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GENERALISED SYMMETRIES OF PARTIAL DIFFERENTIAL
EQUATIONS VIA COMPLEX TRANSFORMATIONS

D. CATALANO FERRAIOLI, G. MANNO AND F. PUGLIESE

We consider two systems of real analytic partial differential equations, related by
a holomorphic contact map H. We study how the generalised symmetries of the
first equation are mapped into those of the second one, and determine under which
conditions on H such a map is invertible. As an application of these results, an
example of physical interest is discussed.

INTRODUCTION

It is a usual practice, when studying a given differential equation, to map it into
another one via a contact map [1, 2, 9, 10]. In fact, if one knows symmetries or
conservation laws or explicit solutions of the transformed equation, one can recover the
analogous objects for the first equation by reversing the transformation.

In some cases it is possible to map a real differential equation into another one by a
complex contact transformation. For example, Laplace equation

(1) uxx + um = 0

is turned into the wave equation

(2) v(v = 0

by the linear complex map

(3)

or, rather, by its second order contact prolongation. Now, the general solution of (2) is

« = /(0 + g(v),
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244 D. Catalano Ferraioli, G. Manno and F. Pugliese [2]

with / , g arbitrary holomorphic functions of one complex variable. By reversing (3) one
gets the following result: the general real analytic solution u(x, y) of (1) is of the form

(4) u = f{x + iy) + g(x-iy),

with / , g arbitrary holomorphic functions. Note that (4) is generically a complex valued
function of real variables x, y. However, its real and imaginary part are real valued
solutions of (1). The same holds when dealing with (classical or generalised) symmetries

of the transformed equation. For example, the infinitesimal generalised symmetry v^—

of (2) can be mapped, through the inverse map of (3), into the complex-valued operator

(uxx — v-yy — 2mxv)/4-3- whose real and imaginary part are symmetries of (1).
ou

The above method for computing symmetries is frequently used in practice (see for
instance various examples in [1]). However, such computations are of a formal nature:
the aim of this paper is to present them in a rigorous geometrical framework, which we
resume below.

Let

(5)

be a r-th order system of partial differential equations in the unknown vector-valued
function v? = u^x1,... ,xn), j = 1 , . . . ,m (in (5), with u^ we denote the A;-th order
partial derivatives). We assume F* to be real analytic in some open domain U of RN,

N = n + m("+r). Under such assumption, F* can be extended to a holomorphic function
F* : U —• C, with U C U and U open set in CN: such an extension is locally unique
([5, 6]). Let now Ho : C + m -> Cn + m be a "fibrewise" biholomorphism, that is, one of
the form:

(6) Ho :

with h = (h1, h2,'..., hn) : Cn -»• Cn being a biholomorphism. Then the contact prolon-
gation H : C " -*• CN of #o maps the system {F* = 0} .=1 t into

with G* = Fi o H~l being the holomorphic extensions of some real-analytic functions G*

defined on (an open domain of) RN. Note that, under some dimensional assumptions

(see section 2.2), functions G* are real-valued. Let now X be a generalised symmetry of

system

(7) < = ,
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[3] Generalised symmetries of partial differential equations 245

and denote by X its holomorphic extension. Then, as in the above example, the restric-
tions to RN of the real and imaginary part of vector field H~1(X) are symmetries of (5).
Thus one gets a "multivalued" map from symmetries of (7) to those of (5). Obviously,
such a map does not preserve linear independence. However, in section 2.2 we prove the
main result of the paper (theorem 4), namely that, under some natural assumption on
transformation (6), the map

(8) A T — • R f i ( H - 1 ( X ) ) | K » + I m ( # - 1 ( X ) ) | R «

is invertible. This result allows the finding of wide subalgebras of real analytic symmetries
of (5) starting from those of (7). An analogous result holds for recursion operators
(theorem 6).

Some remarks are in order. First we note that, in general, neither the domain nor
the range of (8) coincide with the whole algebras of symmetries. This is due to the
fact that (the contact prolongation of) complex transformation (6) does not act on real
symmetries of the transformed equation but, rather, on their holomorphic extensions.
In other words, while if is a pointwise correspondence between complexifications of (5)
and (7), it induces a non-pointwise correspondence between the original real systems and
their symmetries.

