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Abstract

We introduce a general framework for latent variable modeling, named General-

ized Latent Variable Models for Location, Scale, and Shape parameters (GLVM-LSS).

This framework extends the generalized linear latent variable model beyond the ex-

ponential family distributional assumption and enables the modeling of distributional

parameters other than the mean (location parameter), such as scale and shape param-

eters, as functions of latent variables. Model parameters are estimated via maximum

likelihood. We present two real-world applications on public opinion research and

educational testing, and evaluate the model’s performance in terms of parameter

recovery through extensive simulation studies. Our results suggest that the GLVM-

LSS is a valuable tool in applications where modeling higher-order moments of the

observed variables through latent variables is of substantive interest. The proposed

model is implemented in the R package glvmlss, available online.
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1. Introduction

Latent variable models (LVMs) are widely used in the social sciences to measure unob-

served constructs of interest using several correlated observed variables. The Generalized

Linear Latent Variable Model (GLLVM, Moustaki and Knott, 2000, Skrondal and Rabe-

Hesketh, 2004, Bartholomew et al., 2011) is a versatile modeling framework where i)

conditional on the latent variables, each observed variable follows a distribution from the

exponential family, and ii) only the mean of this conditional distribution depends on the

latent variables. The GLLVM encompasses various LVMs for continuous, categorical, and

count observed variables, making it a widely used tool for analyzing multivariate data.

While the GLLVM framework is flexible, it can sometimes oversimplify real-world

scenarios by relying only on distributions from the exponential family. In specific appli-

cations, it is essential to model higher-order moments of the observed variables, such as

variance, skewness, and kurtosis, as functions of the latent variables. Ignoring these fea-

tures of the observed data can result in underestimated standard errors, biased parameter

estimates, and inaccurate model fit indices (Lei and Lomax, 2005, Wall et al., 2015, Lai,

2018).

The challenges above have been extensively studied in the literature. Limited infor-

mation and robust estimation methods have been proposed to address deviations from

distributional assumptions (e.g., Browne, 1984, Bollen, 1996, Moustaki and Victoria-Feser,

2006). Furthermore, new advanced models have been developed, such as the heteroscedas-

tic factor models (e.g., Lewin-Koh and Amemiya, 2003, Hessen and Dolan, 2009), LVMs

for continuous data displaying skewness and/or kurtosis (e.g., Montanari and Viroli, 2010,

Molenaar et al., 2010, Liu and Lin, 2015, Asparouhov and Muthén, 2016), factor models

for discrete, count, and bounded continuous data with zero/one/maximum inflation and

heaping (e.g., Wang, 2010, Wall et al., 2015, Niku et al., 2017, Magnus and Thissen, 2017,

Molenaar et al., 2022), and LVMs for censored/truncated data (e.g., Moustaki and Steele,

2005). However, these models have primarily been developed in isolation and differ in

their estimation and inferential methods.

This paper introduces a comprehensive modeling framework called the Generalized

Latent Variable Model for Location, Scale, and Shape parameters (GLVM-LSS). This

framework models the conditional distribution of each observed variable as a function of

latent variables. We achieve this by defining the distributional parameters characterizing

each observed variable’s conditional distribution as functions of the latent variables. Since

the mean and other higher-order moments of the observed variables are expressed in terms

of their distributional parameters, they also depend on the latent variables.
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The GLVM-LSS borrows ideas from the Generalized Additive Model for Location,

Scale, and Shape (GAMLSS) regression framework (Rigby and Stasinopoulos, 2005, Klein

et al., 2015, Umlauf et al., 2018), and applies them to models with latent variables. The

GAMLSS is a flexible regression framework where observed covariates have linear or

nonlinear effects on the distributional parameters characterizing the distribution of the

outcome variable. It can also accommodate spatial, temporal, and random effects. For a

comprehensive treatment of the GAMLSS regression framework, see, e.g., Stasinopoulos

et al. (2017, 2024), and Rigby et al. (2020). In this paper, we only consider linear effects

of the latent variables on the distributional parameters.

Our proposed framework shares similarities with previous works in the LVM literature.

For example, in multilevel or longitudinal studies (Skrondal and Rabe-Hesketh, 2004,

Hedeker and Gibbons, 2006), location-scale mixed-effects models accommodate covariates

and random effects on both location and scale parameters for continuous (Hedeker et al.,

2008, 2012) and binary/ordered categorical (Greene, 2003, Hedeker et al., 2006, 2009,

2016) observed variables (the latter using an underlying response formulation, see Remark

2). These models can be fitted using commercial software like the gllammmodule in Stata

(Rabe-Hesketh et al., 2004) or the PROC NLMIXED routine in SAS. An important remark

is that multiple group LVMs (Davidov et al., 2018) also allow for different (conditional)

means and (conditional) variances among the groups.

1.1 Motivating Examples

We present two motivating examples from different fields where modeling higher-order

moments of complex multivariate datasets is of substantive interest. These examples are

discussed further in Section 3.

Example 1: The first example comes from public opinion research, where we exam-

ine people’s attitudes towards different social groups using survey data from the 2020

American National Election Study (ANES 2020). Respondents rate their feelings about

these groups on a scale from 0 to 100, with higher ratings indicating more favorable opin-

ions. Although the questions are not explicitly designed to measure a particular latent

construct, they provide insight into respondents’ positions on a conservative-progressive

belief scale. We could model the conditional mean of these doubly-bounded responses

as a function of the latent variable using a Beta factor model (Noel and Dauvier, 2007,

Noel, 2014, Revuelta et al., 2022). However, research has shown that liberals are more

likely to have similar political attitudes compared to conservatives (Ondish and Stern,

2018), suggesting that the conservative-progressive latent factor influences not only the

2

https://doi.org/10.1017/psy.2025.7 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.7


conditional mean but also the conditional variance of the responses. Addressing this issue

is possible with a heteroscedastic Beta factor model, which we introduce in Section 2.1.

Most work on factor models for continuous doubly-bounded observed variables focuses

on modeling only the location parameter (conditional mean) in terms of the latent vari-

ables. The scale parameter related to the conditional variance does not depend on the

latent variables. A notable exception is the mixed and mixture Beta regression model

by Verkuilen and Smithson (2012), where the scale parameter of the Beta distribution is

modeled using random effects.

Example 2: The second example comes from educational testing, using data from the

PISA 2018 computer-based mathematics exam. We present a confirmatory factor model to

analyze binary item responses (IRs) and continuous response times (RTs) simultaneously.

van der Linden (2007, 2009) proposed a joint model in which the two-parameter logistic

model is applied to the IRs, while a linear factor model is used for the log-RTs. To account

for the ‘speed-accuracy trade-off’ in educational testing (Zimmerman, 2011), it is assumed

that the latent ability and speed factors are correlated. However, van der Linden’s model

for the log-RTs (conditional mean) can be restrictive because RTs tend to have a variance

that increases with the mean (Van Zandt, 2002, De Boeck and Jeon, 2019). Specifically,

the variance parameter, which helps discriminate between test takers with different speed

levels, does not depend on the respondent’s latent speed trait. Furthermore, modeling

additional aspects of the response time distribution as a function of the latent speed

trait, such as the (conditional) variance and (conditional) skewness, can provide further

insights into individuals’ test-taking strategies and items’ characteristics. In Section 2.1,

we present a joint model for item responses and response times in which log-RTs follow

a Skew-Normal distribution (SN, Azzalini, 1985, 2005), with distributional parameters

influencing higher order moments modeled as functions of the individual’s latent speed

trait. Although alternative parametric distributions have been used to model RTs in the

hierarchical model framework (e.g., Loeys et al., 2011), the focus is still on the location

parameter.

