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FROM THE CONSTRUCTION OF PHYLOGENETIC TREES
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Abstract

We describe an efficient algorithm for the inversion of covari-
ance matrices that arise in the context of phylogenetic tree
construction. Phylogenetic trees describe the evolutionary re-
lationships between species, and their construction is computa-
tionally demanding. Many approaches involve the symmetric
matrix of evolutionary distances between species. Regarding
these distances as random variables, the corresponding set of
variances and covariances form a rank-4 tensor, and the inner-
product defined by its inverse can be used to assign statistical
scores to candidate trees. We describe a natural set of assump-
tions for the phylogenetic tree under construction, and show
how under these assumptions the covariance tensor for a tree
with n leaves can be inverted in O(n2) operations. In addition
to presenting the inversion algorithm, we hope this article will
open algebraic and computational problems from the field of
phylogeny to a wider audience.

1. Introduction

Suppose that we are given a set of n species and an n × n symmetric matrix
of random variables (dij) representing the evolutionary distances between them. In
this paper we show how simple assumptions on the tree of evolutionary relationships
between species give rise to a covariance matrix which essentially has the form

Cov(dij , dkl) = 1
2B(δikδjl + δjkδil) + C2 + 1

2Caj(δjk + δjl) + 1
2Cai(δik + δil), (1)

for i �= j and k �= l, where B and C are positive constants, a ∈ R
n has every

component non-negative, and δij is the Kronecker delta. One advantage of our
model is that covariance matrices of this form can be inverted in O(n2) operations,
via the Sherman–Morrison–Woodbury formula (see, for instance, [8, p. 51]).

In order to motivate this inversion problem it is necessary to present some back-
ground from the field of phylogeny. While this area might be unfamiliar to the
reader, we hope that the mathematical problems it raises will be of interest. The
rest of this section gives a very brief introduction to phylogeny, before we describe
the origin of equation (1) in Section 2. We then show how the covariance tensor can
be inverted algebraically in Section 3, and present the inversion algorithm in Sec-
tion 4. Readers principally concerned by the linear algebraic details of the inversion
algorithm rather than the phylogenetic background may skip directly to Section 3.
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Figure 1: A typical phylogenetic tree

Evolutionary relationships between species can be represented by a tree: the leaf
nodes represent extant species, interior nodes represent ancestral species, and the
branch lengths indicate the extent to which species have diverged. Such trees are
referred to as phylogenies. One kind of tree is illustrated in Figure 1. Here the
branch lengths specify the time since divergence of species, and it is this type of
tree we will consider throughout this paper.

There are a range of different statistical methods available for inferring the phy-
logeny of a set of species given their DNA sequences. The DNA sequence for each
species may be a single gene, a set of genes, or even an entire genome. All of
these methods are based on the fundamental idea that species with similar DNA
sequences are more closely related than species for which the sequences have di-
verged, as mutations in sequence accumulate with time. One class of methods, the
so-called distance-based approaches, constructs a matrix of evolutionary distances,
or distance functionals, between species that, to a certain degree, summarizes the
information contained in the full set of sequences [3, 11, 9, 6, 2]. The evolutionary
distance between two species typically measures the number of letter changes in
the DNA sequence, and several different distance functionals exist. Distance-based
methods take the matrix of distances between extant species and from that infer
the topology and branch lengths of the underlying phylogenetic tree. They have the
advantage of being relatively fast, and therefore suitable for large problems, but are
less suitable when the set of sequences under investigation has diverged widely.

While the biological literature is extensive, there is an increasing mathemati-
cal and statistical literature relating to phylogenetic reconstruction. The book by
Gascuel et al. [7] is a comprehensive reference to the mathematics of phylogeny;
the first chapter concerns distance-based methods. A more practical approach is
adopted in the book by Felsenstein [5], which describes the principal statistical and
computational approaches to phylogenetic reconstruction. Current developments
and future challenges in phylogeny have been described in a recent review [4].

2. Origin of the covariance tensor

The inversion problem studied in this paper arises from a novel distance-based
phylogenetic method which we briefly describe in this section. The method arose as
a prototype for a more complete statistical treatment of variances and covariances in
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Figure 2: Expected evolutionary distance between species is proportional to path
length in T

phylogenetic reconstruction that will appear elsewhere. (The more complete treat-
ment does not rely on any of the results presented here, although some of the
underlying assumptions are the same.)

