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Abstract

Admission control can be employed to avoid congestion in queueing networks subject to
overload. In distributed networks, the admission decisions are often based on imperfect
measurements on the network state. In this paper, we study how the lack of complete state
information affects the system performance, by considering a simple network model for
distributed admission control. The stability region of the network is characterized and it
is shown how feedback signaling makes the system very sensitive to its parameters.
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1. Introduction

Consider an overloaded queueing network in which the incoming traffic exceeds the service
capacity over a long time period. In such a case, it is often necessary to employ admission
control to avoid the network becoming fully congested. Many networks of practical interest
are composed of subnetworks, not all of which are administrated over by a single party. In
such a network, the admission controller seldom has complete, up-to-date system information
available. Instead, the admission decisions must be based on partial measurements on the
network state.

In this paper, we study the effect of imperfect information on the performance of the
admission control scheme. Typical performance measures in this kind of setting include
the average amount of rejected traffic per unit time and the mean proportion of time during
which the network load is undesirably high. However, assuming that the network under study
is subjected to long-term overload, there is another performance criterion that must first be
analyzed by answering the following question: if the network is subjected to a stationary load
exceeding the service capacity, how strict must the admission control rules be set in order to
stabilize the system?

To deal with the question mathematically, it is assumed that the network can be modeled
using the simplest nontrivial model for a distributed network, the two-node tandem network
with independent, exponential service times and unlimited buffers. The network state is denoted
by X = (X1, X2), where Xi is the number of jobs in node i. It is assumed that the admission
control can be modeled so that the input to the system is a Poisson process with a stochastic
time-varying intensity λ ≡ λ(X), a function of the network state.

The lack of complete state information is reflected in the model by assuming that the input
rate λ is a function of only one of the Xi . If λ(X) ≡ λ(X1) then the analysis of the system can
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Figure 1: Admission control based on the single threshold level K .

be reduced to the study of birth–death processes, which are well understood. This is why in the
following it is always assumed that λ(X) ≡ λ(X2); so that the admission control introduces a
feedback signaling loop to the system. For example, we can model a network in which arriving
traffic is rejected when the size of the second buffer exceeds a threshold level K by setting
λ(X) = 1(X2 ≤ K), an indicator function (see Figure 1). In order to also cover more complex
admission policies, with multiple thresholds and thinning of input traffic, the shape of λ(X2)

will not be restricted in any way.
More precisely, X is defined as a continuous-time stochastic process, as follows. Let λ be

a nonnegative function on Z+, and let µ1, µ2 > 0. Define the transition rates q(x, y), for
x �= y, x, y ∈ Z

2+, by

q(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ(x2), y = x + e1,

µ1, y = x − e1 + e2,

µ2, y = x − e2,

0, otherwise,

(1)

where ei denotes the ith unit vector of Z
2+ and xi denotes the ith component of x. As usual, set

q(x, x) ≡ −q(x), where the transition rate out of state x is defined by

q(x) =
∑
y �=x

q(x, y).

It is clear that q(x) < ∞ for all x, so, using the minimal construction [3, pp. 39–45], the rates
q(x, y) define a unique Markov process X on Z

2+ ∪ {κ}. Here κ denotes an additional state not
in Z

2+, with
Tκ := inf{t > 0 : X(t) = κ} ≤ ∞

being the time of explosion of X. The notation S(λ, µ1, µ2) will be used for the set of transition
rates corresponding to the triple (λ, µ1, µ2), and the system S(λ, µ1, µ2) will be said to be
stable if the corresponding Markov process is ergodic, that is, irreducible and positive recurrent.

In its most general form, the stability problem may now be stated as follows.

Problem 1. Characterize the set of all (λ, µ1, µ2) ∈ R
Z++ × R+ × R+ for which S(λ, µ1, µ2)

is stable.

Specializing to networks with threshold-based admission control, the offered traffic is
assumed to arrive at unit rate, without loss of generality. With the admission threshold denoted
by K , Problem 1 now takes the following form.
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Problem 2. For each (µ1, µ2) ∈ R
2+, determine the values of K ∈ Z+ ∪{∞}, if any, for which

the system S(1(· ≤ K), µ1, µ2) is stable.

Note that the system corresponding to K = ∞ in Problem 2 is the ordinary tandem queue,
for which it is well known that the condition min(µ1, µ2) > 1 is sufficient and necessary for
stability. However, assuming overload, verifying the existence of a threshold level that can
stabilize the system is not as straightforward.

