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1. Introduction and summary. Let 5 be an ideal of a semigroup V. In such a case,
V is an (ideal) extension of 5 by T = VIS. The problem considered in [2] is the
construction of all congruences on V in terms of congruences on 5 and T. This did not
succeed for all congruences but it did for those congruences whose restriction to 5 is
weakly reductive. If the extension is strict, more precise constructions are also given
there. With some relatively weak restrictions on S, we are able to obtain in this way all
congruences on V in the form indicated above.

When both S and T are completely 0-simple, a study of the congruence lattice ^(V)
of V in terms of those of 5 and T can be found in [4]. In that paper, meets and joins of
congruences on V in this form are described, the relations on ^(V) induced by
restrictions of congruences on V to 5 and to T*.

In this paper we consider the middle ground: V is an extension of 5 by T and all
congruences on S are weakly reductive, or both S and T are regular, and under these
circumstances we study the congruence lattice ^(V). This is a slight narrowing of the
hypothesis in the first paragraph above but a large widening of the hypotheses in the
second paragraph. We thus cannot hope to generalize all the results in [4] to our present
situation.

Section 2 contains all the preliminaries and serves to fix the notation used. The
inclusion relation, meets and joins are provided in Section 3. The relation on the
congruence lattice induced by restriction of congruences to the ideal is studied in Section
4. The special situation arising when the semigroup is regular and the ideal is completely
0-simple is considered in the final Section 5.

Our study is not complete. We have navigated carefully among the rocks and
boulders representing the substantial difficulties arising from the relative incompatibility
of the concepts under study. We have succeeded in providing a frame for a possibly more
profound study of the congruence lattice ^(V) in terms of the congruence lattices <#(S)
and ^(T). The main difficulty in such a study is the extra element, which is apparently
restricted to neither ^(5) nor *#(T), of the saturation of the ideal S by a congruence on
V. When two congruences on V are given, it is the interplay of their saturations of 5 that
causes the most serious complications. We nevertheless believe that this study has a
future offering sufficient reward.

2. Preliminaries. We employ the standard notation and terminology which can be
found, for example, in [3]. For emphasis, or in addition, we state explicitly the following
nomenclature and symbolism.

The equality and the universal relations on a set X are denoted by ex and a>x,
respectively. The restriction of a function or a relation 6 to a set X is denoted by 6\x. If 6
is an equivalence relation on a set X and x eX, then xd denotes the 0-class containing x;
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if A c X and

A = {x e X | x 6 a for some a e A },

then 6 saturates A. If /I and B are any sets, then

A\B = {aeA \a$B).

If a and /? are elements of a lattice L such that a^ /?, then

Let <2 be a semigroup. If /4 c Q, then its set of idempotents is denoted by E(A). If Q
has an identity, then Ql = Q otherwise Q1 stands for Q with an identity adjoined. The
congruence lattice of Q is denoted by ^(Q). If Q has a zero and Ac.Q, then
y4* =/4\{0}; an equivalence relation 8 on Q having {0} as a class is 0-restricted; the set of
all 0-restricted congruences on Q is denoted by %(Q). If 9 is a relation on Q, 6* denotes
the congruence on Q generated by 6. If 6 is an equivalence relation on Q, then 6°
denotes the greatest congruence on Q contained in d; explicitly

ad°b<^>xaydxby for all x,y e Q1.

Of particular importance is the special case: for a subset A of Q, and 6 the
equivalence relation with classes A and Q\A (whichever is nonempty), nA = 6° is the
principal congruence on Q relative to A; explicitly

anAb<^> (xay e A <=>xby e A for all x, y e Q').

In fact, KA is the greatest congruence on Q which saturates A. In the special case when Q
has a zero, § 0 = ^{0} is the greatest 0-restricted congruence on Q. The semigroup Q is
weakly reductive if for any a,b eQ, ax = bx and xa = xb for all x e Q implies a = b. We
say that a congruence p on Q is weakly reductive if Q/p is weakly reductive. If R is an
ideal of Q, then Q/R denotes the Rees quotient semigroup of Q relative to R; as a set,
QIR = (Q\R) U {0}.