Given a set of species and the matrix of evolutionary distances between them,
the approach considered here reconstructs the underlying phylogenetic tree of di-
vergence times, denoted T , using the following set of assumptions. Given two points
i, j ∈ T , let tij denote the path in T between the points and let |tij | denote the
length of this path (or strictly speaking, its vertical component) as drawn in Fig-
ure 2. We assume that the evolutionary distance between two species is, on average,
directly proportional to the time since divergence. Denoting the distance between
nodes i and j by dij we therefore obtain

E
[
dij

∣∣ T ] = µ|tij | (2)

for some constant µ. As usual, the notation E[X
∣∣ A] denotes the expectation of

the random variable X conditional on the occurrence of event A.
Our approach makes an additional assumption on the variances and covariances

of the distances dij :
Cov

[
dij , dkl

∣∣ T ] = ν|tij ∩ tkl| (3)

for some constant ν. In other words, the covariance of two distances dij and dkl is
proportional to the length of the shared path between these species on the under-
lying phylogenetic tree. Direct calculation using equations (2) and (3) provides

E (dik − dij − djk) = 0

and
E

[
(dik − dij − djk)2

]
= 0,

which imply the relation
dik = dij + djk, (4)

where j can be any node on the path between nodes i, k in T . Thus the observed
distances between extant species arise from a distorted version of the underlying
phylogenetic tree. One way to deform the tree T in this way would be via a gamma
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Figure 3: Tree construction. (a) A generic point in construction: the tree is complete
up to time t. The set of hanging nodes Ht is highlighted with circles. (b) The next
step in the construction obtained from (a). Construction is complete up to a time
u > t. The set of hanging nodes Hu is highlighted. (c) The finished tree.

process on each branch; however, such probabilistic details are not our main concern
here.

Equation (3) defines the covariance structure when the underlying phylogenetic
tree T is known. However, our estimate of T is built up as a sequence of partially
constructed trees, as illustrated by Figure 3. A generic stage of the construction
is shown in Figure 3(a). This consists of an estimate of T constructed back as far
as some time t, which we denote Tt. The covariance tensor defined in equation (1)
arises from considering the set of nodes descended directly from time t with no
bifurcation. We refer to these as ‘hanging nodes’, as suggested by the appearance
in Figure 3, and the set of such nodes is denoted Ht. These nodes are highlighted
by black circles in Figure 3(a). Given a node i ∈ Ht we use the notation i′ to denote
the ancestor of i at time t, and let ti denote the time of node i. The length of the
line segment between i and i′ in Figure 3(a) is therefore t− ti.

Given i, j, k, l ∈ Ht such that i �= j and k �= l, the additivity condition (4) gives

Cov
[
dij , dkl

∣∣ Tt

]
= Cov

[
dii′ + di′j′ + dj′j , dkk′ + dk′l′ + dl′l

∣∣ Tt

]
. (5)

The distances dii′ and dkk′ have a covariance of zero (when i �= k) because the corre-
sponding tree branches have no overlap (that is, the right-hand side of equation (3)
is zero). This applies to the other indices as well, so expanding the right-hand side
of equation (5) gives

Cov
[
dij , dkl

∣∣ Tt

]
= (δik + δil)Var[dii′

∣∣ Tt]

+ (δjk + δjl)Var[djj′
∣∣ Tt] + Cov[di′j′ , dk′l′

∣∣ Tt]. (6)
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The first two terms of this expression can be obtained using equation (3):

Var[dii′
∣∣ Tt] = ν(t− ti), and Var[djj′

∣∣ Tt] = ν(t− tj).

The final term of equation (6) depends on the paths joining i′ to j′ and k′ to l′.
However, these paths lie in the part of the tree that has not yet been estimated
(that is, above the dotted line in Figure 3(a)). By symmetry, since we condition only
on Tt, the final term of equation (6) depends only on whether the two paths ti′j′

and tk′l′ share common terminal nodes: it adopts three different values according
to whether the paths share zero, one, or two terminal nodes. This gives

Cov
[
dij , dkl

∣∣ Tt

]
= ν(t− ti)(δik + δil) + ν(t− tj)(δjk + δjl)

+ c0 + c1(δik + δil + δjk + δjl) + c2(δikδjl + δilδjk) (7)

for some positive constants c0, c1, c2. This equation is now in exactly the same
form as equation (1), and it is this tensor that is used to score different partially
constructed trees.