The paper is organized as follows. In Section 2, we introduce the GLVM-LSS model,

discuss parameter estimation via full-information marginal maximum likelihood estima-

tion, and examine model identification. In Section 3, we apply the proposed method to

real-world data on public opinion research and educational testing. To demonstrate the

properties of our proposed method under finite sample settings, we conduct simulation

studies in Section 4. Finally, we discuss some limitations and future research directions.
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2. Generalized Latent Variable Models for Location, Scale

and Shape parameters (GLVM-LSS)

2.1 Proposed Model Framework

Let y = (y1, ..., yp)
⊺ be a random vector of observed variables with domain D ⊆ Rp,

and z = (z1, ..., zq)
⊺ ∈ Rq a random vector of continuous latent variables, with q (much)

smaller than p. Assuming local independence (Bartholomew et al., 2011, Chapter 1), the

marginal distribution of y is:

f(y) =

∫
Rq

[
p∏

i=1

fi(yi | z;θi)

]
p(z;Φ) dz , (1)

where, for observed variables i = 1, . . . , p, fi(yi |z;θi) is the conditional distribution of yi

given z and θi = (θ
(1)
i , ..., θ

(D)
i )⊺ is a D-dimensional vector of distributional parameters

indexing fi. The (conditional) distributional moments of yi (mean, variance, skewness)

are functions of the parameters θi. p(z) is the prior distribution of z, commonly assumed

to be a multivariate Normal distribution with covariance matrix Φ, z ∼ N(0,Φ).

We propose a class of Generalized Latent Variable Models for Location, Scale and

Shape parameters (GLVM-LSS) where the distributional parameters θ
(d)
i ∈ θi are ex-

pressed as monotone functions of linear combinations of the latent variables. We write

θ
(d)
i (z) to denote the functional dependence of the distributional parameter on z, but in

most cases we omit it to simplify notation. Moreover, we use the sub-index (i, θd) to

indicate that the corresponding function or model parameter is related to θ
(d)
i (z). The

relationship between yi and z is therefore through the vector θi(z) in fi and is determined

by the system of equations:

vi,θd(θ
(d)
i (z)) = ηi,θd := αi0,θd +

q∑
j=1

αij,θdzj , d = 1, ..., D , (2)

where the parameter-specific link function, denoted by vi,θd , is used to ensure that the

distributional parameters have appropriate restrictions. The link function can be identity,

log, logit, or any other suitable monotone function. ηi,θd represents the linear combination

of latent variables, with intercept αi0,θd and factor loadings grouped in the q-dimensional

vector αi,θd = (αi1,θd , ..., αiq,θd)
⊺.

The distributional parameters θi that describe the shape of fi can be divided into

three categories: location, scale, or shape parameters. Their role depends on which

distributional moment of yi they define. To simplify notation, we refer to the location
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parameter as µ := θ
(1)
i , the scale parameter as σi := θ

(2)
i , and the shape parameters as

νi := θ
(3)
i and τi := θ

(4)
i . In most cases, a maximum of four parameters (one location, one

scale, and two shape parameters) is enough. However, this framework can be extended to

include distributions with multiple location, scale, or shape parameters. We then write

θi = (µi, σi, νi, τi)
⊺ to denote the vector of distributional parameters indexing fi, and use

φi ∈ θi to refer to any location, scale, or shape parameter in the (conditional) distribution

of yi.

For a more compact matrix notation, let φ = (φ1, ..., φp)
⊺ be the vector of the same

distributional parameter φ for all yi’s. Denote α0,φ = (α10,φ, ..., αp0,φ)
⊺ as a vector of

intercepts, and let Aφ be a (p × q) factor loadings matrix with rows corresponding to

the vectors αi,φ. Finally, let vφ be the vector function that applies the corresponding

link function vi,φ to each entry of φ. Under this convention, the set of equations for a

distributional parameter φ is vφ(φ(z)) = α0,φ +Aφz.

To further simplify notation, we write the vector of parameters θ⊺ = (µ⊺,σ⊺,ν⊺, τ ⊺),

the vector of intercepts α⊺
0 = (α⊺

0,µ,α
⊺
0,σ,α

⊺
0,ν ,α

⊺
0,τ ), and the factor loading matrix A⊺ =

[A⊺
µ,A

⊺
σ,A

⊺
ν ,A

⊺
τ ], to compactly express the system of equations of a GLVM-LSS model as:

v(θ(z)) = α0 +Az (3)

Remark 1: The GLVM-LSS framework is most useful when observed variables follow

distributions with multiple location, scale and shape parameters, and it is appropriate

and essential to model their higher-order moments as functions of the latent variables.

Remark 2: While standard LVMs for categorical data fit within the GLVM-LSS frame-

work, accommodating models that involve scale parameters –such as the family of scaled

(heteroscedastic) logistic or probit models for binary and ordinal data (see, e.g., Greene,

2003, Hedeker et al., 2006, 2009, 2016, Molenaar et al., 2012, Molenaar, 2015)– requires

an alternative model specification. These models employ an underlying variable for-

mulation (Jöreskog and Moustaki, 2001) for categorical variables where the observed

category denoted by ci of the ordinal manifest variable yi is determined by an unob-

served continuous response y∗i ∈ R underlying the ordinal variable yi. The connection

between yi and y∗i is yi = ci ⇐⇒ τ
(ci−1)
i < y∗i ≤ τ

(ci)
i , where ci ∈ {1, . . . , Ci} and

τ
(0)
i = −∞, τ

(1)
i < · · · < τ

(Ci−1)
i , τ

(Ci)
i = +∞ are called threshold parameters. Here,

y∗i | z ∼ N(µ∗
i (z), σ

∗
i (z)), and appropriate measurement equations for the location and

scale parameters of the underlying response are chosen. Binary variables are special

cases. In principle, the underlying response formulation for binary and ordered categori-
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cal data can be accommodated within the GLVM-LSS framework. However, the current

proposed GLVM-LSS framework includes only the homoscedastic logit model. We plan

to incorporate the heteroscedastic logit/probit model in future work on the GLVM-LSS

framework.

Remark 3: Additional attention is required for discrete observed variables following

distributions with distributional parameters taking values in a discrete space (e.g., the

natural numbers). In some cases, a reparametrization is available such that the distri-

butional parameters are in the real numbers (see, e.g., Rigby et al. (2020, page 483) for

the Negative Binomial distribution case), and common modeling techniques can be used.

However, if no alternative parametrization exists, these parameters should be treated as

fixed and known. Otherwise, modeling these distributional parameters requires compu-

tational methods that are beyond the scope of this paper (see, e.g., Hammersley, 1950,

Choirat and Seri, 2012).