Secondly, recall that, from a geometrical point of view, a system of partial differential
equations is a submanifold of a suitable jet bundle Jr(n), where n is a real analytic vector
bundle corresponding to dependent and independent variables of (5). Hence, in order
to complexify the system, one needs first to complexify Jr{n). Such a construction is
described in section 2.1 starting from a given complexification of n.

We end the paper by applying the above results to the elliptic Euler-Darboux equa-
tion

(9) £ED = {(X + y)(UXX + Uyy) + UX + Uy = 0}

which appears in two recent papers ([16], [17]) devoted to the study of Lorentzian Ricci
flat 4-metrics with a bidimensional nonabelian Lie algebra Q of Killing vector fields with
non null orbits. This equation can be mapped into its hyperbolic analogue

(10) yED = {2(Z + ri)v!>, + V( + Vv = 0},

already studied in [13 ,14 , 15], via a linear contact transformation satisfying the assump-
tions of theorem 4. In fact, in proposition 7 we classify all linear contact transformations
satisfying such assumptions.

We note that map (8) is not a Lie algebra morphism. However, as the algebra of
generalised symmetries of (10) is given in terms of recursion operators, we use theorem
6 to compute the Lie algebra structure of equation (9).
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We would like to stress that our method applies to a large class of differential equa-
tions. Just to give a well-known example, think of the minimal surface equation which
is mapped, via a linear complex map, into the Born-Infeld equation, whose contact sym-
metries are known (see [11]).

1. BASIC NOTIONS ON SYMMETRIES

In this section we recall the basics about jet bundles and symmetries of partial
differential equations (for further details see [2, 7, 9, 12, 20, 21]).

Let M be an n-dimensional smooth manifold and ir: E —> M be a vector bundle,
dim E = n + m. Let 14 C M be a neighbourhood of M such that n~l(l4) ~ U x Rm and
let (xx,ul), X = 1 . . .n, i = l . . . m , with (xx) coordinates on U, be the corresponding
trivialisation. Then a local section of TT is locally described by u* = / ' ( i 1 , ! 2 , . . . , i n ) .
We shall denote by rioc(7r) the C°°(M)-module of local sections of •K.

Two local sections a and ?of ir are said to be r-contact equivalent at the point x € M
if their Taylor expansions at this point coincide up to order r. This is an equivalence
relation, and we shall denote by [s]r

x an equivalence class. The set JT{n) of all the
equivalence classes [s]r

x is called the jet bundle of order r and it has a natural vector

bundle structure. A chart {xx,u\) on Jr(7r) is denned by ui-([s]£) = (x), where

T = (TI, T2, . . . , Tk) with | T | = k ^ r and 1 ^ r< ^ n, is a multi-index and —— stands

9
dxT>-

We have the following natural maps:

1. the embeddings jrs: M —»• Jr{ir), x H-> [s]r
x,

2. the projections nkih: Jk{ir) -> JH{TT), [S]* ^ [s]£ k ^ h,
3. The base projections nT : Jr(7r) -¥ M, [s]r

x i-> x.

The contact plane Cgr at the point 0r € JT(TT) is the span of the planes TBr (jTs(M)),

with a G rioc(7r) varying among sections whose r-jet at irT(6r) coincides with 9r. We
have the contact distribution 6T y-¥ Cgr on Jr(n). A diffeomorphism of JT(n) is called
a contact transformation if it is a symmetry of the contact distribution (that is, if it
preserves contact planes). A vector field on Jr(ir) whose local flow consists of contact
transformations is called a contact field. We note that a point 6r+i = [s]T

x
+l of Jr+1(7r)

is completely characterised by T$r(jrs(M)) with 8T = 7rr+l i r(0r+1). Then we can lift
a contact transformation G of Fin) to a contact transformation G^ of Jr+1(7r) by
considering dgrG\Ter {jTs{M)) J. Of course we can lift contact fields by lifting their local
flows. According to a classical result by Lie and Baecklund, any contact transformation
is the lifting: 1) of a first order contact transformation if m = rank7r = 1; 2) of a
diffeomorphism of J°(TT) = E if m > 1. An analogous result holds for contact fields.
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[5] Generalised symmetries of partial differential equations 247

A differential equation £ of order r is a submanifold of Jr{n)- A linear equation

is a linear subbundle of Tiy : JT(ir) -* M. A (local) solution of £ is a section s of n

such that jTs{M) C £• The 1-prolongation £^ of the equation £ is the set of first order
"differential consequences" of £. Geometrically:

+ 1 € .T+1(?r) | s € I W T T ) , [«£ € £, T[s]l(jrs(M)) C TW ;