Construction of the estimated phylogeny is carried out in the following way.
Note that our intention here is not to provide detailed statistical justification for
the procedure, but simply to provide motivation for the inversion problem. Given a
partially constructed tree Tt, at each stage we propose a tree Tu (u > t) by joining
together two nodes from Ht with a new node at time u. One such tree is shown in
Figure 3(b). This tree Tu is assigned a χ2 statistic using the inverse of the covariance
tensor (7). First, the ordinary least squares estimates du of the distances between
the hanging nodes Hu are obtained given dt (the matrix of distances between nodes
in Ht). Then, the χ2 statistic assigned to Tu is defined by

χ2(Tt, Tu) = 〈(du − E
[
du

∣∣ Tu

])
,Cov

[
du

∣∣ Tu

]−1 (
du − E

[
du

∣∣ Tu

])〉
where the inner product is the Frobenius inner product on matrices. The time u
is chosen to optimize this score. Every possible tree Tu derived from Tt by joining
two nodes together is scored and assigned a time in this way, so that if Ht contains
m nodes then m(m − 1)/2 candidate trees are considered. The candidate Tu for
which u− t is smallest is then taken as the new estimate of the underlying tree, and
the construction procedure continues recursively from Tu. The process starts from
the set of leaf nodes and ends when the entire tree has been estimated. Of course,
in order to construct the tree it is necessary to invert the covariance tensor many
times, and so an efficient inversion algorithm is highly desirable. Examples of some
trees constructed using this algorithm are given in Section 5.

3. Inverting the covariance tensor

We start by defining some notation. Let V = R
n be equipped with the standard

basis {ei : i = 1, . . . , n} and define the vector of all ones

e =
n∑

i=1

ei.

Let W denote the vector space of symmetric n× n real matrices, so that

W = span{ 1
2ei ⊗ ej + 1

2ej ⊗ ei : i � j}. (8)

123https://doi.org/10.1112/S1461157000001327 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001327


a covariance matrix inversion problem

We shall move between the equivalent notations u ⊗ v and uvT , for u, v ∈ R
n, as

appropriate. If we view R
n×n as the tensor product space R

n ⊗ R
n, then the inner

product
〈a⊗ b, c⊗ d〉 = 〈a, c〉 〈b, d〉, a, b, c, d ∈ R

n,

implies that

〈M1,M2〉 =
n∑

j,k=1

M1(j, k)M2(j, k).

In other words, our inner product on W is simply the Frobenius inner product on
matrices.

Using the basis of W implicit in equation (8), the covariance tensor (1) defines
a linear map H : W →W given by

H = B × id + C2θ ⊗ θ + Cα⊗ θ + Cθ ⊗ α

where θ = e⊗ e and α = diag(a1, . . . , an). Thus H is a pertubation of the identity
matrix, namely H = B × id +A, where

A = C2θ ⊗ θ + Cα⊗ θ + Cθ ⊗ α.

Since θ projects onto the direction e, θ(v) = 0 for any vector v perpendicular
to e. Similarly, it can be seen that

A(u⊗ v + v ⊗ u) = C2(θu) ⊗ (θv) + C2(θv) ⊗ (θu)
+C(αu) ⊗ (θv) + C(αv) ⊗ (θu)
+C(θu) ⊗ (αv) + C(θv) ⊗ (αu)

= 0 for all u, v perpendicular to e.

On the other hand, A is non-zero (in general) on vectors of the form v ⊗ e+ e⊗ v
for any v ∈ R

n. This suggests that we define the subspace

U = span{w ⊗ e+ e⊗ w : w ∈ R
n}.

It is easy to verify that

U⊥ = span{u⊗ v + v ⊗ u : u, v ∈ e⊥}.
We have already shown that U⊥ ⊂ ker A and, since A is symmetric, we deduce that
im A ⊂ U , which is also evident by direct calculation. Thus A has the following
decomposition.

∗ 0

0 0
A =

[ ]
U

U

U⊥

U⊥

�
�

�
�

��� �

The ∗ symbol represents the non-zero part of A. At this stage it is apparent that
away from U , H is trivial, so the inversion problem reduces to the problem of
inverting H on the n-dimensional subspace U .
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However, up to this point we have ignored a crucial point: the random variables
dij satisfy

dii ≡ 0 for i = 1, . . . , n.

(In other words the distance of a species from itself is zero.) Instead of working on
the space W , we are really dealing with the restriction of H to the space

Ŵ = span{ 1
2ei ⊗ ej + 1

2ej ⊗ ei : i < j}.
Note that the inequality in the indices is strict here. If we define P : W →W by

P (
1
2
ei ⊗ ej +

1
2
ej ⊗ ei) =

{
1
2ei ⊗ ej + 1

2ej ⊗ ei if i �= j,

0 when i = j,

then Ŵ = P (W ) and the restriction of H to Ŵ , denoted Ĥ, is given by

Ĥ = PHP

= PAP + P (B × id)P.

It is really the map Ĥ that we need to invert; P (B × id)P is simply a multiple of
the identity on Ŵ .