The queueing systems literature includes a vast amount of work on various admission control
mechanisms. However, most earlier studies on tandem networks require at least one of the
buffers to be finite, so that the two-dimensional nature of the problem can partly be made one-
dimensional by applying matrix-geometric methods [8]. For networks with unlimited buffers
and state-dependent service times, Bambos and Walrand [4] provided stability results extending
to non-Markovian systems; this, however, rules out networks with the type of feedback signaling
loop considered here. Concerning the network S(λ, µ1, µ2) defined above, the compensation
approach introduced by Adan et al. [1] can be used to compute the invariant measure in the
special case where λ is constant on {n ∈ Z+, n ≥ 1}. For more general input rates, Leskelä
and Resing [6] have described a numerical method for calculating stationary performance
characteristics of the system. Altman et al. [2] have recently introduced perturbation techniques
that seem appropriate for asymptotically analyzing the behavior of S(λ, µ1, µ2) under suitable
parameter scaling.

This paper partially answers Problem 1 by deriving conditions sufficient and necessary for
stability. Furthermore, by showing that the sufficient and necessary conditions coincide in the
special case of threshold-based admission control, a complete solution of Problem 2 is given.
In addition, the sensitivity of the system is analyzed with respect to changes in the service rates,
and it is shown how acceleration of one of the servers may, rather paradoxically, destabilize the
system.

2. A sufficient condition for stability

Let S be a countable set. For a function V : S → R, let

lim
x→∞ V (x) = ∞

if the set {x : V (x) ≤ M} is finite for all M ∈ R. Furthermore, we denote the mean drift of V ,
with respect to transition rates q(x, y), by

�V (x) =
∑
y �=x

(V (y) − V (x))q(x, y), (2)

assuming that the sum on the right-hand side converges.

Definition 1. A map V : S → R is called a Lyapunov function for q if it satisfies the following
conditions, called Foster’s criteria:

(F1)
∑

y �=x |V (y) − V (x)|q(x, y) < ∞ for all x (so that the right-hand side of (2) makes
sense).

(F2) limx→∞ V (x) = ∞.

(F3) There is a finite set S0 ⊂ S such that supx∈S\S0
�V (x) < 0.
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The following continuous-time analogue of Foster’s classic theorem [5] provides a condition
sufficient for stability.

Theorem 1. (Tweedie [9].) Let X be an irreducible Markov process on a countable state
space S, generated by transition rates q(x, y) such that q(x) < ∞ for all x. The existence of
a Lyapunov function for q is then sufficient for X to be ergodic.

Consider the system S(λ, µ1, µ2), and let q(x, y) be as defined in (1). Assume V to be a
function on Z

2+ of the form V (x) = x1 + v(x2), for some v : Z+ → R with v(0) = 0. To
search for a Lyapunov function of this type, let us fix a number r > 0 and require that the mean
drift of V , with respect to q, satisfies

�V (x) = −r for all x with x1 > 0. (3)

It is straightforward to verify that (3) is equivalent to

v(1) = 1 − λ(0) + r

µ1
,

v(n + 1) = 1 − λ(n) + r

µ1
+

(
1 + µ2

µ1

)
v(n) − µ2

µ1
v(n − 1), n ≥ 1.

With α(n) = 1 − (λ(n) + r)/µ1 and w(n) = v(n + 1) − v(n), the above difference equation
can be written as w(n) = α(n) + (µ2/µ1)w(n − 1) for n ≥ 1, with w(0) = α(0). Thus,
w(n) = ∑n

k=0 α(k)(µ1/µ2)
k−n, implying that

v(n) =
n−1∑
j=0

w(j) =
n−1∑
j=0

j∑
k=0

α(k)

(
µ1

µ2

)k−j

,

and we conclude that, for each r > 0, (3) defines the function

Vr(x) = x1 +
x2−1∑
j=0

j∑
k=0

(
1 − λ(k) + r

µ1

)(
µ1

µ2

)k−j

.

Thus, we have constructed a family of functions V = {Vr, r > 0} whose elements satisfy
sup{x : x1>0} �Vr(x) < 0, so we might hope that Vr satisfies (F3) for a suitably chosen finite
subset of Z

2+. In order to investigate whether this is the case, let us study the mean drift of Vr

for x = (0, n), n ≥ 1:

�Vr(0, n) = λ(n) − µ2(vr (n) − vr(n − 1)). (4)

Definition 2. For a z ≥ 0, let Zn ∼ geomn(z) if Zn is a random variable on Z ∩ [0, n] with
P(Zn = j) = czj . For 0 ≤ z ≤ 1, let Z ∼ geom(z) if the random variable Z, on Z+, satisfies
P(Z = j) = (1 − z)zj .