By iteration we can define the i-prolongation £®. Locally, if the equation £ is described

by {F{ = 0}, with F{ € C°°(Jr(7r)), then £® is described by {D^F*) = 0} with

0 < | r | ^ I, where D T = Dn o D ^ o • • • o D ^ and Dx are the totoi derivatives:

Note that the above definitions of r-contact equivalence and r-th order jet space
make sense even in the case r = oo. Obviously, J°°(7r) is not a finite dimensional
smooth manifold (its points are sequences of the form {dr}, r € No, with 9T € JT{K) and
7rrir_i(0r) = #r_i ). However, a very rich differential calculus can be developed on it,
making it an extremely useful tool in symmetry analysis of partial differential equations
as well as in many other fields. Here we limit ourselves to recall just a few basic facts
about the differential structure on J°°{x) (for further details see [2]).

By definition, smooth functions on J°°(7r) are pullbacks of smooth functions on finite
order jet spaces along projections 7^* . Thus, C°°(J°°(ir)) is a filtered algebra (the degree
being the jet order of the pullbacked function). Consequently, vector fields on /°°(7r) are
defined as derivations X : CO0(J0C(7r)) -> C°°(J°°(7r)) such that degX( / ) - deg / is a
constant integer depending only on X. Vector fields on J°°{^) do not admit, generally, a
flow, even locally. For instance, D\ is a vector field on J°°(ir) with degree 1. A tangent
vector at a point 0 = {0T} € J°°(7r) is a sequence f = {&} such that fr € TgrJ

r(ir) and
dgrnTtr-i(^r) = fr-i- The contact plane Cg is the sequence {Cgr}. Contact distribution
6 i—¥ Cg on J°°(7r) is rv-dimensional (it is spanned by total derivatives {DA}i^A^n) and
integrable, in the sense that its generators satisfy Frobenius conditions. A vector field on
J°°(7r) lying in the contact distribution C is called trivia/ as it is tangent to all integral
manifolds of C. Any contact field X on J°°(7r) can be splitted in a vertical and a trivial
part. More precisely we have that:

X = Xv + T

where

171 d
with f = J2 <pi-^-r, <P> € C°°(Joo(7r)), and T is a trivial vector field. Fields of the form

j=\ ou>
(11), called evolutionary vector fields, are the only vertical contact fields on /°°(7r); <p is
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«->called the characteristic (or generating section, [2]) of Xv. The correspondence <p

is one-to-one. Evolutionary vector fields form a Lie subalgebra, isomorphic to the algebra
of generating sections with respect to Jacobi bracket

/in\ r Y* v \ _ v

A classical symmetry of £ is a contact field on Jr(ir) tangent to £. If, in particular,
it is a lift of a vector field on E, then it is called a point symmetry. A contact field on
J°°(ir) tangent to £*°°) is called an external generalised (or higher, [2]) symmetry. A
vector field on £(°°) which preserves the contact distribution induced on £(°°) is called an
internal generalised symmetry.

Now we are interested in non-trivial symmetries, that is symmetries of the form Xv.
Locally, if the equation £ is described by the system {F' = 0}, w i thF ' € Cx(Jr(ix)), then
the vector field Xv is an external generalised symmetry of £ if and only if XV,(F*)|£(OO) = 0.
Locally

where the tilde denotes the restriction to £^°\

It is easy to realise that any external generalised symmetry restricts to an internal
generalised symmetry. The converse is also true: each internal generalised symmetry
can be obtained by restricting on £(°°' some external one. For this reason we shall not
distinguish them, and we shall call them simply generalised symmetries. Then we shall
denote by Sym(£) the algebra of (non-trivial) generalised symmetries of £.

A vector valued operator A acting on vector functions on J°°(TT) is called C-
differential if its restriction to £(°°) is well defined for any differential equation £. In
local coordinates, A = ||Ay||, where

A0 = £ a £ D T , with ar.6C°°(j°°(7r)).
T

Finally, a recursion operator & € Rec(£) for a differential equation £ is a linear
C-differential operator which maps Sym(£) into itself.