Essentially we want to identify a decomposition for Ĥ equivalent to the one
above. Let Û = P (U) and let Û⊥ be the orthogonal complement of Û in Ŵ , so that

Ŵ = Û ⊕ Û⊥.

As we showed above, im A ⊂ U , so

im PAP ⊂ P (U) = Û .

Since A and P are symmetric, we therefore have the desired decomposition.

∗ 0

0 0
PAP =

[ ]
Û

Û

Û⊥

Û⊥

�
�

�
�

��� �

It follows that

Ĥ−1(x) =
(
P (A+B)P |Û

)−1 (xÛ ) +B−1(xÛ⊥) (9)

where
x = xÛ ⊕ xÛ⊥ (10)

represents the Û and Û⊥ decomposition of x ∈ Ŵ . The first term of (9) denotes
the restriction of P (A+B)P to the n-dimensional space Û . The inversion problem
therefore reduces to the question of inverting this component of the map.

To address this problem it is useful to work with an orthonormal basis of Û . It
can be shown that

wk = φ( 1
2ek ⊗ e+ 1

2e⊗ ek − ek ⊗ ek) + ψ

(
e⊗ e−

∑
l

el ⊗ el

)
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for k = 1, . . . , n defines an orthonormal basis of Û when

φ =
(

2
n− 2

)1/2

and

ψ = − 1
n

((
2

n− 2

)1/2

+
(

1
n− 1

)1/2
)
.

We assume that n > 2, since the inversion problem is trivial when n = 2, so that
the constants are well-defined. In this basis Ĥ is represented by the matrix

Λij = Bδij + 〈wi, PAP (wj)〉
= (C(n− 2)ai +B) δij +

1
2
Cφ(n− 2) (φ+ 2(n− 1)ψ) (ai + aj)

+
1
2
C (φ+ 2(n− 1)ψ)2

(∑
l

al

)
+ C2(n− 1)2(φ+ nψ)2.

The matrix defines a linear map Λ : R
n → R

n

Λ = M + ωeT + eωT

where
M = diag (C(n− 2)ak +B : k = 1, . . . , n) ,

and ω ∈ R
n is defined by

ω =
1
2
Cφ(n− 2) (φ+ 2(n− 1)ψ) a

+
(

1
2
C2(n− 1)2(φ+ nψ)2 +

1
4
C (φ+ 2(n− 1)ψ)2

∑
l

al

)
e. (11)

The matrix Λ is a rank-2 perturbation ofM and its inverse is given by the Sherman–
Morrison–Woodbury formula [8]:

Λ−1 = M−1 +
cωω êê

T + ceeω̂ω̂
T − (1 + cωe)(ω̂êT + êω̂T )

(1 + cωe)2 − cωωcee
(12)

where
ê = M−1e, ω̂ = M−1ω

and

cωω = 〈M−1ω, ω〉, cee = 〈M−1e, e〉, and cωe = 〈M−1ω, e〉.
We now have all the elements in place for a complete algebraic inverse to the

map Ĥ defined by the covariance tensor (1). The next section puts these elements
together and specifies the inversion algorithm.

4. The inversion algorithm

Suppose that we want to compute Ĥ−1x for some symmetric matrix xij that is
zero on the diagonal. The inversion algorithm has the following steps.
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1. On account of the decomposition (9), the Û and Û⊥ components of x can be
dealt with independently. The Û component of x is be obtained by taking the
inner product of x with the vectors wk that form our basis of Û . We therefore
define the vector ξ ∈ R

n by

ξk = 〈x,wk〉 =
1
2
φ

(∑
i

xik +
∑

j

xkj

)
+ ψ

∑
ij

xij . (13)

2. The inverse of Ĥ on Û is given by equation (12). Let η be the inverse of ξ:

η = Λ−1ξ.

3. The final step is to combine this result with the Û⊥ component of the inverse.
Using the decompositions (9) and (10), and since B−1(xÛ⊥) = B−1(x) −
B−1(xÛ ) it follows that

Ĥ−1(x) =
(
P (A+B)P |Û

)−1 (xÛ ) −B−1(xÛ ) +B−1(x). (14)

The first term of (14) is given using the result of step 2:

(
P (A+B)P |Û

)−1 (xÛ ) =
n∑

k=1

ηkwk

=
φ

2
P (η ⊗ e+ e⊗ η) + ψ〈e, η〉P (e⊗ e).

By replacing η with (η−B−1ξ) in this equation we obtain the first two terms
of (14). The full inverse is then given by

Ĥ−1(x) = B−1x+
φ

2
P
(
(η −B−1ξ) ⊗ e+ e⊗ (η −B−1ξ)

)
+ ψ〈e, η −B−1ξ〉P (e⊗ e).