In this paper, Zn and Z will always represent generic random variables with respective
distributions geomn(µ1/µ2) and geom(µ1/µ2). Using this notation, we may verify that (4)
can be alternatively written as

�Vr(0, n) = E(λ(Zn)) − µ2(1 − r/µ1) P(Zn > 0)

P(Zn = n)
, Zn ∼ geomn

(
µ1

µ2

)
. (5)

We will also use ‘lim’ and ‘lim’ as shorthand for ‘lim sup’ and ‘lim inf’, respectively.
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Theorem 2. The family V = {Vr, r > 0} contains a Lyapunov function for S(λ, µ1, µ2) if
and only if

lim E(λ(Zn)) < min(µ1, µ2), Zn ∼ geomn(µ1/µ2). (6)

In particular, if λ(0) > 0 then (6) is sufficient for the stability of S(λ, µ1, µ2).

The proof of the theorem will use the following two lemmas.

Lemma 1. Condition (6) is equivalent to lim �Vr(0, n) < 0, for some r > 0.

Proof. Let Zn ∼ geomn(µ1/µ2) for n ≥ 0. First observe that, since lim P(Zn > 0) =
min(1, µ1/µ2),

lim E(λ(Zn)) − min(µ1, µ2) = lim{E(λ(Zn)) − µ2 P(Zn > 0)}. (7)

Now assume that (6) holds. We can then choose an r > 0 such that

E(λ(Zn)) − µ2 P(Zn > 0) ≤ −r

for n sufficiently large. It follows that lim �Vr(0, n) < 0, since, using (5), we see that, for
large n,

�Vr(0, n) ≤ −r + r(µ2/µ1) P(Zn > 0)

P(Zn = n)
= −r.

To prove the implication in the opposite direction, assume that lim �Vr(0, n) < 0 for some
r > 0. Then there exists an s ∈ (0, r) such that �Vr(0, n) ≤ −s for n sufficiently large.
Applying (5) then gives

E(λ(Zn)) − µ2(1 − s/µ1) P(Zn > 0)

P(Zn = n)
≤ �Vr(0, n) ≤ −s.

This shows that

E(λ(Zn)) − µ2 P(Zn > 0) ≤ −s

(
P(Zn = n) + µ2

µ1
P(Zn > 0)

)
= −s

for all sufficiently large n, and, in light of (7), it follows that lim E(λ(Zn)) < min(µ1, µ2).

Lemma 2. Let f be a function of the form f (x) = u(x1) + v(x2), for some functions
u, v : Z+ → R. Then limx→∞ f (x) = ∞ if and only if

lim
x1→∞ u(x1) = ∞ and lim

x2→∞ v(x2) = ∞.

Proof. Assume that lim u(x1) = lim v(x2) = ∞, and fix an M ∈ R. Since u0 := inf u(x1)

and v0 := inf v(x2) are finite, we can choose an m1 and an m2 such that u(x1) > M − v0 for
all x1 > m1 and v(x2) > M − u0 for all x2 > m2. Hence, f (x) > M if either x1 > m1
or x2 > m2, implying that the set {x : f (x) ≤ M} ⊂ [0, m1] × [0, m2] is finite. Since M is
arbitrary, it follows that limx→∞ f (x) = ∞.

Next suppose that limx→∞ f (x) = ∞. Then if lim u(x1) < ∞, there exists a c ∈ R such that
the set S = {x1 : u(x1) ≤ c} is infinite. This implies that the set {x : f (x) ≤ c+v(0)} ⊃ S×{0}
is infinite, in contradiction to the assumption that limx→∞ f (x) = ∞. Thus, lim u(x1) = ∞.
We can prove that lim v(x2) = ∞ similarly.
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Proof of Theorem 2. Let r > 0, and assume that Vr ∈ V is a Lyapunov function for q. Let
S0 be a finite set such that (F3) holds. Then {0} × (n0, ∞) ⊂ Sc

0 for some n0, which implies
that

lim �Vr(0, n) ≤ sup
n>n0

�Vr(0, n) ≤ sup
x∈Sc

0

�Vr(x) < 0.

By Lemma 1, this implies (6).
To prove the implication in the opposite direction, assume that (6) holds. Applying Lemma 1,

we can pick an r > 0 such that lim �Vr(0, n) < 0. Hence, there exist an n0 and an ε > 0 such
that �Vr(0, n) ≤ −ε for all n > n0. With S0 = {0} × [0, n0], it follows that

sup
x∈Sc

0

�Vr(x) = max
(

sup
n>n0

�Vr(0, n), sup
{x : x1>0}

�Vr(x)
)

≤ max(−ε, −r) < 0,

since, by the construction of Vr , �Vr(x) = −r for all x with x1 > 0. Thus, Vr satisfies (F3).
Next observe that, using (4), we have

λ(n) − µ2(vr (n) − vr(n − 1)) = �Vr(0, n) ≤ −ε for n > n0.