Throughout the paper we fix the following notation: V is an (ideal) extension of 5 by
T, that is 5 is an ideal of V and the Rees quotient V/S = T, where we take that
V = S U T*. In order to simplify our statements, we assume that all congruences on S are
weakly reductive. For example this is true if each element of 5 has a left and a right
identity for in that case this carries over to all homomorphic images and implies weak
reductivity ([1, Lemma 1]). Weak reductivity of Q is not sufficient for each congruence on
Q to be weakly reductive as the example in [2] shows. A sufficient condition for this is
regularity. If there exists a partial homomorphism q>:T*—>S such that for any a,b eT*
and x eS,

ax = (acp)x, xa=x(afp), ab = (aq))(bcp) if abeS,

then we say that (p determines the multiplication of V and V is a strict extension of 5.

3. Meets and joins. From [2, Corollary 1 to Theorem 1] we deduce the following
description of congruences on V. Let a e ^(5), P be an ideal of T, r e %)(T/P) satisfying
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the following conditions:
(i) a,b eT\P, axb, x oy^ax oby, xa oyb,
(ii) for every a e P* there exists a' e 5 such that x eS^>ax oa'x, xa oxa'.

In such a case we say that a and a' are o-linked, call (a, P, T) an admissible triple and
define a relation v on V by

(axb, if a, beT\P,

a'ob' if a, beP*,

a'ob ifaeP*,beS,

aob' ifae5,fteP*,

.a ob if a, ft e 5

where a, a' and ft, ft' are a-linked. Then v is a congruence on V and, conversely, every
congruence on V has this form. We shall see in Corollary 3.2 that this representation is
unique. The notation v = ^ (a , P, r) will always denote such a congruence on V implicitly
implying that (o,P,x) is an admissible triple. In fact, given v e ^ f V ) , the admissible
triple for v is \(o, P, x), where

a = V|5, P = {a e T* \ a vb for some b eS}, a i d O o , b e T\P, a vb and 0 TO.

We first establish necessary and sufficient conditions for the inclusion of two
congruences in the above representation. A technical lemma is needed for the
representation of the meet of two such congruences. We conclude the section with the
analogous representation of the join.

LEMMA 3.1. Let v, = %{ot, Ph T,) for i = 1, 2. Then v, c v2 if and only if
(i) or,ca2,

(») Pi £ P2,
(iii) T, saturates P2\P\,

Proof. N e c e s s i t y , ( i ) If a a x b , t h e a v x b s o b y h y p o t h e s i s a v 2 b a n d t h u s a o 2 b .
Therefore a, c a2.

(ii) If a e Pf, then a v, b for some b e S so by hypothesis a v2 b and thus a e P*.
Therefore P{cP2.

(iii) If a e P | , b e T\P, and a rtb, then a v, b so by hypothesis a v2 6 whence b e P*,
since v2 saturates SUP*. Therefore T, saturates P2\Pi-

(iv) If a, b e 7\P2 are such that axxb, then a V] ft so by hypothesis av2b and thus
a T2 b. Therefore T,|7V,2C T2,7^.

Sufficiency. Let a v, ft. If a, ft e 5, then a a, ft and (i) gives a o2 ft so that a v2 ft. Let
a e P* and b e S. Then there exists a' e 5 which is ai-linked to a and thus also <72-linked
to a by (i). Also a' ox ft which then gives a' o2b again by (i). It follows that a v2 ft. The
case a e S and ft e Pf is dual. Let a, ft e P*. Then with the same notation for a' and the
analogous one for ft', we obtain a' o2 ft' so that a v2 ft. Next let a, ft e P2\Pi. Then a T, ft
and a, a' and ft, ft' are a2-linked for some a', ft' e 5. For any x e 5, we get ax a, ft* and
xa O\ xb. By (i), we get ax o2 bx and xa o2 xb. Since also ax o2a'x, xa o2xa', bx o2b'x,
xbo2xb', we obtain a'xo2b'x and xa'o2xb'. This holds for all * e 5 , so by weak
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reductivity of S/o2, we conclude that a' o2b' and thus av2b. If a, b e T\P2, then a T| &
which by (iv) implies that a x2 b so that a v2 b. Since v, saturates S U Pf, and in view of
(iii), it also saturates SUP*, we have exhausted all the cases. Therefore v, c v2.