2. SYMMETRIES AND RECURSION OPERATORS OF PARTIAL DIFFERENTIAL

EQUATIONS BY COMPLEX TRANSFORMATIONS

2 .1 . HOLOMORPHIC EXTENSION OF J E T BUNDLES. As we said in the introduction, we
consider, instead of a real contact transformation of Jr(n), a complex one. This implies
that the transformation itself is defined not on JT{TT) but on a complexification of it.
Below we construct such a complexification.
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[7] Generalised symmetries of partial differential equations 249

Let us recall the definition of a complexification of a real analytical manifold. Let M
be an n-dimensional real analytic manifold. A complexification of M is an n-dimensional
complex manifold M such that:

1. M is a real analytical submanifold of M,

2. there exists a conjugation on M, that is, an involutive antiholomorphism
a such that M is the set of fixed points of a.

A M always exists (see [3]). Moreover (see [8, 19]), for any point x G M, there exists a
holomorphic chart ( z i , . . . , z,,) defined in a neighbourhood U of x in M such that in it a
is represented in the standard way:

For any holomorphic map H : M —¥ M, its conjugated map H is defined by

H = a o H o a.

Obviously, if # = if, then H{M) C M.

Let now it: E -» M be a real analytic vector bundle. Then a holomorphic extension
of 7r is by definition ([18]) a holomorphic vector bundle 5r: E —> M, where M and E are
complexification of M and E respectively, and 7? satisfies

1. o-fi o 7? = 5r o ag;

2. 5r|fi = TT;

3. 7? restricted to M is the complexified vector bundle of ir, with the conju-
gation on each fibre 7r~1(a), a G M, given by the restriction <rg\^-nay,

4. There exists an open covering {Uj} of M in M and a corresponding family
of trivialisations Qj : T?~X(UJ) -+ Uj x Cm such that

(b) Let 9 e 7r-x(o), with a G Uj. If Qj(6) = {a,w), then Q^

= (CTX?(a)."')-

The fourth condition simply means that og can be expressed, in an appropriate
natural chart on E, in the standard way.

It can be proved that, for any real analytical vector bundle n, there always exists
a holomorphic extension of it. Furthermore, the germ along M of such an extension is
unique up to holomorphic extension isomorphisms. See [18] for a proof in a more general
setting.

Let 7? be a complexification of TT. Then one can consider the complex analytical bun-
dle Jk{n) of fc-jets of local sections of 5r. We want to prove that J*(7?) is a complexification
of7*(jr).

First of all we construct a real analytic immersion i* : J*(7r) «-> Jk(n). Namely, let
s G rioc(7r), and a G M. Then «*([s]J) = [s]J, where ? G rioc(7?), defined in a conveniently
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small neighbourhood of a in M, is a holomorphic extension of s. The definition is well
posed due to the unicity of the germ of the holomorphic extension of real analytic function
at a point (see [5]). We set i = i^.

The conjugation <rfc on Jk{n) is defined by formula cfc([s]J) = [s]ff , . , with a 6 M,
s £ rioc(^) and 1 = ago so a^. Obviously (7* is the A:-contact prolongation of <rg.

2.2. MAIN THEOREM. In this section it will be shown how symmetries and recursion
operators of a system of partial differential equations transform under a complex point
transformation. In particular we prove the main result of the paper, namely the isomor-
phism theorems 4 and 6.

Let AT be a real analytic manifold and TV be a complexification. By an entire function
on TV with respect to TV we mean a real analytic function on TV which holomorphically
extends to the whole TV. We note that, if such an extension exists, it is unique [6].

Let n : E —> M be a real analytic vector bundle. From now on we fix a complexifi-
cation 7? of it. We introduce the following definitions and notations. Denote by:

1. ^"(^(TT)) the algebra of real-valued functions which are quotient of two
entire functions on Jr(^)', note that the definition holds also for r = oo.

2. !F(JT(n)) the algebra of holomorphic functions defined on the whole Jr(^);

3. Fc(
Jr(*)) d= {/i + »/a I A-h e ^(J ' (T) ) } •

Any function f Jg € F(Jr(n)) can be uniquely extended to T(JT(K)) provided we
exclude the set of ^(5?) described by 'g = 0. Thus, the holomorphic extension operator

is well defined (we shall occasionally denote p(f) by / ) . It holds p(f) = p(f).
Consider the r-th order system of partial differential equations £ c JT{K) locally

given by the system

(14) f = {F*=0}f e l , ,

Let £ be the complexification of £, that is, £ = {F* = 0}, with F* the holomorphic
extension of F*. Let h : M -»• M be a biholomorphism and Ho : E —¥ E be an
automorphism of 5? on h. Locally HQ is given by formulas:

(15)

with (x, u) = ( z \ uj) coordinates of a point p € E, (y, v) = (j/A, v>) coordinates of H0(p),
and x t-̂  A(x) a holomorphic map from M to GL{m, C).
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[9] Generalised symmetries of partial differential equations 251

Define y as follows:

(16) y = Hir)(£)nr(n).