This shows that vr(n) − vr(n − 1) ≥ ε/µ2 for sufficiently large n, implying that
limn→∞ vr(n) = ∞. By Lemma 2, we conclude that Vr satisfies (F2). Furthermore, (F1)
holds trivially, since the set {x : q(x, y) > 0} is finite for all x. Thus, Vr is a Lyapunov function
for q. Finally, note that X is irreducible when λ(0) > 0. An application of Theorem 1 thus
completes the proof.

3. Necessary conditions for stability

Assume that λ(0) > 0, so that the system S(λ, µ1, µ2) is irreducible. In the previous section,
we saw that the condition

lim E(λ(Zn)) < min(µ1, µ2), Zn ∼ geomn(µ1/µ2),

is sufficient for the stability of S(λ, µ1, µ2). This section is devoted to studying whether the
above condition is also necessary for stability.

3.1. Small perturbations of Markov processes

In this section, we study how ergodicity is preserved under small perturbations of generators
of Markov processes. Let q(x, y) and q ′(x, y) be the generators of Markov processes on a
countable state space S, and let

D(q, q ′) = {x : q(x, y) �= q ′(x, y), for some y}
and

D̄(q, q ′) = D(q, q ′) ∪ {y : q(x, y) > 0 or q ′(x, y) > 0, for some x ∈ D(q, q ′)}.
Furthermore, for a set F ⊂ S, let

TF = inf{t > 0 : X(t−) �= X(t), X(t) ∈ F },
with the convention inf ∅ = ∞, and write Tx := T{x} for x ∈ S.
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Lemma 3. Let X and X′ be irreducible Markov processes on a countable state space S,
respectively generated by q(x, y) and q ′(x, y), with q(x), q ′(x) < ∞ for all x. Assume
that D̄(q, q ′) is finite. Then X is ergodic if and only if X′ is ergodic.

Proof. By symmetry, it is sufficient to show that the ergodicity of X′ implies that of X.
Therefore, assume X′ to be ergodic, and let x be a state in D = D(q, q ′). Denote the first jump
time of X by τ = inf{t > 0 : X(t−) �= X(t)}. By irreducibility Ex(τ ) < ∞; thus, by the
strong Markov property,

Ex(TD) = Ex(τ ) + Ex(EX(τ)(TD); X(τ) /∈ D),

where E(Z; F) is used as shorthand for E(Z 1F ). Since q(x, y) and q ′(x, y) coincide outside
D, and Px(X(τ) ∈ D̄) = 1, we have

Ex(EX(τ)(TD); X(τ) /∈ D) = Ex(EX(τ)(T
′
D); X(τ) ∈ D̄ \ D) ≤ sup

y∈D̄

Ey(T
′
D).

Since X′ is ergodic and D̄ is finite, the right-hand side of the above inequality is also finite,
and we conclude that Ex(TD) < ∞. Because X is irreducible, this property implies that X is
positive recurrent [7, Theorem 4.3(ii) and Theorem 4.4].

3.2. Bottleneck at node 1

Assume that µ1 < µ2. Intuition suggests that in this case the stability of the system depends
on whether or not the buffer content at node 1 grows to infinity. Observe that, during the periods
of time in which node 1 remains busy, the input to node 2 is a Poisson process with rate µ1.
The approach here is to compare the original process to a saturated system in which node 2
also receives input at rate µ1 during the time periods in which node 1 is empty, and show that
the stability regions for the two systems are close to each other. With this goal in mind, let us
introduce another model family, denoted by SN(λ, µ1, µ2). Fix a nonnegative integer N and,
for x �= y, define

qN(x, y) = q(x, y) + µ11(x1 = 0, x2 < N, y = x + e2).

It is clear that, when λ(0) > 0, the transition rates qN(x, y) define, using the minimal
construction, an irreducible Markov process XN on Z

2+ ∪ {κ}. By Lemma 3, we know that
the stability of SN(λ, µ1, µ2) is equivalent to that of S(λ, µ1, µ2). Furthermore, as we let
N approach infinity, SN(λ, µ1, µ2) comes to resemble a network in which node 2 receives
stationary input at rate µ1.