COROLLARY 3.2. Let v, = ^(o,, P,, T,) for i = 1, 2. 77ie/i v, = v2 J/ and on/y */ a, = a2,

This corollary shows the uniqueness of the representation ^(o, P, T). Our next task
is to start with two congruences on V so represented and find the representation of their
meet and join. It is somewhat surprising that the meet is harder to construct than the join.
For the former, we first establish a lemma which takes care of the greater part of the
proof. Recall that £e denotes the greatest O-restricted congruence on a semigroup Q with
zero. It will be helpful to keep in mind the following simple result.

LEMMA 3.3. Let Q be an ideal of T.

(0 (<%> G» %T/Q) is an admissible triple.
(ii) / / (—, Q, —) is any admissible triple, then <#(—, Q, —) c ^{cos, Q, %T/Q)-

Proof, (i) This is trivial.
(ii) This follows from Lemma 3.1 since a>s is the greatest congruence on S and §r / G is

the greatest O-restricted congruence on T/Q.

LEMMA 3.4. Let v = c€(o,P,r), and let Q be an ideal of T contained in P.
(i) Define a relation o' on P/Q by

a o' b<£>ax oby,xa ayb for all x oy

ifa,be P\Q, and define 0 a' 0. Then a' is a O-restricted equivalence relation on P/Q. Let
a = (a')° in P/Q; then a e %{P/Q).

(ii) Define a relation (o, r) on T/Q by

{ axb ifa,beT\P,

aob ifa,beP\Q,
a = b = 0 otherwise.

Then (o, T) e %{T/Q) and both (a, Q, (o, T)) and (a>s, Q, £T/Q) are admissible triples.
Letv = (€(o,Q,(o,T)).

(iii) v = v A «(«,;, £>,§77G)-
Proof, (i) Let aeP\Q. By hypothesis, there exists a' eS which is a-linked to a.

Hence for any x oy, we obtain ax oa'x aa'y a ay so that ax a ay and similarly xa ay a.
Thus a' is reflexive and it is obviously symmetric. Let a,b,c e P\Q be such that a a' b
and b a' c. For x oy, we get axoby ocy,xa oyb aye and thus a o' c. Therefore o' is also
transitive and is thus an equivalence relation on P/Q. Hence b = (a')° is defined and
since o' is O-restricted, so is b.

(ii) Since P is an ideal of T, P/Q is an ideal of T/Q. Now a is a congruence on P/Q
and T is a O-restricted congruence on T/P and hence also on (T/Q)/(P/Q). In order to
prove that (a, T) is a congruence on T/Q, we apply the definition. Hence let a, b e T\P
and x,y eP\Q be such that a xb and xoy; we must show that axoby and xa oyb. Let
u, v e {P/Q)1. Then uxv ouyv and hence uxv ^ 0 if and only if uyv ̂ 0 in P/Q. Assume
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that uxv^O in P/Q. For any sot, we get (uxv)s o (uyv)t and s(uxv) ot(uyv). If
u e P\Q, then for some u' e 5, we have that u and u' are a-linked. If u = 1, let M' = 1.
With this convention and the above notation, we obtain

[u(ax)v]s = [(ua)xv]s o [(ua)yv]t = ua(yvt) ou' a(yvt)

ou'b(yvt) (since u' = 1 or u' eS), _yirt e5,fl rb)

oub(yvt) (since b(yvt) e S)

= [u(by)v]t
and

f (tua)yv a (tua)y' if u = 1
I (tua)tv a (tua)yv' otherwise

\ {tu)ay' a (tu)by' if v = 1 (since tu, y' e 5)
l(f«)a(_yi;') o(tu)b(yv') otherwise (since tu,yv' eS)

ot[u(by)v].