We now revisit the motivating examples in Section 1.1 to illustrate how the GLVM-

LSS framework extends the existing LVM literature by modeling features of the observed

data beyond the conditional mean:

Example 1 (continued). A heteroscedastic Beta factor model: We propose a

novel heteroscedastic Beta factor model to model the conditional variance of the doubly-

bounded variables in the 2020 ANES dataset. The observed variables conditional on the

conservative-progressive latent variable (denoted by z) follow a location-scale reparametriza-

tion of the Beta distribution, yi | z ∼ Beta(µi(z), σi(z)), where the location parameter

µi(z) ∈ (0, 1) and the scale parameter σi(z) ∈ (0, 1) are modeled as functions of z

(Rigby et al., 2020, page 461). Under this parametrization, we have E(yi | z) = µi(z)

and Var(yi | z) = σ2
i (z)µi(z)(1− µi(z)).

This parametrization is closely related to the location-precision parametrization in the

heteroscedastic Beta regression literature (Smithson and Verkuilen, 2006, Verkuilen and

Smithson, 2012), where a precision parameter ϕi(z) ∈ R+ replaces the scale parameter,

and Var(yi | z) = (1 + ϕi(z))
−1µi(z)(1− µi(z)). Notably, σ

2
i (z) ≡ (1 + ϕi(z))

−1, meaning

σ2
i (z) → 0 when ϕi(z) → ∞ and σ2

i (z) → 1 when ϕi(z) → 0. However, the authors of

the papers above report computational challenges and biased coefficient estimates in the

precision parameter equation. Our empirical application results in Section 3.1 and the

simulations study in Section 4.1 show that the location-scale parametrization used in this

paper avoids these issues while enabling a direct interpretation of the effect of the latent

variables on the conditional variance of the items.
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The equations for the location and scale parameters are:

logit(µi(z)) = αi0,µ + αi1,µz , (4)

logit(σi(z)) = αi0,σ + αi1,σz , (5)

with the logit link function mapping the equations onto the correct space for the corre-

sponding distributional parameter.

Example 2 (continued). A confirmatory factor model for binary items and

skewed response times: The GLVM-LSS specification of the joint model for item

responses (IRs) and responses times (RTs) is as follows. For IRs yi, i = 1, . . . , p, we

assume yi | z1 ∼ Bernoulli(πi(z1)), where z1 represents the student’s latent ability. The

equations for the location parameters of the Bernoulli distribution are modeled as:

logit(πi(z1)) = αi0,π + αi1,πz1 (6)

where αi0,π and αi1,π denote item i’s difficulty and discrimination parameters, respectively.

For the RTs, we assume log(ti) | z2 ∼ SN(µi(z2), σ
2
i (z2), νi(z2)), with ti denoting item’s i

RT in minutes and z2 the student’s latent speed trait. Under this reparametrization of

the SN distribution1, the equations for the location µi(z2) ∈ R, scale σi(z2) ∈ R+, and

shape νi(z2) ∈ (0, 1) parameters are:

µi(z2) = αi0,µ + αi1,µz2 , (7)

log(σi(z2)) = αi0,σ + αi1,σz2 , (8)

logit(νi(z2)) = αi0,ν + αi1,νz2 , (9)

respectively, with the identity, log, and logit links mapping the equations onto the re-

spective spaces of the distributional parameters. The (conditional) moments for the log-

RTs are E(log(ti) | z2) = µi(z2), Var(log(ti) | z2) = σ2
i (z2), and Skewness(log(ti) | z2) =

γ̃(2 νi(z2) − 1), with γ̃ =
√
2(4 − π) · (π − 2)−3/2 ≈ 0.9953. Finally, to capture the

‘speed-accuracy trade-off’, the latent ability and speed traits are distributed as (z1, z2)
⊺ ∼

N2(0,Φ), where Φ is a correlation matrix.

1For modeling convenience, the shape parameter is restricted to the (0, 1) interval. We achieve this
by applying a monotonic transformation of the shape parameter in the ‘centered’ parametrization out-
lined in Azzalini (1985) and described in Azzalini and Capitanio (1999). We refer the readers to Online
Supplementary Materials A1 for further details.
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Remark 4: The proposed framework can be extended to accommodate linear and non-

linear structural relationships between latent variables and/or observed covariates effects.

Let x = (x1, . . . , xs)
⊺ ∈ Rs denote a vector of observed covariates. A linear structural

model with covariate effects can be written in matrix form as:

z = Gz+Bx+ δ ,

where G is a q×q matrix of structural parameters satisfying recursive restrictions (Bollen,

1989), B is a q × s matrix of regression coefficients, and δ ∼ N(0, Iq) is a vector of

independent standard Normal errors.

Similarly, assuming the vector of covariates x has a linear and additive effect on the

linear component, the measurement equation for an arbitrary distributional parameter

φi ∈ θi indexing fi(yi | z,x;θi) becomes:

vi,φ(φi(z,x)) = αi0,φ +

q∑
j=1

αij,φzj +
s∑

r=1

βir,φxr , (10)

where βi,φ = (βi1,φ, . . . , βis,φ)
⊺ is a vector of regression coefficients. The measurement

equation in (10) can also include interactions between the observed covariates and the

latent variables to enable the study of ‘distributional’ differential item functioning (DIF),

where the assessment of DIF goes beyond the (conditional) mean and extends to the

items’ (conditional) higher-order moments.

While Remark 4 highlights how the GLVM-LSS can be expanded into a more general

LVM framework, this paper aims to establish a foundation for future methodological

developments in distributional LVM research. It should be noted, however, that the

current implementation of the GLVM-LSS improves model fit over traditional approaches

and proves valuable in empirical research where, from a measurement perspective, higher-

order moments of observed variables carry substantive meaning or reflect important item

characteristics.

For example, in the ANES 2020 application (Section 3.1), we examine whether indi-

viduals with liberal values have more homogeneous views on the social groups in question.

If so, the (conditional) variance of the thermometer items should be lower for individuals

on the liberal side of the latent scale than for those on the conservative side. In the PISA

2018 application (Section 3.2), modeling the scale (variance) and shape (skewness) pa-

rameter of the (log-)RTs as functions of the latent speed factor could help testing agencies

better understand test-taking strategies and item characteristics.
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2.2 Model Identification

The generality of the proposed model makes it challenging to derive general conditions for

global identification (e.g., Skrondal and Rabe-Hesketh, 2004, Chapter 5), so we instead

resort to the weaker notion of (strict) local identification (Rothenberg, 1971).

As in the GLLVM, strict local identifiability in the GLVM-LSS is only possible for

points on the reduced parameter space that results from imposing at least q2 restrictions

across the factor loadings matrix A and the latent variables covariance matrix Φ. These

restrictions address rotational indeterminacy and fix the scale of the latent variable space

(Anderson and Rubin, 1956). Denote by Ξ such reduced parameter space and Θ ∈ Ξ a

point of free (unrestricted) model parameters. A point Θ0 ∈ Ξ is strictly locally identi-

fiable if the expected information matrix I(Θ0) is strictly positive definite (Rothenberg,

1971). However, in the GLVM-LSS framework, model identifiability can be challenging

even after imposing appropriate restrictions on the parameters due to the presence of

multiple (possibly correlated) location, scale, and shape parameters. In what follows,

we present theoretical results on the identifiability of GLVM-LSS models for continuous

observed data following distributions with multiple distributional parameters.