Lemma 4. Assume that SN(λ, µ1, µ2) is stable. Then the stationary distribution of XN

satisfies

E(λ(XN
2 )) = µ2 P(XN

2 > 0) − µ1 P(XN
1 = 0, XN

2 < N), (8)

P(XN
2 = n) =

(
µ1

µ2

)n

P(XN
2 = 0) − 1(n > N)

n−1∑
j=N

(
µ1

µ2

)n−j

P(XN
1 = 0, XN

2 = j), (9)

and, for all real-valued functions f on Z+,

E(f (XN
2 ); XN

2 ≤ N) = E(f (ZN)) P(XN
2 ≤ N), ZN ∼ geomN(µ1/µ2). (10)
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Proof. Starting from the balance equations for XN , it is not hard to check that E(λ(X2)) =
µ1 P(XN

1 > 0) and

µ1 P(XN
1 > 0) + µ1 P(XN

1 = 0, XN
2 < N) = µ2 P(XN

2 > 0),

from which it follows that (8) is true. Furthermore, it is straightforward to verify that, for all n,

P(XN
2 = n + 1) = µ1

µ2
[P(XN

2 = n) − 1(n ≥ N) P(XN
1 = 0, XN

2 = n)],

from which (9) and (10) follow.

Theorem 3. Assume that µ1 < µ2, and let Z ∼ geom(µ1/µ2). Then

E(λ(Z)) < µ1 ⇒ S(λ, µ1, µ2) is stable,

E(λ(Z)) > µ1 ⇒ S(λ, µ1, µ2) is unstable.

Proof. Let ZN ∼ geomN(µ1/µ2). Because µ1 < µ2, it follows that lim E(λ(ZN)) =
E(λ(Z)), and the first statement follows from Theorem 2. To prove the second claim, assume,
on the contrary, that S(λ, µ1, µ2) is stable. Then, by Lemma 3, so is SN(λ, µ1, µ2), for each
N . By applying (8) and (10), we see that

E(λ(ZN)) P(XN
2 ≤ N) = E(λ(XN

2 ); XN
2 ≤ N) ≤ µ2 P(XN

2 > 0). (11)

Next, (9) implies that

P(XN
2 > N) ≤

∑
n>N

(
µ1

µ2

)n

for all N,

meaning that lim P(XN
2 ≤ N) = 1. This observation, combined with (9), implies that

P(XN
2 = 0) = P(XN

2 ≤ N)∑N
n=0(µ1/µ2)n

→ 1 − µ1

µ2
as N → ∞.

Hence, lim P(XN
2 > 0) = µ1/µ2. Letting N → ∞ on both sides of (11) now shows that

E(λ(Z)) ≤ µ1, and the second claim follows by contraposition.

3.3. Bottleneck at node 2

In studying necessary stability conditions for the system when µ1 ≥ µ2, the following
asymptotic property of truncated geometric random variables will be useful.

Lemma 5. Let Zn ∼ geomn(z), with z ≥ 1. Then, for all nonnegative functions f on Z+,

lim f (n) ≤ lim E(f (Zn)) ≤ lim E(f (Zn)) ≤ lim f (n).

Proof. Without loss of generality, assume that lim f (n) < ∞. Choose a number r such that
lim f (n) < r . Then there exists an n0 such that f (n) ≤ r for all n > n0, and, thus,

E(f (Zn)) ≤ r +
∑n0

j=0(f (n) − r)zj

∑n
j=0 zj

for n > n0.

This implies that lim E(f (Zn)) ≤ r , so by letting r ↓ lim f (n) it follows that lim E(f (Zn)) ≤
lim f (n). The proof is completed by applying this inequality to −f .
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Theorem 4. Assume that µ1 ≥ µ2, and let Zn ∼ geomn(µ1/µ2). Then

lim E(λ(Zn)) < µ2 ⇒ S(λ, µ1, µ2) is stable,

lim λ(n) > µ2 ⇒ S(λ, µ1, µ2) is unstable.

In particular, if lim λ(n) exists then

lim λ(n) < µ2 ⇒ S(λ, µ1, µ2) is stable,

lim λ(n) > µ2 ⇒ S(λ, µ1, µ2) is unstable.