This proves that u(ax)v a' u{by)v and thus ax oby. One shows similarly that xa byb.
Therefore (a, x) e ^(T/Q). Since a is O-restricted, so is (a, T) and thus (a, T) e

%(T/Q). Further, Q<^P shows that every element in Q* is cr-linked to some element of
S. If a, b € T\Q are such that a (a, T) b and * oy, then either a rfc or adb and the
desired conclusion ax oby, xaoyb follows in the first case by hypothesis and in the
second case by the definition of o. Therefore (o, Q, (o, r)) is an admissible triple and we
may let v= ^(o, Q, (a, T)). A similar argument will show that also (a>s, Q, %T/Q) is an
admissible triple.

(iii) Let avb. If a,b eSUQ* or a,beT\P, then clearly avb. It remains to
consider the case a,b e P\Q. In this case adb whence a a' b. Hence for any x oy, we
have ax a by and xa ayb. Since a, b e P*, there exist a', b' e 5 such that a, a' and b, b'
are cr-linked. It follows that for all x e S,

ax oa'x,xa oxa',bxob'x,xb oxb'

which then implies that a'xob'x and xa' oxb'. Since S/o is weakly reductive, we
conclude that a' ob' which proves that avb. Therefore v c v. Since %T/Q is the greatest
O-restricted congruence on T/Q, we get (a, T) C %TIQ. It then follows that

v = <g(a, Q, (o, r)) c= <g(ws, Q, %TIQ).

For the opposite inclusion, let (a, b) e v A ^(a^, g , %T/Q). Then either a, 6 € 5 U Q*
or a, ft e P\Q or a,b e T\P. In the first and last case, clearly avb. We consider the case
a, b e P\Q. Let u, v e (P/Q)l\{0}. Then uav v ubv so either uav, ubv e P\Q or uav =
ubv = 0 in P/Q. Assume the former. For any xoy, we have (uav)x o (ubv)y and
x(uav) oy{ubv). It follows that uav o' ubv whence adb and finally avb. Therefore avb
in all cases which proves that v A ^(a)5, Q, %T/Q) C V and equality prevails.

We can now easily derive the expression for the meet.
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THEOREM 3.5. Let v, = <<?(o,, Ph r,) for i = 1,2. Then

v, A v2 = v, A v2 = %(o, P, r)

where
O = CTj A O2,

P = {aePfr\P*\a is o-linked to an element of 5} U {0},
V,- = <g(a,, P, (a,, T,)) e %(V) for i = 1, 2,
T = (CT1,T1) A ( a 2 , T2).

Proof. By Lemma 3.4(iii), we obtain

V, A V2 = [V, A <€(COS, P, %T/P)] A [V2 A <<?(<WS, P , &•„,)]

= (V, A V2) A ^(COS, P, %TIP)

= Vi A v2 (since v, A v2 c ^(OJS, P, t;T/p))-

This proves the first equality; the second follows easily by considering the cases: a, b eS;
aeS, beP*;aeP*,beS;a,beP* and a, be T\P.

We can now pass directly to the representation of the join.

THEOREM 3.6. Let v, = ^(a,, f), r,) for i = l,2. Then v, v v2 = ^(a , P, T) w/iere
a = a! v CT2, P = (P[ U P2)(r, V T2) a«d r is the ^-restricted congruence on TIP satisfying
the condition t\TJ, = (r1 v x2)\rj,.

Proof. 1. P is an idea/ o/ T. Let a e P* and fc e T* and assume that a/? $ P. Then
there exists a sequence either of the form

aT,fl! r 2 a 2 . . .an_, x2aneP* (1)

or of the form

a r , a 1 T 2 a 2 . . . an_, r , a n e P | , (2)

for we may set a = ax if necessary. By symmetry, we may consider only the first case.
Since ab $ P1; we have ab T, axb $ P}. If axb eP2, then ab eP^rzc. P, contradicting the
hypothesis. Hence axb$P2 so axb x2a2b $P2. Now we similarly conclude that a2b$Px

and continuing this process, we arrive at the sequence

ab T, a^b r2 a2b . . . an_1b T2 anb e P*

which gives ab eP,T2. . . xx c P , contradicting the hypothesis. We thus conclude that
ab e P. Similarly we get baeP which proves that P is an ideal of T.