The computational complexity of the algorithm can be obtained by analysing
each step. It is easy to see that overall there are O(n2) multiplications and O(n2)
additions. Moreover, in our application we actually use the inverse covariance tensor
to evaluate inner products like 〈x, Ĥ−1x〉 where x is a symmetric matrix with zero
diagonal. If the partial sums in equation (13) are already known for the matrix x,
then the inner product 〈x, Ĥ−1x〉 can be evaluated in O(n) operations.

5. Examples

Although the main aim of this paper is to present the details of the inversion algo-
rithm, some examples of phylogenies reconstructed with our approach may provide
some insight. This section presents the results of applying the tree reconstruction
algorithm described in Section 2 to some small simulated distance matrices. Sim-
ulated data offer an advantage over real biological data as the ‘true’ evolutionary
history is known, and features of the simulated data can be varied systematically.
The distance matrices were generated by taking a fixed tree T of divergence times,
then (1) distorting each branch length, and (2) adding noise to the resulting distance
matrix. Distortion was achieved by replacing each branch length t with a sample
from a Gamma distribution with mean equal to the original branch length t, and
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Figure 4: The fixed underlying tree T (left) and a distorted version with p = 10%
(right).

standard deviation a fixed proportion of t (which we will specify as a percentage
p%). This distortion process replicates the assumptions of equations (2) and equa-
tions (3). Noise was added to the distance matrices in a similar way, by replacing
each distance d with an independent sample from a Gamma distribution with mean
d and standard deviation a fixed proportion of d specified by a percentage q%. Noise
of this form is not explicitly included in our model but will be present in any real
biological data.

Figure 4 shows a typical tree T on 16 taxa and a distorted version of the same tree
with p = 10%. Figure 5 shows our reconstruction of T under three conditions: (1)
p = 10% with no noise, (2) q = 10% with no distortion, and (3) p = 10%, q = 10%.
As might be anticipated, since our approach explcitly models distortion, the correct
topology is reconstructed when there is no noise. Even with q = 10% noise the
reconstructed phylogeny is relatively accurate: a single topological error is present
in the tree with q = 10% and no distortion. The success of the method depends on
the topology of the underlying tree T as well as the amount of distortion and noise.
Figure 6 shows some results for a different topology. Reconstruction for the topology
shown in Figure 6 is generally more prone to error than that for the topology in
Figure 4. Real biological phylogenies will generally lie between the two extremes.

6. Discussion

The inversion algorithm presented in Section 4 relies principally on the covari-
ance matrix being a perturbation of the identity, which in turn is a result of the
symmetry assumptions made to obtain equation (7). An alternative approach to
tree construction is to propose and score a complete tree at each stage rather than
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Figure 5: Results for phylogenetic reconstruction for the tree in Figure 4. Recon-
struction from a distance matrix generated with p = 10% distortion and no noise
(left); reconstruction for q = 10% noise and no distortion (centre); and reconstruc-
tion for p = 10%, q = 10% (right).

build up the tree piece by piece as described at the end of Section 2. The space
of such trees can be searched for the tree with the best score via a number of al-
gorithms described in the phylogenetic literature. Given a proposed tree T that is
complete, the tree would be assigned a χ2 statistic using the inverse of a covari-
ance matrix like that in equation (3). This approach raises a generalization of the
inversion problem addressed in this paper: given any tree T that is complete and
the set of paths tij between its leaf nodes, how can the covariance matrix defined
by equation (3) be inverted efficiently?

A crucial advantage of the probabilistic model chosen in this paper is that it gen-
erates covariance matrices which are mild perturbations of the identity, so ensuring
inexpensive inversion. However, the basis chosen is highly reminiscent of of similar
bases chosen to elucidate the structure of Euclidean distance matrices, and we men-
tion this interesting connection. We recall that an n × n matrix A is a Euclidean
distance matrix if there exist vectors u1, . . . , un ∈ R

n for which

Aij = ‖ui − uj‖2, 1 � i, j � n,

where ‖ · ‖ denotes the Euclidean norm. Such matrices were characterized by I. J.
Schoenberg [10], who proved that a symmetric matrix M , whose diagonal elements
vanish, is a Euclidean distance matrix if and only if vTMv � 0 when v is orthogonal
to e, the vector of all ones defined at the beginning of Section 3. The theory of such
matrices is highly relevant to the linear of radial basis functions and learning theory;
see, for example, [1].
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Figure 6: Results for phylogenetic reconstruction for a second underlying topology.
The underlying tree T (left); a distorted version of T with p = 5% (centre); and
reconstruction for p = 5%, q = 5% (right).
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