficult. The views of ethnic backgrounds and ancestries may vary
among individuals and people may not be aware of their recent
detailed ancestral origins, leading to potential subjective or
inconsistent responses. Second, we cannot include references for
some population groups due to the limited availability of data. Our
UKBiobank reference sample only provides one genetically similar
ancestry group in East Asia (China) and one in South East Asia
(Filipino). Regarding Africa, the most genetically diverse region,
we ended up having two genetically similar groups. The rationale
behind this division is that genetic studies on population structures
and differentiation in Sub-Saharan Africa have often been
correlated with ethnolinguistic groups (Gurdasani et al., 2015),
making it challenging for us to provide more detailed ancestry
groups and validate our approach with available data. Third, the
genetic data we used were derived from the UK Biobank
participants and might not adequately represent the original
population’s genetic variation. Migration flows to the UK may
follow specific patterns, such as immigrants coming from
particular regions or due to historical events and settling in
particular areas. Examples include Caribbean immigrants from the
Windrush generation, who were mainly Jamaican. As a result, the
principal components we calculated solely reflect the genetic
patterns of our sample, but cannot fully capture the genetic
diversity of the original populations. Finally, despite the availability
of both 1000 Genomes and UK Biobank as references, indigenous
populations such as American Indians/Alaska Natives, Australian
Aboriginal and Torres Strait Islanders, Māori, and Canadian First
Nation people remain uncharacterized in our study. Several
barriers, including historical causes for hesitance, different
perspectives in communication and decision-making, access
concerns related to geographical distance, and cultural and
spiritual beliefs, have limited the inclusion of Indigenous people
in genetic research and data (Waanders et al., 2023). Regardless of
these challenges, it is essential to include Indigenous people in
genetic data to ensure diversity and equity in healthcare research
and practice.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/thg.2025.15.
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