2. Every element of P* is a, v o2-linked to some element of S. Let a e P*. Again we
have the two possibilities (1) and (2) and we may consider the first. There is a' e S such
that an and a' are ^-linked. For any x e S, we have

ax ax axx o2 a2x. . . an_}x o2 anx o} a'x,

xa ox xai o2 xa2 . . . xan-xx o2 xan ox xa'

which implies that axaxy a2a'x and xa a, v o2 xa' so that a and a' are a, v a2-linked.
3. (a, P, r) is an admissible triple. Clearly T, V T2 saturates P and hence r can be

defined as the O-restricted congruence on TIP satisfying the condition in the statement of
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the theorem. Let a,beT\P be such that axb and let x ay. Then a r, v x2 b and
x ox v o2 y so that there exist sequences

a T, c, T2 c2 . . . cm r2 b, x cii Zi o2 z2 . . . zn o2 y

and, by repeating part of one of these sequences if necessary, we may assume that m = n.
Since (ol,Pl, xt) and (o2, P2, r2) are congruences on V, it follows that
ax a, cxZ\ a2 c2z2 . . . cnzn a2 by. Therefore ax aby and analogously xa ayb.

This completes the proof that (a, P, r) is an admissible triple.
4. V; c v = ^(o, P, x) for i = l ,2. In view of symmetry, we show only that Vj c v. To

this end, we apply Lemma 3.1. Parts (i) and (ii) of this lemma are trivially satisfied. Since
P is saturated by T, V T2, it is also saturated by T, which shows that part (iii) of the lemma
holds; part (iv) holds trivially. By Lemma 3.1, we conclude that v, c v.

5. Let v3e
c€(V) be such that v, c v3 and v2cv3. Then vcv 3 . Indeed, let

v3 = %{a3, P3, T3). We shall again apply Lemma 3.1. The hypothesis implies that
(i) oua2co3,

(ii) PuP2cP3,
(iii) both T, and r2 saturate P3,

(>V) r i l n v ^ l n ^ ^ l r v y
It follows that a = a, v a2 c o3 and Px U P2 c P3. Since both T, and T2 saturate P3, so does
T, v T2. But then P, U P2 c P3 implies that

P = (P, U P2)(T, V T2) £ P3.

In particular, r saturates P3. Let

a, r, a2T2a3 . . . an_, r 2an , ax,anzT\P3. (3)

Now a, e 7AP3 and the hypothesis (iv) above implies that a2e T\P3. But then the same
hypothesis yields that a3eT\P3. Continuing this process till an, we see that in (3) all
a, e T\P3. Therefore (T, V T2) |A P JC T3|7V>3 and thus T| c T3\nP}. We have verified the four
conditions in Lemma 3.1 for the pair v, v3 which then proves that v c v3.

Therefore v = v, v v2, as asserted.

4. Restriction to the ideal S. The main result here is that the mapping v—> V|5 is a
complete homomorphism of ^(V) onto ^(5). Hence the induced congruence on ^(V)
has all its classes intervals; we provide for them explicit expressions. We also consider the
mapping which to each congruence v on V associates the lower end of the corresponding
interval. The section ends with a brief discussion of extendability of congruences on 5 to
all of V.

NOTATION 4.1. Let

c€(S:V) = {oec€(S) \ a e V, x ay ^>ax a ay, xa a ya).

LEMMA 4.2. / / oec€(S:V), then (O,{0},ET) is an admissible triple. Conversely if
(a, P,x) is an admissible triple, then o e(€{S:V).

Proof. The straightforward argument is omitted.

COROLLARY 4.3. Let a e 'tf(S). Then oe<€(S: V) if and only if there exists v e <€(V)
such that V| = a.
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LEMMA 4.4. Let a e <€(S: V). Then Pa = {aeT*\ais a-linked to some element in 5}
U {0} is an ideal of T. On TIP define a relation o' by

a a' feOcuc aby,xa ayb for all x ay (a,b e T\Pa)

and we define 0 a '0. Then o' is an equivalence relation on T/Pa. Let d=(o')°. Then
ae%(T/Pa).