Locally,

(17) y = {Gi = 0}i=t

with Gl = F* o (flo )~1|jr()r). We assume that y has the same dimension as £, which is
equivalent to the fact that Gx are (proportional to) real valued functions. We have that

(18) y{k) = i # + k ) (£W) n Jr+*(7r).

Also, dim£W = dim }>'*). This can be checked directly by writing down the local ex-
pressions of the prolonged equations and computing the ranks of their jacobian.

From now on, we denote by H : J°°(5r) -> J°°(5r) the infinite contact prolongation

For each / € ^7(7oo(7r)), we define its "pullback" W along H as

«*(/) = {H'(f))\j~M,

that is,
nm = t,'oH'o p.

Analogously, let A : ^c(Jk{pr)) -* ^c(J°°(^)) a differential operator and A : F(jk(n))
-^^(Jeo(w)), defined by

A = p o A o i*

(recall that C\jr^jk^ = u*k) be its holomorphic extension. Then the image of A via H is
defined as

(19) H{A) = L'O H(A) O p

with

or equivalently by

Obviously, when A is non-scalar, then (19) is meant componentwise.

We define the conjugated operator A of A by

Note that

From (18), if £<»> is described by {Art**) = O}k^o' t h e n ^(<X>) te described by
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PROPOSITION 1 . The following identities hold:

1. WJJ) = H*U) for anyfe ^c(J°°(ir));
2. H{A) = tf(A) for any differential operator A : Fc{Jk(n)) -> ^ ( • / " M ) .

PROOF: Both identities easily follow from the uniqueness of the holomorphic exten-

sion of elements of ^{J00^))- D

We associate with A its real part Ai and its imaginary part A2, defined by

In the last part of this section we prove the main result of this paper. Namely, we
construct (see theorem 4) a vector apace isomorphism 0 from the algebra Syrn^(£) of
generalised symmetries of E with components in !F{J°°(T^)) into that of y, which we
denote by Sym^-(3;).

In order to prove theorem 4 some technical lemmas are necessary.
First of all, a straightforward computation shows that, for any vector field X :

F(J°°{ir)) -¥ F(J°°(n)), the restrictions of (H-i(X))1 and (H"1(^))2 to F{JX{*))
are vector fields on J°°{ft)-

LEMMA 2 . Let<p: T(J°(Tr)) -»• T(J°°(n)) be the characteristic of the evolution-
ary vector Geld Xv. Then we have that

(20) U~l{Xv) = X-H-HV) = *•(«-»(„)), + iXcH-i^

PROOF: First of all, Xv = X$ is an evolutionary field on J°°(jt). Then its image
H~l{X$) is a contact field. Moreover it is vertical; in fact, due to the block form of H, the
function H~l*(x\) depends only on x1 . . .x" and, hence, X$ vanishes on it. Therefore, if
B(x) is the inverse matrix of A(x) in (15), H~1(X^) = X^ with

1—^ • - - - /-MM *—m* \ J m -• - - / /-MM \ * | ^ - mil* I

From now on we identify vector field Xv with its characteristic ip.

LEMMA 3 . If<p e Synv(3>) then (fi~1(<p))1 and {K~1{ip))2 belong to !

PROOF: By hypothesis, we have that

which implies
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[11] Generalised symmetries of partial differential equations 253

that is the left hand side term of the above expression vanishes on £l°°h The lemma
follows taking into account that %* o Xv o ft-1* = H~l(Xv) and in view of previous
lemma. U

Now it is possible to prove the following

THEOREM 4 . Let Ho : J°{n) -»• J°(7r) be such that

(21) 7hoHo1 = H0oW1-

Then the linear map

9 : l 1

is a vector space isomorphism.

PROOF: First of all, note that (21) implies that Ho o H^1 maps the total space E
of -K into itself, or, equivalently, H0(E) = HQ(E). Moreover, if Ho satisfies (21) then also
Hok) does for any k = 0 , 1 , . . . oo. This comes from the fact that ak = oW.