Under suitable regularity conditions, we show that GLVM-LSS is generically locally

identifiable in the sense that the model is strictly locally identifiable for almost all pa-

rameters in Ξ except for a subset with Lebesgue measure zero. More precisely, we define

‘generic local identifiability’ as follows:

Definition 2.1. A statistical model is generically locally identified if every Θ ∈ Ξ \V is

(strictly) locally identifiable, where V is a proper sub-variety of Ξ and thus has Lebesgue

measure zero in Ξ.

This notion of identifiability is closely related to and can be seen as a weaker version

of the concept of ‘generic identifiability’ (Allman et al., 2009, Gu and Xu, 2020) that has

been commonly adopted for studying the identifiability of latent variable models. The

following Theorem holds:

Theorem 2.1. Assume:

(A1) There exists a point in the reduced parameter space Θ0 ∈ Ξ such that I(Θ0) is

strictly positive definite,

(A2) fi(yi | z;θi(Θ)), i = 1, . . . , p, in the measurement part, and p(z; Θ) in the structural

part of a GLVM-LSS model, are infinitely differentiable in Ξ and D, and their

respective supports are independent of Θ.
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Then, the GLVM-LSS model is generically locally identified.

Assumption (A1) avoids trivial non-identification issues, and follows from the restric-

tions imposed to solve the rotational and scale indeterminacies. This assumption also

rules out cases where the distributional parameters in θi are linearly dependent. As-

sumption (A2) relates to smoothness and regularity conditions often met in practice for

continuous distributions indexed by multiple location, scale, and shape parameters. The

proof of Theorem 2.1, and auxiliary definitions, lemmas, and propositions are provided

in the Online Supplementary Material A3.

While Theorem 2.1 addresses models with continuous observed data, establishing gen-

eral identification conditions for GLVM-LSS models with categorical data is more chal-

lenging due to the finite amount of information in the data. In these cases, parameter

identification follows from the existence of a finite-dimensional sufficient statistic. In-

deed, once appropriate parameter restrictions are imposed, a necessary condition for a

GLVM-LSS with categorical items to be identified is that the number of parameters is

less than the number of possible response patterns (e.g., 2p for binary items or
∏p

i=1Ci

for categorical items, where Ci is the number of categories for item i). We note that,

as mentioned in Remark 2, the current specification of the proposed framework does not

cover heteroscedastic models for binary/ordinal categorical data and therefore the iden-

tification constraints described in, e.g., Skrondal and Rabe-Hesketh (2004, Chapter 2),

Hedeker et al. (2006, 2009) or Molenaar et al. (2012), Molenaar (2015), do not apply to

the current setting.

In practice, some fi’s might be indexed by distributional parameters that are cor-

related (yet linearly independent). Due to sampling variability, the latter can lead to

situations where the model is not empirically identified. In this case, empirical local iden-

tification of the MLE can be verified if the estimated expected information matrix, Î(Θ̂),

is non-singular (McDonald and Krane, 1977).

2.3 Parameter Estimation and Computation

For a random sample of n independent observations, the marginal log-likelihood is:

ℓ(Θ;Y) =

n∑
m=1

log

 ∫
Rq

[
p∏

i=1

fi(ymi | z;θi(α0,A))

]
p(z;Φ) dz

 , (10)

where Y ∈ Rn×p is the observed data matrix with rows given by the p-dimensional

vectors of observed variables ym = (ym1, . . . , ymp)
⊺ from units m = 1, . . . , n, and Θ is a
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K-dimensional vector of unknown model parameters. For computational convenience, we

parameterize the factor covariance matrix through its Cholesky decomposition Φ = LL⊺,

where L is a lower triangular matrix. When the latent variables are uncorrelated, L is

fixed to the identity matrix, and Θ⊺ = (α⊺
0, vec(A)

⊺), where ‘vec’ is the vectorization

operator that concatenates the free entries of A in a vector. In confirmatory settings,

where the latent variables are correlated, Θ⊺ = (α⊺
0, vec(A)

⊺, vech(L)⊺), where ‘vech’ is

the half-vectorization operator that concatenates the free lower-triangular entries of L in

a vector.

The model parameters are estimated via full-information marginal maximum likeli-

hood (MML). Let Ξ ⊆ RK be the reduced parameter space. The maximum likelihood

estimate (MLE), denoted by Θ̂, is:

Θ̂ = arg max
Θ∈Ξ

ℓ(Θ;Y)

To compute the MLE, we find the solution to the system of (non-linear) score equations

S(Θ;Y) := ∇Θℓ = 0, with entries of the general form

Si,φi(Θ;Y) :=
∂ℓ(Θ;Y)

∂αi,φ
=

n∑
m=1

∫
Rq

[
∂ log fi(yim | z)

∂φi

∂φi

∂ηi,φ

∂ηi,φ
∂αi,φ

]
p(z |ym; Θ) dz (11)

for the vector of factor loadings αi,φ in the measurement equation of the distributional

parameter φi ∈ θi, i = 1, . . . , p. We provide expressions of the score equations (11) for

the GLVM-LSS models introduced in this paper in the Online Supplementary Material

A1. Scores for the [j, k]th entry in L are:

SL[j,k]
(Θ;Y) :=

∂ℓ(Θ;Y)

∂L[j,k]
= −n tr

(
L⊺(LL⊺)−1Djk

)
+

n∑
m=1

[tr (GjkVm) + z̆⊺mGjkz̆m] (12)

where Djk = ∂L/∂L[j,k] is a square matrix of dimension q, with a value of 1 in the [j, k]

position and zero elsewhere; Gjk = (LL⊺)−1DjkL
⊺(LL⊺)−1; and the conditional mean

z̆m = E(z | ym; Θ) and conditional variance Vm = E((z − z̆m)(z − z̆m)⊺ | ym; Θ) are

obtained using the properties of the trace operator and the linearity of the conditional

expectation. Details on the computation of L are discussed in the Online Supplementary

Material A2.

In most cases, Θ̂ is computed using iterative score-based optimization algorithms. Our

estimation strategy begins with a warm-up phase using the Expectation-Maximization

(EM) algorithm (Dempster et al., 1977, Bock and Aitkin, 1981), followed by a direct

maximization of the marginal log-likelihood with the BFGS quasi-Newton algorithm (No-
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cedal and Wright, 2006, Chapter 6). The transition between these two algorithms is pos-

sible due to the equivalence of the score functions of the complete-data and the marginal

log-likelihoods (Louis, 1982).

Upon computation of the MLE, in exploratory settings, an orthogonal or oblique

rotation can be applied to the estimated factor loading matrix, Â, to obtain a more

interpretable and sparse solution (e.g., Jennrich, 2004, 2006, Liu et al., 2023).

Unless the objective function is strictly concave, both the (quasi-)Newton update in

the EM algorithm’s M-step and the BFGS algorithm converge to a local maximum. This

means that the final solution can depend on the initial values chosen. Using different

starting values and comparing the resulting marginal log-likelihood estimates is advisable

to determine the best solution.