Proof. Let a e (Pa)* and b e T* be such that ab $ 0 in T. Then a is a-linked to some
element a' in 5. Using the hypothesis that a e ^ ( 5 : V), we obtain, for any x e 5,

(ab)x = a{bx) aa'{bx) = (a'b)x, x(ab) = (xa)b a (xa')b = x(a'b)

so that ab and a'b are a-linked. Therefore ab e Pa and dually ba e Pa. Consequently Pa is
an ideal of T and T/Pa is defined.

The hypothesis that a e ^(S: V) implies that o' is reflexive. It is obviously
symmetric. If a o' b and b a' c for a, b,c e T\Pa, then for any x oy, we have axoby ocy
and xa ayb aye so that a a' c and a' is also transitive. Therefore a' is an equivalence
relation on TIP and d=(o')° is defined. Since a' is 0-restricted and oca', it follows
that also a is 0-restricted. Therefore a e

We are now ready for the principal result of this section.

THEOREM 4.5. The mapping

is a complete homomorphism of ^(V) onto ^(S: V) which induces the complete
congruence R defined by

For v = <g(a, P, T), we /iaue v/? = [vR, vR] where vR = <€{o, {0}, eT), vR = <g(a, Pa, a).

Proo/. Let S?c <g(K). We must show that

( A v)| = AMs), (V v)| = VHs) . (4)

For any p e 9, we have / \ v c p s o that I / \ v ) | s c p | 5 and thus ( [\ v)k-c [\ (v|s).

Conversely, let (a, b)e /\ (v|s). Then for all v e ^ , (a, 6) e v|5 so that avb and thus

(a,b)e / \ v and finally (a, b) e I / \ v) | s . This proves the first formula in (4).

Let (a, b) e ( V v)U. Then (a, b) e V v which implies the existence of a sequence

Of

the form

flV,C, V2C2V3. . . Cn_! Vnfc

for some c,, c2 , . . , cn_, e V and v,, v 2 , . . . , vn e 9. For any x e S, we obtain

ox v, c ^ v2 c2* v 3 . . . cn_!X vn bx

where C1JC,C2JC,. . . ,cn_j jce5. Letting a, = v,i for / = l , 2 , . . . , n and a = a | V f f 2 v
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. . . v on we obtain ax obx. Dually one shows that xa oxb. Since x e S is arbitrary and
S/o is weakly reductive, it follows that a ob. But then (a, b) e \J (v\s) which proves that

( V v) |s £ V (v\s)- Conversely, for every p e &, V v 2 p so that I V v)\s 2 p | s and

thus I V v) |s 2 V (v|5)- This proves the second formula in (4).

That x maps <#(V) onto ^(S-.V) is a direct consequence of Corollary 4.3. Trivially %
induces R on ^(V) which is then a complete congruence.

Let v = <<?(CT, P, T). Then V|s = a so that a e <g(S: V). This implies that (a, {0}, er) is
an admissible triple which obviously gives that <€(o, {0}, £7-) is the least element of vR.
Lemma 4.4 clearly implies that (o, Pa, a) is an admissible triple. Since its definition
depends only upon a, for the maximality of vR, it suffices to show that v c. vR. To this
end, we apply Lemma 3.1. Condition (i) of that lemma is trivially fulfilled. Condition (ii)
holds by the definition of Pa. For condition (iii), we let a e Pa and b e T* be such that
axb. By hypothesis there exists a' eS which is a-linked to a. For any x e S, we have
a'x aax obx and xa' axa axb and thus b and a' are a-linked. Hence b ePa and condition
(iii) holds. For condition (iv), let a, b e T\Pa be such that axb. For any u, v e (TIP)1, we
have uav xubv so that uav =£0 if and only if ubv ¥=0 in 77P. Assume that uav ¥=0. Then
for any x oy, we have (wau)* a (M6u)y and x(uav) ay (ubv). It follows that uav 0' ubv in
Lemma 4.4. But then a (o')°b, that is a ab. This verifies condition (iv). By Lemma 3.1,
we conclude that v c vR.