Proof. The first statement follows from Theorem 2. To prove the second claim, assume,
on the contrary, that S(λ, µ1, µ2) is stable. Then, by Lemma 3, so is SN(λ, µ1, µ2), for each
N . Choose an r ∈ R such that r < lim λ(n). It follows from Lemma 5 that lim λ(n) ≤
lim E(λ(Zn)). Thus, λ(N) ≥ r and E(λ(ZN)) ≥ r for all sufficiently large N , and, for all such
N ,

E(λ(XN
2 )) = E(λ(XN

2 ); XN
2 > N) + E(λ(ZN)) P(XN

2 ≤ N)

≥ r P(XN
2 > N) + r P(XN

2 ≤ N)

= r,

implying that lim E(λ(XN
2 )) ≥ r . By letting r approach lim λ(n), we see that lim E(λ(XN

2 )) ≥
lim λ(n). Next, lim P(XN

2 > 0) = 1, because P(XN
2 = 0) ≤ (

∑N
j=0(µ1/µ2)

j )−1 by (9).
Moreover, (8) shows that E(λ(XN

2 )) ≤ µ2 P(XN
2 > 0) for all N , implying that

lim λ(n) ≤ lim E(λ(XN
2 )) ≤ lim µ2 P(XN

2 > 0) = µ2,

which proves the second claim, by contraposition. In the special case in which λ(n) has a limit
when n tends to infinity, Lemma 5 shows that

lim λ(n) = lim λ(n) = lim E(λ(Zn)),

meaning that the last two implications of the theorem now follow from the first two.

There may be a substantial ‘gap’ between the necessary and sufficient stability conditions of
Theorem 4 if λ(n) is divergent. To gain some insight into why characterization of the stability
of the system is difficult for such λ, let us consider the behavior of S(λ, µ1, µ2) as µ1 tends
to infinity. Intuition suggests that in this case the system should resemble the single-server
queue with service rate µ2 and state-dependent input rate λ(n), for which it is known [3,
Corollary III.2.5, p. 74] that stability is equivalent to having

∞∑
n=0

λ(0) · · · λ(n)

µn+1
2

< ∞. (12)

Consider, for example, the input rates λ(n) = a for even n and λ(n) = b for odd n, where
0 < a < b. Then (12) reduces to

√
ab < µ2, while, with Zn ∼ geomn(µ1/µ2),

lim λ(n) = a <
µ1b + µ2a

µ1 + µ2
= lim E(λ(Zn)).
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Hence, the gap between the necessary and sufficient stability conditions in Theorem 4 grows
according to [

a,
µ1b + µ2a

µ1 + µ2

]
→ [a, b], µ1 → ∞.

However, condition (12) may not in general be the correct asymptotic stability characteristic
of S(λ, µ1, µ2) as µ1 → ∞, due to a fundamental difference between the single-server queue
and the tandem network. Namely, if λ(n) = 0 for some n, then the single-server queue is stable
because the queue size cannot exceed n. Obviously, this property is not true for S(λ, µ1, µ2),
and this is why the necessary and sufficient stability conditions for S(λ, µ1, µ2) must be more
complex than (12).

3.4. Eventually vanishing input rate function

In most applications, it is natural to assume that λ(n) eventually becomes 0 for large n,
and that the admission controller thus strictly blocks all incoming traffic when the number of
jobs in node 2 becomes too large. In this case lim λ(n) = 0, so Theorem 4 shows that, for
µ1 ≥ µ2, S(λ, µ1, µ2) is stable regardless of the shape of the function λ. However, if node 1 is
the bottleneck then Theorem 3 determines the stability of the system, except in the critical case
when E(λ(Z)) = µ1. Intuition about birth–death processes suggests that the system is unstable
also in this special case. The validity of this intuition will be proved next. The key to the proof
is the following lemma, which shows that the stability of S(λ, µ1, µ2) implies the stability of
the saturated system S∗(λ, µ1, µ2), in which node 2 behaves as if node 1 were never empty.

Lemma 6. Assume that µ1 < µ2, and that λ(n) = 0 for sufficiently large n. If S(λ, µ1, µ2)

is stable then so is the system S∗(λ, µ1, µ2) generated by the transition rates

q∗(x, y) = q(x, y) + µ11(x1 = 0, y = x + e2), x �= y.

Proof. Fix a K ∈ Z+ such that λ(n) = 0 for all n > K , and define the transition rates q ′ by

q ′(x, y) = q(x, y) + µ11(x1 = 0, x2 > K, y = x + e2), x �= y.