Now, let <p € ^(J°°(7r)). Then

(22)

(23) (n{n-\v)))2 = (nin-Hv))^ = o

In fact,

As (p is a real function, equation (22) and

(24) (nin-1^))^ +(n(n-1{<p))2) =o

hold. Also, n{n-l{ip)) is real. In fact

(25) H-l{<p)

and then

which, keeping in mind that H o H is a real transformation, proves the reality of

H{U-l{<p)). This implies that
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which, together with (24), gives equation (23).

Finally, the map 6* : TJ K* (H(JI))I — CH(T)))2 is both the left and right inverse map
of 0 . In fact

which is equal to <p in view of equations (22) and (23). The same reasoning holds for
e(6'(T7)). Theorem is proved. D

REMARK 5. The map 9 is not a Lie algebra morphism, as a direct computation shows.

Denote by Rec^-(y) and Rec^-(£), respectively, the Lie algebra of recursion operators
of y and £ with coefficients in ^F(J°°(TT)). The same reasonings used in the proof of
theorem 4 lead to the following

THEOREM 6. The linear map

tt : Rec^O>) -> Bee r(S), »-> (^~Hm)l + («"1(»))2

is a vector space isomorphism.

The latter result will be used in the next section to describe the Lie structure of generalised
symmetries of (9).

3. AN APPLICATION: COMPLEX LINEAR CONTACT TRANSFORMATIONS AND THE

ELLIPTIC EULER-DARBOUX EQUATION

Below we apply the above results to computing generalised symmetries of the elliptic
Euler-Darboux equation (9) and determining their Lie algebra structure. As we antic-
ipated in the introduction, we map such equation into its hyperbolic analogue, already
studied in [13, 14, 15], via a complex linear contact transformation. For this reason, we
start by determining the most general transformation of this kind satisfying condition
(21).

3.1. LINEAR CONTACT TRANSFORMATIONS. As we are interested in local symmetries,
we can consider equation (9) as a submanifold of J2^) where TT : R2 x R -> R2 is the
trivial bundle. In this case Ho acts on the natural complexification 5r: C2 x C -> C2. In
local coordinates (i, y, u) on C2 x C, Ho is described by

(26) Ho : \ r] = hnx +

v = a(x,y)u

with h = \\hij\\ a complex invertible matrix, and a : C2 -> C holomorphic.
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PROPOSITION 7 . Let h = A + iB with A, B real matrices. Then, excluding the

trivial cases A = 0 or B = 0, transformation (26) satisfies condition (21) if and only if

2. o(i , y) a (h • h~l • (x, y)T) is a reaJ constant function on C2.

Moreover, h is similar, via a real matrix, to a matrix of the form P • G, where G is a real

matrix and

(27) • C -•)
PROOF: Let h l = X + iY, with X, Y real matrices. Then it is easily checked that

h o h~l is real if and only if
AY = BX = 0

or, equivalently
YA = XB = 0

which immediately entail the degeneracy of A and B. The particular form of matrix h is
obtained by straightforward computations which we omit.

To prove the second point note that condition (21) implies that a(x, y)
a(h- h~l • (x,y)T) is real for any (i,y) G C2. But the only real-valued holomorphic
functions are constants. D

As, due to the above proposition, matrix P always appears in transformation (26),
below we explicitly compute the infinite prolongation of (26) in the case h = P and
a(x, y) = 1. Hence, H can be identified with the infinite dimensional block matrix

(P

H =

\ 'I
where P^ is given by

(28)

with VW = (vki,v{k-.i)iin,...,vkri)
T, U{k) = (ukx,uik-i)Xty,...,uky)T, P<*> = ||pJ4||r,s=o,...^-

A straightforward computation shows that

(29) j £ = - l ~ ' * - "
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By expanding the total derivatives one gets:

, 1)k-rr
2 *

with M(A;, r, s) = max(0, fe - r - s), m(fc, r, s) = min(fc - r, fc — s).

Let us point out, omitting the proofs, some remarkable properties of matrix H.

1. The inverse of block P<*> is P ^ " 1 = ||q*,||, with

2. For each block P(*> the following symmetry property holds

(31) <=Pfc-r,,.

for r, q = 0 , . . . , k.

3. For any A;, PW • p(*)~ is real. This is a special case of the general obser-
vation contained in the proof of theorem 4.

4. The following recurrence formulas hold:

(32) p**1 = JCP** - *P*»-i) for r ^ fc

where we pose pj_x = p£fc+1 = 0 for r = 0 , 1 , . . . k.