Since trivially v" e vR and W? is convex, it follows that vR = [vR, vR], as asserted.

Note that the congruence property (without completeness) of R also follows from

COROLLARY 4.6. ^ ( 5 : V) is a complete sublattice of ^(S) with least element es and
greatest element o)s.

We now briefly explore the behaviour of the mapping v—»• vR.

LEMMA 4.7. The mapping

xl>:o^%(o,{0},eT) (oe<€(S:V))

is an isomorphism of ^ ( 5 : ^ ) onto {vR | ve^ (V)} which is a complete sublattice of

Proof. Let ^ c ^ ( 5 : V). In view of Theorem 4.5, it suffices to prove

A <g(a,{0},er) = <g(A o,{0},eT)
and (5)

V <£(a,{0},£T) = ( )

By Corollary 4.6, ^ ( 5 : V) is a complete sublattice of ^(V) which implies that both / \ a
I \ ( s OtSP

and V ° a r e m ^(S:V) and thus I / \ a, {0}, eT) and I V a, {0}, £7-) are admissible

triples. It is clear that ^( / \ o,{0},eT) is the greatest congruence contained in

^(a ' , {0}, £7-) for all a' e 9 and %[ \J o, {0}, £T is the least congruence containing
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%{a'', {0}, eT) for all o' e SF. This proves relations (5) and thus also the assertion of the
lemma.

COROLLARY 4.8. The mapping v—*vR {ve^iV)) is a complete homomorphism of
) {vR\ ve«(V)} .

Proof. This follows directly from Theorem 4.5 and Lemma 4.7.

Heretofore the overall hypothesis has been that all congruences on 5 be weakly
reductive. For extendibility of congruences on S to all of V we need a stronger concept.

A semigroup Q is reductive if for any a, b e Q, ax = bx for all x e Q implies a = b and
xa = xb for all x e Q implies a = b. We say that a congruence p on Q is reductive if Q/p is
reductive.

LEMMA 4.9. Every reductive congruence on S can be extended to V.

Proof. Let ae<i£(S) be reductive, aeV and xay. Then for any zeS, we have
z{ax) = (za)x o (za)y = z(ay). By reductivity of a, we conclude that axoay and dually
xa aya. Hence a e %(S: V), so the assertion follows by Corollary 4.3.

We now consider some sufficient conditions on a semigroup in order that all its
congruences be reductive. To this end, we first prove the following simple result.

LEMMA 4.10. Every inverse semigroup S is reductive.

Proof. Let a,beS be such that ax = bx for all xeS. Then a{a~la) = b{a~la) and
thus a < b. Similarly b £ a and so a = b as required. Similarly xa = xb for all x e 5 implies
a = b.

PROPOSITION 4.11. If S is a monoid or an inverse semigroup, then every congruence on
S can be extended to a congruence on V.

Proof. The property of being a monoid obviously implies reductivity and carries over
to homomorphic images. By Lemma 4.10, every inverse semigroup S is reductive and by
[3, Lemma II.1.10] all homomorphic images of 5 are also inverse semigroups. The
assertion now follows by Lemma 4.9.

5. The case when V is regular and 5 is completely 0-simple. In such a case, we shall
see that for any ideal P of T, there exists a least congruence on V of the form
(-,P,-).

Henceforth we assume that V is a regular semigroup. We shall emphasize this by
stating it explicitly in some statements but the hypothesis holds throughout. Note that this
is equivalent to both 5 and T being regular. On any regular semigroup Q we have the
natural partial order:

a<b€>a = eb = bf for some ej eE(Q).

LEMMA 5.1. Let V be regular, S be completely 0-simple and a eT* be such that aS =£ 0.
Then there exists b eS* such that a>b. Moreover, if aeE(T*), we can find such
beE{S*).