Because q ′(x) < ∞ for all x, the rates q ′(x, y) define an irreducible Markov process X′ on
Z

2+ ∪ {κ}. The first step is to show that X′ is ergodic. Note that the set of states over which
q and q ′ differ is now given by D(q, q ′) = {0} × [K + 1, ∞). The key to the proof is to
observe that the behavior of X′ inside D ≡ D(q, q ′) is similar to a birth–death process with
birth rate µ1 and death rate µ2. Let x = (0, K + 1). Then, since µ1 < µ2, it follows that, for
all y ∈ D \ {x},

Ey(T
′
x) = y2 − x2

µ2 − µ1
. (13)

The ergodicity of X implies that Ex−e2(T
′
D) = Ex−e2(TD) < ∞. Next, since

Px−e2(T
′
D ≤ T ′

x) = 1,

we obtain

Ex−e2(T
′
x) = Ex−e2(T

′
D) + Ex−e2(EX′(T ′

D)(T
′
x); X′(T ′

D) �= x)

= Ex−e2(T
′
D) + Ex−e2

(
X′

2(T
′
D) − x2

µ2 − µ1

)

= Ex−e2(TD) + Ex−e2

(
X2(TD) − x2

µ2 − µ1

)
, (14)
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using the strong Markov property and (13). Since Ey(Tx) = (y2 − x2)/µ2 for all y ∈ D \ {x},
we similarly find that

Ex−e2(Tx) = Ex−e2(TD) + Ex−e2

(
X2(TD) − x2

µ2

)
. (15)

Since X is ergodic, comparison of (14) and (15) shows that Ex−e2(T
′
x) < ∞. Conditioning on

the first transition of X′ now yields

Ex(T
′
x) = 1

µ1 + µ2
+ µ1

µ1 + µ2
Ex+e2(T

′
x) + µ2

µ1 + µ2
Ex−e2(T

′
x)

= 1

µ1 + µ2
+ µ1

µ1 + µ2

1

µ2 − µ1
+ µ2

µ1 + µ2
Ex−e2(T

′
x),

showing that Ex(T
′
x) < ∞. By irreducibility, it now follows that X′ is ergodic.

Finally, note that the set D̄(q ′, q∗) ⊂ [0, 1]×[0, K +1] is finite. Thus, in light of Lemma 3,
we may now conclude that the Markov process X∗ generated by q∗(x, y) is ergodic.

Theorem 5. Assume that λ(n) = 0 for sufficiently large n.

(i) If µ1 < µ2 then S(λ, µ1, µ2) is stable if and only if E(λ(Z)) < µ1, with

Z ∼ geom(µ1/µ2).

(ii) If µ1 ≥ µ2 then S(λ, µ1, µ2) is always stable.

Proof. In light of Theorems 3 and 4, all we need show is that the stability of S(λ, µ1, µ2)

implies that E(λ(Z)) < µ1 when µ1 < µ2. Therefore, assume that µ1 < µ2 and that
S(λ, µ1, µ2) is stable. By Lemma 6, so then is S∗(λ, µ1, µ2). From the balance equations for
X∗, it is easy to see that

X∗
2 ∼ geom(µ1/µ2).

Thus, the stationary mean rate of jobs arriving at node 1 equals E(λ(Z)), while the corresponding
rate out is equal to µ1 P(X∗

1 > 0). Because these two quantities must be equal in a stable system,
we conclude that

E(λ(Z)) = µ1 P(X∗
1 > 0) < µ1,

where the last inequality is strict because P(X∗
1 = 0) > 0, by the ergodicity of X∗.

4. Sensitivity analysis of the stability region

In this section, we focus on the stability of the system subject to fluctuations in the system
parameters. The treatment here is restricted to the case of input rates that eventually vanish, for
which Theorem 5 completely characterizes the stable parameter region.

4.1. Sensitivity with respect to varying service rates

The next proposition shows that, with nonincreasing input rates, the stability of the system
is preserved under the acceleration of node 1.

Proposition 1. Assume that λ is nonincreasing, and that λ(n) = 0 for sufficiently large n.
Then, for all µ′

1 ≥ µ1,

S(λ, µ1, µ2) is stable ⇒ S(λ, µ′
1, µ2) is stable.
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0.5 1.00
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Figure 2: The left-hand side of (16), as a function of µ1.

Proof. Assume that S(λ, µ1, µ2) is stable and let µ′
1 ≥ µ1. If µ′

1 ≥ µ2 then S(λ, µ′
1, µ2)

is stable, by Theorem 5. On the other hand, if µ′
1 < µ2 then µ1 < µ2, and the necessary

condition of Theorem 5 shows that f (µ1/µ2) < µ1, where f (x) = (1 − x)
∑∞

n=0 λ(n)xn.

Because the sequence λ(n) is bounded and nonnegative, f is differentiable in (0, 1), with

f ′(x) =
∞∑

n=0

(n + 1)(λ(n + 1) − λ(n))xn ≤ 0,

implying that f (µ′
1/µ2) ≤ f (µ1/µ2). It follows that f (µ′

1/µ2) < µ′
1, which guarantees the

stability of S(λ, µ′
1, µ2), by Theorem 5.