3.2. T H E SYMMETRY ALGEBRA OF ELLIPTIC EULER-DARBOUX EQUATION. Below we
apply the results obtained in the previous sections to equation (9). Here Ho = Ko • Go,

W"ere (P o\ la o\

with P is the matrix (27) and

G =
1/2

1/2 \
-112)

(see also proposition 7). A direct computation shows that H$ ' transforms equation (9)
into equation (10). We recall that H = H^.
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We choose (x, y, u, Ux, uy,..., ux^k-i)v, u*v> • • •) as internal coordinates on £gp and
(x,y,u,ux,uv, • • •,lit*,Ufey,...) as internal coordinates on y^p (in this case v = u).
However, in order to distinguish the two sets of coordinates, below we denote the latter
ones by (f,77,u,u{,u^,... ,uk(,Uk,,,.. .)• Let ip € ^(^(n)). By (19) we have that

"H"1! <p—) = "H*Up)-z-- From now on we identify a characteristic of a symmetry with
\ ou/ dv,

its component.

As an example of computation of symmetries of £ED we give the following

PROPOSITION 8 . Symmetries belonging to Symj-(££;D) depending on deriva-
tives up to second order are (up to arbitrary solutions O££ED) linearly generated by the
following ones:

4>i = {ux + Uy + 2uxyx + 2uxyy)/(x + y)

02 = (~yux + 3xuy — 2uxyy
2 + 2uxyx

2 + 2uyy:r
2 + ^uwyx

+ 2uvvy
2 + xux + yuy)/(x + y)

03 = {-uxyx - uyy
2 + uyx

2 - uyyx - 2yx2uxy - 2y2xuxy + u^x3

+ UyyX2y - Uyyxy2 - u r o y 3 ) / ( i + y)

fa = {3x2yux + x3ux - 3y3uy + uy2 - ux2 + 9i2j/uy - 3xy2ux + 8uxyX3y

+ 4uvvi3y + 4uroj/3x - 8uxyy
3x + I2unx

2y2 + 2uiyx4 - 2uxyy
4

- 2uyyx
i - 2uyyy

A + 3xy\ - x \ - y3ux)/(x + y)

<t>s = (uy3 + ux3 - 12uxyx
2y3 - 12uIyi3y2 - 20uyy

3x + 12uvx3y

- 18uyx2y2 + 4uIj/
3x - I2uxx

3y - 18uxx
2y2 - buxy2 - 5ux2y

+ uyj/4 + 5txvx
4 + uxx* + 5uzy

4 - Su^y*! — 8uyyy3x2 + 8uyyy2x3

+ 8uyyyx4 + 2uxyy
4x + 2uxyx*y + 2uxyx

5 + 2uxyy
5)/{x + y)

06 = " « ! + Uy

07 = u + 2xux + 2yuy

<t>8 = u x - u y - uxy
2 + uxx

2 - 2uxyx + uyx
2 - uyy

2 + 2uyyx

PROOF: Firstly we take symmetries of 3>BD depending on second derivatives, ob-
tained in [14], and then we transform them by the map 9 (see theorem 4) and by using
formulas (30). D

Symmetries 06, 07, 08 and 09 generate the algebra of classical symmetries O{£ED-

We note that they are point symmetries, as their characteristic are linear in the first
derivatives. This means that the corresponding vector fields on J^TT) are prolongations
of vector fields on E rather than on Jl{n), or, in other words, that there are no proper
contact symmetries. This fact was noticed in [4], where variational aspects of £ED were
also studied.
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In [13, 14,15] it is proved that the most general characteristic of a contact symmetry
of yED is, up to arbitrary solutions of ^ED, of the following form:

+
where C\, c?., C3, c4 are arbitrary constants. Since 3>ED is linear, such symmetries determine
recursion operators as they are linear in u and in its derivatives ([9]). In particular

(33) a = Dt-Dv, o = tDt + T,Dn+, ^

are recursion operators. Since generalised symmetries of yED are linear in u and in its
derivatives (see theorem 9 below), then in this case the theory of generalised symmetries
can be developed using recursion operators as fundamental objects ([9]). For instance, it
is natural to ask if by applying arbitrary compositions of (33) to the symmetry u we get
the whole algebra of generalised symmetries. For this purpose, let us consider

(34) n? = [...pr,7]11^:T)
j-times

and
ifo = D(u), <pl=T(u), <p2 = fu« - 7711̂  + —|— '-.