For the one- and two-dimensional models presented in Sections 3 and 4, it is sufficient

to evaluate the integrals in the score vector and the information matrices numerically

using an ordinary Gauss-Hermite (GH) rule. This can be done with a fixed number of

user-defined quadrature points on each dimension of the space of the latent variables.

However, the GH approach runs into computational challenges when the dimension of

the latent space is high. In such cases, alternatives like adaptive GH quadrature (Rabe-

Hesketh et al., 2005, Schilling and Bock, 2005) or stochastic approximation methods (Cai,

2010, Zhang and Chen, 2022) should be considered.

For model selection, we suggest using information criteria for nested (e.g., with restric-

tions on the model parameters) and non-nested (e.g., GLVM-LSS models with different

distributions on the measurement model) models. The Akaike Information Criterion

(AIC, Akaike, 1974) and the Bayesian Information Criterion (BIC, Schwarz, 1978) are

popular criteria to evaluate model fit. The AIC and BIC often concur and are commonly

used together in applied research (Kuha, 2004). However, in case of divergent results,

we suggest referring to the AIC when dimensionality reduction is the primary goal, as

it favors (expected) predictive performance (Shao, 1997); while using the BIC when the

study involves substantive interpretation of the latent variables, as it favors consistent

model selection (Nishii, 1984).

3. Empirical Applications

We present two empirical applications that follow from the GLVM-LSS examples intro-

duced in Section 2.1.
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3.1 ANES 2020: ‘Thermometer’ variables

The ANES 2020 dataset contains ‘feeling thermometer’ variables on social groups, includ-

ing sexual orientation and gender identity groups (Gay men and Lesbians, Transgender

people), social and political movements (Feminists, #MeToo and BLM movements), and

groups that were trending in the news during 2020 (labor unions, journalists, scientists)

from the post-election sample of the 2020 American National Election Study (ANES)2.

Participants rate their feelings towards social groups on a scale of 0 to 100, where higher

ratings indicate more favorable attitudes.

The ANES thermometer variables have been used in some studies as a substitute for

political orientation and measures of personal and societal values (e.g., Abelson et al.,

1982, Krasa and Polborn, 2014, Guth, 2019). Similarly, they provide insights into an

individual’s position on a conservative-progressive belief scale. We present results for the

one-factor Beta model3.

We model the observed variables using the heteroscedastic Beta factor model discussed

in Section 2.1, i.e., yi |z ∼ Beta(µi(z), σi(z)), i = 1, . . . , 8. We scale the responses by 1/100

so the observed variables are within the interval (0, 1). We also replace extreme responses

on the boundaries of the interval with numerical values that are arbitrarily close to 0 and

1 (1−9 and (1 − 1−9), respectively). We exclude individuals with incomplete interviews

or technical errors in their answers from the analysis, treat responses of ‘Don’t know’,

‘Don’t recognize’, and ‘Refuse’ as missing data. The resulting sample consists of 7253

respondents.

The Online Supplementary Material A4a presents descriptive statistics for the ob-

served variables. Most variables have negatively skewed marginal empirical distributions

and negative excess kurtosis, except item Scientists. The empirical cumulative distribu-

tion functions (ECDF) for the observed variables are displayed in Figure 1. Although

the thermometer ratings are measured on a continuous scale, respondents tend to round

their answers to the nearest 5 or 10, resulting in a stepped appearance in the ECDFs.

Some questions show a higher frequency of extreme responses (either zero or one). Most

responses tend to cluster around 0.5, suggesting that respondents are reluctant to take a

clear position on issues related to the conservative-progressive belief spectrum. We esti-

2American National Election Studies, 2021. (www.electionstudies.org). Full Release (dataset and
documentation). July 19, 2021 version. These materials are based on work supported by the National Sci-
ence Foundation under grant numbers SES-1444721, 2014-2017, the University of Michigan, and Stanford
University.

3We also explored two-factor Beta models, but careful analysis of the expected information matrix
(evaluated at the MLE) reveals that the heteroscedastic Beta factor model with q = 2 is not of full rank.
Thus, the model is not empirically identified for this dataset.
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Figure 1: ANES 2020: Empirical cumulative distribution function (ECDF). Highlighted
variables: Feminists (solid line, ), Gay men and Lesbians (dashed line, ), BLM
movement (dotted line, ), and Scientists (dash-dot line, ).

mated a baseline (homoscedastic) model, which assumes a constant scale parameter, and

an alternative (heteroscedastic) model, which allows the scale parameter to vary based

on the latent variable. The heteroscedastic model was selected using the AIC and BIC

criteria, as detailed in Table 1. Additionally, Table 2 presents the parameter estimates

along with their corresponding estimated standard errors for the heteroscedastic model.

The initial values for the estimation algorithm were chosen by conducting a princi-

pal component analysis on the observed data matrix. We then used the first principal

component as the explanatory variable in a series of independent distributional regres-

sion analyses with a Beta distribution for the outcome variable. To explore potential

local solutions, we tested various random starting values; however, the results remained

consistent with those reported below.

Model AIC BIC K

Beta (µ(z), σ) -270078.20 -269912.86 24

Beta (µ(z), σ(z)) -271002.07 -270781.62 32

Table 1: ANES 2020: AIC and BIC for the homoscedastic and heteroscedastic Beta factor
models. K = dim(Θ̂) is the number of parameters in the corresponding model.
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Location parameter (µ)
measurement equation

Scale parameter (σ)
measurement equation

Item
α̂i0,µ α̂i1,µ α̂i0,σ α̂i1,σ

Est. SE Est. SE Est. SE Est. SE

Gay men and Lesbians 1.00 (0.03) 1.54 (0.02) 0.52 (0.01) -0.25 (0.01)

Transgender people 0.61 (0.03) 1.70 (0.02) 0.36 (0.01) -0.15 (0.01)

Feminists 0.49 (0.02) 1.56 (0.02) 0.29 (0.01) -0.14 (0.01)

#MeToo movement 0.47 (0.03) 1.65 (0.03) 0.57 (0.01) -0.28 (0.01)

BLM movement 0.12 (0.02) 1.32 (0.03) 1.28 (0.01) -0.25 (0.01)

Labor Unions 0.46 (0.02) 0.83 (0.01) 0.77 (0.01) -0.16 (0.01)

Journalists -0.06 (0.02) 1.21 (0.02) 0.71 (0.01) -0.16 (0.01)

Scientists 1.72 (0.02) 0.84 (0.02) 0.71 (0.01) -0.19 (0.01)

Table 2: ANES 2020: Estimated (Est.) coefficients and their standard errors (SE) for the
heteroscedastic Beta factor model.

We first discuss the results of the location parameter equations. The estimated slopes

(α̂i1,µ’s) are positive and statistically significant, indicating that more progressive indi-

viduals tend to rate these groups higher on average. In addition, lower intercept values

(α̂i0,µ’s) indicate that the items are perceived as more challenging, meaning a more pro-

gressive position on the latent scale is necessary to achieve at least 50% on these items.