Proof. Let v e S be such that av ¥= 0. Since 5 is regular, we have av = avuav for
some ueS and thus ua,av + 0. Let s e 5 be such that avsua =£ 0 and let p be an inverse of
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avsua. Then for e = avsuap, f-vsuapa and b = avsuapa, we obtain

e2 = avsua(pavsuap) = avsuap = e, f2 — vsua{pavsuap)a = vsuapa =f,
b=ea=af¥=Q

so that a>b with beS*. If aeE(T*), then b2 = avsua(paavsuap)a = avsuapa =
beE(S*).

LEMMA 5.2. Let V be regular, S completely 0-simple, v = ^(a , P, T), a e P*, b e S*,
and a>b. Then avb.

Proof. B y h y p o t h e s i s b = ea = af for s o m e e,f e E{V). L e t b~l b e an inve r se of b.
T h e n

(W>~'e)2 = bb-le(ea)b~le = bb'l(ea)b~le = bb~le e £(5)

and b = (bb~ie)a. Hence we may assume that e and similarly/are elements of S. Also, by
hypothesis, a is a-linked to some element a' of 5. Hence b=eaoea' and b = afaa'f
which implies that bo<a'o. If fea = 0, then a = a)s and hence a'o = 0. Otherwise
Oj=bo^a'o in the completely 0-simple semigroup S/o implies that ba = a'o.
Consequently boa' whence b va.

LEMMA 5.3. Let V, S and v be as in Lemma 5.2 and a e P* be such that aS = 0. Then
avO.

Proof. If sa ¥= 0 for some s eS, then sa = (sa)u(sa) for some u e S whence au =£ 0,
contrary to the hypothesis. Therefore Sa = 0. By hypothesis a has a a-linked element a'
in 5. Hence for any x e 5, we have ax oa'x and jca axa' whence a'x oxa' aO. Since a is
weakly reductive, it follows that a' oO. But then a va' v 0 so that a v 0.

The above two lemmas show which identifications take place in the case when S is
completely 0-simple for every congruence which does not saturate 5. They make it
possible to prove the following result.

THEOREM 5.4. Let V be regular, S completely 0-simple and P an ideal of T. The
congruence KP generated by the relation

{(a, b) e P* x 5* | a > b) U {(a, 0) | a e P*,aS = 0} (6)

is the least congruence on V of the form %{a,P,x) for some o, x.

Proof. There exists at least one congruence v of the form %{o, P, x) namely
^((Os, P, eT/P). Let v = ^(a , P, x) be arbitrary. By Lemmas 5.2 and 5.3, the relation in
(6) is contained in v and thus KP C. V. NOW KP = <#(a', P', x') for some a', P', x'. Lemma
3.1 implies that P'cP.

Let a G P*. If a > b for some b e S*, then a KP b by Lemma 5.2 and hence a e P'. If
aS = 0, then OKP0 by Lemma 5.3 and thus aeP'. By Lemma 5.1, there are no other
possibilities.

Recall that nA denotes the principal congruence relative to a set A.

COROLLARY 5.5. Let V, S, P and KP be as in Theorem 5.4. Then

{<#(a, P, x) e ^(V) | some a, x) = [KP, JT5U/».]

and KSUP. = ^(o>s, P, %TIP).
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Proof. Any <#(CT, P, T) saturates S U P * and JTSUP. is the greatest such. The last
assertion follows easily from the definition of a principal congruence.

We shall now see that for an S which is not completely 0-simple, there may not exist
the least congruence of the form ^(o, P, T) for a fixed P.

EXAMPLE 5.6. Let V be the semilattice consisting of the infinite chain S = {/3, < )S2<
. . .} and an element a greater than all the elements of S. Let k > 1 and it be a partition
of the interval [fiu [5k]. Let pn be the partition of V with classes; ^-classes and [/3*+1, or].
Then pn is a congruence on V which does not saturate 5. It is easy to see that all
congruences on V which do not saturate 5 can be so constructed. Clearly f\pJl = ev.

Now consider V as an extension of 5 by T = {a, 0}. The above shows that the set of
all congruences on V of the form ^ ( a , T, eT/T) for some a e ^ (5 ) does not have the least
element.

The greatest element of the set of all congruences ^(o, P, T) for a fixed P always
exists and is equal to JtSUP. = ^(<y5, P, %T/P).
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