Since the recursion operators (33) are C-differential operators, it is well denned the re-
striction Dy* of (34) on the equation. The following three theorems are due to Shemarulin
(see [13, 14, 15]).

THEOREM 9 . Let <p e C°°(y{ED2)) be a symmetry of yED- Then ip has the
following form:

(35) <p=(f>+ Y, ?*«*€+

where <j> is a solution of yED and Vk and Q* are rational functions in £ and 77.

THEOREM 1 0 . The algebra SymCyBo) is the semi-direct sum A © NSym(3>ezJ)
wiere A is the Abelian infinite dimensional ideal of solutions ofysD and NSym^Eo) is
the algebra linearly generated by u and ip™ where

(J-l)-times m-timee

THEOREM 1 1 . The algebra NSymQ^D) ^ Nearly generated by u and Uf (u).
Moreover, we have the following relations:

7 \ D ] = - j ( 2 m - 3 + l ) D T - i ' l ^ 3 ^ 2 m ;
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and

D™(u) # 0, 0 ^ j ^ 2m;

Now we shall reproduce, for the equation £ED, similar results by using the complex
transformation H.

PROPOSITION 1 2 . The functions belonging to Sym^(5sD) are iinear in t i e
internal jet variables.

P R O O F : In view of theorems 4 and 9, Sym JT(£ED) is formed by images through "H*
of symmetries of ^ B D - In view of the fact H is a block matrix, the proposition follows if
we show that the restriction of Uro,^ to EED^" is a linear function in the internal jet
variables. We show it by induction. Firstly, a straightforward computation shows that

\^fh\ (-1)**!(36) ut\m = 2 yj

Now let us suppose that U(m-i)x,nvl£<'»+»-3> is linear in the internal jet variables. Namely
ED

ro+n—2 m+n—1

U(m-l)z,ny|£C[m+»-3> = ^ Z ^'M + Yl W ' U » '
h=0 j=0

where ah and K> are functions of x and y. Then

+n-a) = Dx{u(m-l)x,ny\£ (m+n-i))
ED

h=0 i

The assertion is proved in view of (36). D

We define the algebra NSym(£e£>) as the algebra of generalised symmetries in
Sym J:(£ED) up to solutions of BED- AS we have noticed in remark 5, the map 6 is
not a Lie algebra morphism. Anyway we have the following

PROPOSITION 1 3 . The algebra NSym(£ED) is infinite dimensional as vector

space and Bnitely generated as Lie algebra. More precisely

Q? = { . . . { { . . . {eo, a } . . . &}QI} ...QI]

Q-l)-time3 m-times
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where

Q0 = ~UX + Uy

Qi = \{x2 - 2xy - y2)ux + ^(x2 + 2xy - y2)uy + - (x - y)u

Q2 = (x + y)uyy + ( i - yjuxj, + + ,((x - y)ux + (3x + y)uy)

form, together with u, a linear basis of NSym(£££>).

PROOF: The proposition follows taking into consideration that 0 restricts to

) and NSym(£ED), theorem 10, and finally that 7i*((po) = iQo, "H*(<£i) = iQi,

Q2- D

By transforming recursion operators (33) through W1, we get the following:

PROPOSITION 14.

H '[T) =IT, H *(a) = a ,

where

• = -Dx + Dv

f = (-x2 - xy - ^y2)Dx + (l2x2 + xy - ^y2)Dy + -(x

I
2

= x D x + y D y + -

Now, if we define

j-times

we get the Lie structure of NSym(£ED) by means of the following

THEOREM 1 5 . Tie algebra NSym(£ED) is linearly generated by u and Vy(u).
Moreover, we have the following relations:

y , D ] = j(2m -j + l ) V ? _ u l^j^ 2 m ;

Vy, a) = (m - j)Vy, 0 < j < 2m;

and

Vy(u) #0, 0 < j < 2m;

Vy(u) = 0, j^2m + 1.
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PROOF: We have that

j-times

= im+j[... [Dm, f ] , . . . , f] = im+j V™ •

j-times

Then, taking into account theorem 6 and theorem 11, the theorem follows. D

Finally, taking into account that symmetries of £ED are linear in ua (see propo-
sition 12), for each couple A, V of recursion operators of BED, we have that [A, V](u)
= ~{A(u), V(u)}. Then, in view of previous theorem, we get the Lie structure of
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