In discussing the scale parameter equations, all the estimated slopes (α̂i1,σ’s) are neg-

ative and statistically significant. This indicates that individuals on the ‘progressive’ side

of the latent scale tend to hold more homogeneous views about these groups than those on

the ‘conservative’ side, in line with previous findings in public opinion research literature.

The estimated intercepts (α̂i0,σ’s) determine the conditional variance for the ‘average’

position on the latent scale (i.e., z = 0). Larger intercepts imply greater heterogeneity in

people’s responses near the middle point of the latent scale.

A comparison of the fitted (conditional) distribution implied by the homoscedastic

and heteroscedastic models for selected variables is shown in Figure 2. The plot includes

the fitted mean, median, and percentiles (10th, 25th, 75th, and 90th) for both models.

The homoscedastic model (shown in Figures 2a and 2c) does not effectively capture the

asymmetries in the conditional distributions of the observed variables along the latent

scale. In contrast, the heteroscedastic model, illustrated in Figures 2b and 2d, successfully

captures these asymmetries.
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(a) Item: #MeToo movement (homos. model) (b) Item: #MeToo movement (heter. model)

(c) Item: Scientists (homoscedastic model) (d) Item: Scientists (heteroscedastic model)

Figure 2: ANES 2020: Fitted conditional expected values (solid line, ), median (dashed
line, ), and percentiles (dotted lines, ).
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3.2 PISA 2018: A joint model for item responses and response times

The second dataset was obtained from the 2018 PISA computer-based mathematics exam.

We focused on a sample of Brazilian students who answered nine binary items from the

first testing booklet. Only individuals who provided complete responses were included,

resulting in a final sample size of 1,280 students. Response times for each binary item

were recorded in logarithmic minutes. Descriptive statistics for the item responses and

log response times are available in the Online Supplementary Material A4b.

Response times (RTs) provide valuable information about a student’s ability and test-

taking strategies and are also helpful in item calibration and test design (van der Linden,

2007, 2008, van der Linden and Guo, 2008, van der Linden et al., 2010). A hierarchical

model for speed and accuracy on test items was initially proposed in van der Linden (2007,

2009), and later extended in Molenaar et al. (2015), Bolsinova et al. (2017), Bolsinova

and Molenaar (2018) and others. For a review of models involving items and response

times, see De Boeck and Jeon (2019).

The baseline model in van der Linden (2007) assumes that the log-RTs follow a Normal

distribution, with only the conditional mean (location parameter) depending on the latent

speed factor. Factor loadings for log-RTs are fixed4, but the variance of the latent speed

factor is freely estimated. We extend this model by employing the Skew-Normal (SN)

distribution, which models varying heterogeneity and skewness in the log-RTs along the

latent speed factor as described in Section 2.1. Variances for the latent ability and latent

speed factors are fixed at 1, while the factor loadings are freely estimated. Higher-order

moments of RTs can provide valuable insight into students’ test-taking strategies, thought

processing during high-stakes standardized tests, and information on item quality.

The empirical and model-implied marginal distributions of the response times in log

minutes are displayed in Figure 3. We observed that the majority of the log-RTs showed

some degree of skewness. The model fit improved when the log-RTs were assumed to

follow an SN distribution (solid line) rather than a Normal distribution (dashed line).

We estimated seven increasingly complex models, including the proposed confirmatory

factor model discussed in Section 2.1, using the full-information maximum likelihood

procedure described in Section 2.3. We tried different starting values to check for local

solutions, and the results remained consistent across estimations. We began the estimation

process by implementing a warm-start strategy, which involved a PCA decomposition on

the matrix of observed variables. We then retained q = 2 principal components to use

them as observed covariates in a series of distributional regressions with IRs and log-

4Slopes in the log-RTs equations are implicitly fixed to -1 in van der Linden’s hierarchical model.
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Figure 3: PISA 2018: Empirical and model-implied marginal distributions for response
times (in log-minutes). The solid line ( ) is the SN model, and the dashed line ( )
the Normal model.

RTs as outcomes. The two-dimensional integrals were numerically evaluated using the

GH quadrature, with 45 quadrature points in each latent dimension (a total of 2025

quadrature points).

Models 1 to 3 assume the log-RTs follow a conditional Normal distribution. Model

1 serves as the baseline hierarchical model described in van der Linden (2007). Model

2 allows to freely estimate the factor loadings in the log-RT model, similar to the ‘un-

restricted model’ in Molenaar et al. (2015), while fixing the variance of the latent speed

factor to Var(z2) = 1 for identification purposes. Model 3 is a heteroscedastic version of

Model 2. In models 4 to 7, we assume that the log-RTs follow a conditional Skew-Normal

distribution. In Model 4, only the location parameter (µ) depends on the latent speed

factor, while the scale (σ) and shape (ν) parameters remain constant. Models 5 and 6

model (µ, σ)⊺ and (µ, ν)⊺ as functions of z2, respectively. Model 7, the full-Skew-Normal

model, treats all distributional parameters as functions of the latent speed trait. In all
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cases, the IRT model for the item responses (IRs) remains consistent with what was de-

scribed above, with the equation given in (6). Results are presented in Table 3. Notably,

models with Skew-Normal log-RTs demonstrate better model fit compared to those with

Normal log-RTs. Model 7 provides the best fit based on its AIC and BIC values.

Model AIC BIC K

1. Bernoulli (π(z1)) + Normal (µ(z2), fixed αi1,µ’s) 26173.61 26369.49 38

2. Bernoulli (π(z1)) + Normal (µ(z2)) 25908.68 26145.79 46

3. Bernoulli (π(z1)) + Normal (µ(z2), σ(z2)) 25754.91 26038.42 55

4. Bernoulli (π(z1)) + Skew-Normal (µ(z2)) 25326.08 25609.58 55

5. Bernoulli (π(z1)) + Skew-Normal (µ(z2), σ(z2)) 25281.44 25611.33 64

6. Bernoulli (π(z1)) + Skew-Normal (µ(z2), ν(z2)) 25232.76 25562.66 64

7. Bernoulli (π(z1)) + Skew-Normal (µ(z2), σ(z2), ν(z2)) 25172.12 25548.41 73

Table 3: PISA 2018: AIC and BIC for GLVM-LSS for the joint modeling of item responses
and response times. K = dim(Θ̂) is the number of parameters in the corresponding model.

Estimates for the intercepts, loadings, and factor correlation in Model 7, along with

their corresponding estimated standard errors, are presented in Table 4. The interpreta-

tion of the intercepts and slopes in the equations for the location parameter of the IRs

(πi’s) and log-RTs (µi’s) is straightforward. The α̂i0,π’s and α̂i1,π’s represent the difficulty

and discrimination parameters for the IRs. In other words, items with lower α̂i0,π values

are considered more difficult, while those with higher α̂i1,π values are seen as having more

discrimination power.

The α̂i0,µ’s in log-RTs represent the average log-RTs for z2 = 0, also known as the

item’s average time intensity (van der Linden, 2007). The estimated slopes α̂i1,µ in the

equation for the location parameter of the log-RTs are all negative. This suggests that

individuals with a higher latent speed trait will respond faster to any given item.