To see why it is necessary to require λ to be nonincreasing, consider the following example.

Example 1. Let µ2 = 1 and assume that λ(n) = 0 for n ≥ 3. Then S(λ, µ1, µ2) is stable for
all µ1 ≥ 1 and, for µ1 ∈ (0, 1), the stability of S(λ, µ1, µ2) is equivalent to having

µ−1
1 (1 − µ1)(λ(0) + λ(1)µ1 + λ(2)µ2

1) < 1. (16)

Figure 2 shows the left-hand side of (16) as a function of µ1, where λ(0) = λ(1) = 1
100 and

λ(2) = 5. The plot shows that increasing the service rate µ1 from 1
5 to 1

2 destabilizes the
system.

Alternatively, we may fix µ1 and see what happens when µ2 varies. The following propo-
sition contains a rather surprising result: even with a nonincreasing λ, acceleration of one of
the servers may indeed destabilize the system. The physical intuition behind Proposition 2 is
that, when µ2 is very large, the admission controller finds node 2 empty most of the time. This
means that the input rate of the system is close to λ(0).

Proposition 2. Assume that λ is nonincreasing and that λ(n) = 0 for sufficiently large n, and
fix µ1 > 0.

(i) For λ(0) ≤ µ1, S(λ, µ1, µ2) is stable for all µ2 > 0.

(ii) For λ(0) > µ1, S(λ, µ1, µ2) becomes unstable for sufficiently large µ2.
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µ1
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1

1

Figure 3: Phase diagram of the system with threshold-based admission control.

Proof. First observe that, by Theorem 5, S(λ, µ1, µ2) is stable for all small µ2, µ2 ≤ µ1.
To study the case with µ2 > µ1, fix a number n0 such that λ(n) = 0 for all n > n0. Then, with
Z ∼ geom(µ1/µ2),

E(λ(Z)) =
(

1 − µ1

µ2

) n0∑
n=0

λ(n)

(
µ1

µ2

)n

. (17)

If λ(0) ≤ µ1 then (17) implies that, for all µ2 > µ1,

E(λ(Z)) ≤ λ(0)(1 − (µ1/µ2)
n0+1) < µ1,

which, by Theorem 5, is sufficient for stability. Moreover, the right-hand side of (17) converges
to λ(0) as µ2 → ∞. From this we can conclude that if λ(0) > µ1, then E(λ(Z)) > µ1 for
sufficiently large values of µ2. By Theorem 5, S(λ, µ1, µ2) is unstable for such values.

4.2. Phase partition for threshold-based admission control

Consider the network with threshold-based admission control, and assume, without loss of
generality, that jobs arrive at the network at unit rate. Denoting the threshold level by K , this
system can be modeled as S(λ, µ1, µ2) with λ(n) = 1(n ≤ K). Theorem 5 now implies that,
for each K ∈ Z+ ∪ {∞}, the set of pairs (µ1, µ2) for which the system is stable is

RK = {(µ1, µ2) : 1 − (µ1/µ2)
K+1 < min(µ1, µ2)}.

Since RK ⊃ RK+1 for all K , the stabilizable region is given by
⋃

K≤∞ RK = R0, where
R∞ = {(µ1, µ2) : min(µ1, µ2) > 1} represents the system with no overload. The positive
orthant of R

2 can now be partitioned into four phases, as follows:

• A1 = R∞ represents the region in which the uncontrolled system is stable;

• A2 = ⋂
K<∞ RK is the region in which any control stabilizes the overloaded system;

• A3 = R0 \ ⋂
K<∞ RK is the region in which the overloaded system is stabilizable using

sufficiently strict admission control;

• A4 = Rc
0 is the region in which the system cannot be stabilized.

This partition is depicted in Figure 3. The phase diagram clearly illustrates the results of
Propositions 1 and 2, showing that the acceleration of server 1 drives the system towards more
stable regions, while the acceleration of server 2 may destabilize the network.
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5. Conclusion

In this paper, we have considered the problem of characterizing the stability region of a
two-node queueing network with feedback admission control. For eventually vanishing input
rates, the characterization was shown to be complete. It was also illustrated how the presence
of feedback signaling removes some typical monotonicity properties of queueing networks, by
showing that increasing service rates may destabilize the network.

For a diverging input rate function and a bottleneck at node 2, the exact characterization of the
stability region remains an open problem. Other possible directions for future research include
generalizing the results for nonexponential service and interarrival times, and considering
queueing networks with more than two nodes.
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