The estimated correlation between the latent ability and the speed factor is -0.28

(SE 0.04), suggesting that test takers with higher latent ability generally take longer to

respond. This result aligns with previous studies on the speed-accuracy trade-off, which

indicates that individuals who respond slowly make fewer mistakes compared to those who

respond quickly and make more mistakes (e.g., van der Linden (2007), and Heitz (2014)

for a general overview on the subject). Previous studies have found correlations between

the latent ability and the latent speed trait of similar sign and magnitude in large-scale

educational testing of quantitative subjects (e.g., van der Linden and Guo, 2008).

The equations for the scale (standard deviation) and shape (skewness) parameters
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of the log-RTs provide valuable information about the items and RTs. The estimates

α̂i1,σ and α̂i1,ν indicate that some log-RTs exhibit heteroscedasticity (items 2, 3, 4, 5, 8)

and varying skewness (items 2, 3, 4, 6, 7, 8, 9) in their log-RTs as the latent speed factor

changes. Selected item characteristic curves (ICC) for the IRs and the fitted Skew-Normal

conditional distributions for the log-RTs (parameterized by the coefficients in Table 4) are

shown in Figures 4 and 5. The (conditional) mean, median, and percentiles (0.025, 0.10,

0.25, 0.75, 0.90, and 0.975) for the log-RTs are plotted to illustrate how the distribution’s

shape changes as the latent speed factor dimension varies.

Figures 4a and 4b illustrate item 2, while Figures 4c and 4d depict item 3. The figures

show how the variance of log(t2) and log(t3) changes as we move along the latent speed

factor dimension—the conditional skewness, however, changes in opposite directions. For

instance, log(t2) is positively skewed for individuals in the left tail of the latent speed

factor, while log(t3) is negatively skewed for the same group of students. On the other

hand, the response times’ distributions are symmetric for individuals on the right tail of

the speed factor dimension. Figures 5a and 5b depict item 5, while Figures 5c and 5d

correspond to item 8. The estimated positive slope for the scale parameter suggests a

larger variance in the response times for individuals on the upper tail of the latent speed

factor distribution. These items are among the most difficult ones, with higher α̂i0,π

values, and also require more time on average, with higher α̂i0,µ values. Furthermore,

they also exhibit varying skewness parameters. For example, for item 8, the direction

of the skewness changes depending on the location along the latent speed factor scale.

These results might suggest differences in item characteristics, such as the wording, task,

difficulty, or cognitive processes required for their completion.

4. Simulation Studies

We performed several simulation studies to evaluate the accuracy of the parameter esti-

mates obtained through the MML algorithm explained in Section 2.3, along with their

corresponding standard errors. Simulations were conducted in R (R Core Team, 2022)

using the package glvmlss, with underlying functions programmed in C++ using pack-

ages Rcpp (Eddelbuettel et al., 2023a), RcppArmadillo, (Eddelbuettel et al., 2023b), and

RcppEnsmallen (Balamuta and Eddelbuettel, 2018). Code and replication files are avail-

able at https://github.com/ccardehu/glvmlss.
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(a) (b)

(c) (d)

Figure 4: PISA 2018: Fitted conditional expected values (solid line, ), median (dashed
line, ), and percentiles (dotted lines, ) for IR and log-RT for items 2 and 3.

4.1 Simulation Study I

The first simulation study closely resembles the empirical application discussed in Section

3.2. In this study, we examine observed continuous variables within the interval (0, 1),

which are assumed to follow a location-scale parametrization of the Beta distribution.

Specifically, the heteroscedastic Beta factor model features location and scale parameters

that are defined as functions of a single latent variable, i.e., yi | z ∼ Beta(µi(z), σi(z)).

The values for the population parameters in the location parameter equation are se-

lected from two uniform distributions: αi0,µ ∼ Unif(−1.5, 1.5) and αi1,µ ∼ Unif(0.5, 1).

The signs of the αi1,µ’s are assigned randomly with a probability of 0.5. The param-

eters for the scale equation are sampled from the uniform distribution (αi0,σ, αi1,µ)
⊺ ∼
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(a) (b)

(c) (d)

Figure 5: PISA 2018: Fitted conditional expected values (solid line, ), median (dashed
line, ), and percentiles (dotted lines, ) for IR and log-RT for items 5 and 8.

Unif(0.1, 0.5), with the signs of the slopes also assigned randomly. We generate the true

parameters in this way to ensure that the conditional densities fi(yi | z) are uni-modal.

Although the Beta distribution allows for bimodal densities for certain combinations of

µi and σi, this is not common in the applications of interest (see Noel (2014) for a uni-

dimensional unfolding Beta factor model that handles the bi-modality of the observed

variables). The integrals involved in parameter computation were numerically evaluated

using a fixed-point Gauss-Hermite rule with 100 quadrature points.

We generated R = 300 datasets for each of the 12 conditions. These conditions were

created by combining four different sample sizes (200, 500, 1000, and 5000) with three

different numbers of observed variables (5, 10, and 20). The quality of the estimated
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parameters was assessed by the mean squared error (MSE):

MSE(α̂k) =
1

R

R∑
r=1

(α̂
(r)
k − αk)

2, k = 1, ...,K ,

and the absolute bias (AB):

AB(α̂k) =

∣∣∣∣∣ 1R
R∑

r=1

α̂
(r)
k − αk

∣∣∣∣∣ , k = 1, ...,K ;

where α̂
(r)
k ∈ Θ̂(r) is an arbitrary parameter estimate from the rth replication, and αk ∈ Θ∗

is the true value for the model parameter. We report the average MSE (AvMSE) and

the average AB (AvAB) separately for the intercepts and slopes in the equations of the

location (µ) and scale (σ) parameters indexing the Beta distribution. For completeness,

we include box-plots with the simulation results for individual parameters (p = 10) in the

Online Supplementary Material A5. Similar results hold for other numbers of observed

variables.

To evaluate the accuracy of the estimated standard errors (SE) and corresponding

confidence intervals, we calculate the average coverage rate across replications for various

intercepts and slopes in the location and scale parameters equations. The coverage rate

(CR) of the (1− α)× 100% confidence interval for a parameter estimate α̂ ∈ Θ̂ is:

CRα(α̂k) =
1

R

R∑
r=1

1(L̂
(r)
k ≤ αk ≤ Û

(r)
k ), k = 1, ...,K

where L̂
(r)
k = α̂

(r)
k − zα/2 · ŜE(α̂

(r)
k ) is the sample-dependent lower bound, Û

(r)
k = α̂

(r)
k +

zα/2 · ŜE(α̂
(r)
k ) is the sample-dependent upper bound, and zα/2 corresponds to the (α/2)th

quantile of the standard Normal distribution. The customary level of the nominal rate is

α = 0.05. Coverage rates close to 0.95 indicate a good estimation of the 95% confidence

intervals. We report the average CR (AvCR) for intercepts and slopes separately.

Table 5 gives all the results. As expected, the AvMSE and the AvAB tend to decrease

as the sample size increases for all values of p. As for the AvCRs, they reach the nominal

level as the sample size increases. It is worth noting that estimated standard errors are

slightly overestimated for smaller sample sizes, leading to more conservative confidence

intervals.
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(Â
σ
).

25

https://doi.org/10.1017/psy.2025.7 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.7


4.2 Simulation Study II

The second study resembles the empirical application in Section 3.2. We study the finite

sample performance of a confirmatory GLVM-LSS model with two latent variables (q =

2) and sixteen observed variables (p = 16). The first eight variables are distributed

as Bernoulli, conditional on the first factor, yi | z1 ∼ Bernoulli(πi(z1)) for i = 1, ..., 8.

The remaining eight variables are distributed Skew-Normal, conditional on the second

factor, yi | z2 ∼ SN(µi(z2), σi(z2), νi(z2)) for i = 9, ..., 16. The latent variables follow a

multivariate standard Normal distribution, (z1, z2)
⊺ ∼ N(0,Φ), where Φ is a correlation

matrix with non-zero off-diagonal entries denoted by ϕ12 = ϕ21 = ϕz.

The simulation study considers three sample sizes, n = {500, 1000, 3000}. The inter-

cepts, slopes, and factor correlation are fixed to the parameter estimates for items 1 to

7 and 9 in Table 45. As before, we compute the AvMSE and AvAB for the estimated

parameters and assess the properties of the estimated confidence intervals via the AvCR.

The above measures were obtained from R = 300 independently simulated datasets. The

multidimensional integrals were numerically evaluated using the Gauss-Hermite rule with

35 quadrature points on each latent dimension (a total of 1225 quadrature points).

For better numerical stability, we estimate the model parameters by letting the EM

algorithm run for a large number of iterations, using a gradient descent update rule with

adaptive learning rate6. After 500 iterations, the algorithm switches to the quasi-Newton

direct maximization step. Table 6 presents the results for each sample size.

For simplicity, we present the aggregate results for intercepts and factor loadings in

each matrix Âφ, φ ∈ θ. In all cases, the AvMSE and AvAB decrease with sample size, as

expected. The results in Table 6 also suggest that the factor correlation ϕz is consistently

estimated. Coverage rates are around nominal levels for medium and large samples, while,

as discussed previously, the confidence intervals for the smaller sample size are slightly

conservative.

5. Discussion

This paper presents a general framework for latent variable modeling called Generalized

Latent Variable Models for Location, Scale, and Shape parameters (GLVM-LSS). In this

framework, all the distributional parameters characterizing each observed variable’s con-

5These eight items were chosen randomly from the nine in the original PISA 2018 application.
6The initial learning rate was κ = 0.0001, and it was halved if the objective function in the EM

algorithm did not increase between iterations.
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Average MSE
(AvMSE)

Average AB
(AvAB)

Average CR
(AvCR)

Average CT
(AvCT, mins.)n Parameter

500

Âπ 0.1166 0.0398 0.9631

24.996

Âµ 0.0006 0.0012 0.9613

Âσ 0.0017 0.0039 0.9672

Âν 0.2033 0.0498 0.9775

ϕ̂z 0.0036 0.0069 0.9860

1000

Âπ 0.0553 0.0173 0.9599

70.152

Âµ 0.0003 0.0009 0.9597

Âσ 0.0008 0.0023 0.9607

Âν 0.0775 0.0212 0.9626

ϕ̂z 0.0017 0.0013 0.9730

3000

Âπ 0.0203 0.0100 0.9496

197.136

Âµ 0.0001 0.0003 0.9575

Âσ 0.0003 0.0010 0.9563

Âν 0.0209 0.0101 0.9581

ϕ̂z 0.0005 0.0006 0.9867

Table 6: Simulation Study II: Average Mean Squared Error (AvMSE), Average Absolute
Bias (AvAB), Average Coverage Rate (AvCR), and Average computation time in minutes
(CT) for the MLE of a confirmatory GLVM-LSS with Bernoulli and Skew-Normal dis-
tributed observed variables, by sample size and type of parameter. Performance measures
are computed for the estimated parameters in the loading matrix for the Bernoulli items
(Âπ); the loading matrices for the location (Âµ), scale (Âσ), and shape (Âν) parameters

for the Skew-Normal items; and the correlation between the latent variables (ϕ̂z).

ditional distribution are modeled as functions of linear combinations of the latent vari-

ables. In this respect, the (conditional) mean and higher-order (conditional) moments

of the observed variables -expressed in terms of the corresponding location, scale, and

shape parameters- are also considered functions of the latent variables. The GLVM-LSS

offers a wide range of possibilities for modeling complex multivariate datasets by allow-

ing the modeling of data displaying heteroscedasticity, excess skewness, excess kurtosis,

zero/one/maximum value inflation, heaping, truncation, or censoring. Model parameters

are estimated via full-information maximum likelihood. We demonstrate the effective-

ness of our framework by presenting two GLVM-LSS applications using real-world data

in public opinion research and educational testing. Our proposed method is implemented

in the R package glvmlss, available online at https://github.com/ccardehu/glvmlss.

The GLVM-LSS framework has numerous potential applications in empirical research
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areas where modeling higher-order moments of observed variables as functions of la-

tent variables is relevant. For instance, in ecological momentary assessment designs,

researchers are interested in individuals’ emotional response variability, in addition to the

deviations from their baseline mood (Hedeker et al., 2006, 2008, 2012, Wang et al., 2012).

While these models include random effects, incorporating a latent variable specification

could enrich the analysis. Another example is item quality control in educational testing

(Hessen and Dolan, 2009). Heteroscedastic items often exhibit low discrimination power,

which can reduce test accuracy if not revised or removed. From a dimensionality reduc-

tion perspective, it is desirable to preserve as much information as possible and to model

the essential aspects of the observed data. Modeling the entire (conditional) distribution

can result in better data recovery than simply modeling the (conditional) mean (Shen

and Meinshausen, 2024).

While the GLVM-LSS is a flexible tool for modeling multivariate data with latent

variables, there are still opportunities for improvement in future research. Currently,

the model’s implementation in the glvmlss package computes numerical integrals in the

MML estimation algorithm and factor scoring procedure using a fixed-point Gaussian-

Hermite quadrature rule. This approach limits the number of latent variables that can be

included in the model without encountering computational bottlenecks. Future updates of

the glvmlss package will aim to address this limitation by incorporating either adaptive

Gaussian-Hermite quadrature rules (Rabe-Hesketh et al., 2005) or stochastic approxi-

mation methods (Cai, 2010, Zhang and Chen, 2022). These alternatives for numerical

integration have been shown to produce fast and accurate solutions and thus should be

explored further in the context of the GLVM-LSS.

As discussed earlier, one potential extension of the GLVM-LSS framework is to in-

corporate observed covariates into both the measurement and structural equations. This

addition could enhance the framework’s usefulness in latent regression contexts and aid in

testing for measurement invariance or differential item functioning. Also, many datasets

in the social sciences suffer from non-ignorable missingness, and thus, one can extend the

GLVM-LSS and implement methods developed, for example, in O’Muircheartaigh and

Moustaki (1999).

Moreover, increasing the flexibility to model distributional parameters also raises the

number of parameters that need to be estimated, which can lead to computational and

interpretational challenges. A regularized estimation approach for the GLVM-LSS can

be developed to mitigate these issues. This method aims to produce more sparse and

interpretable factor loading solutions while also facilitating model selection through the

appropriate choice of the regularization parameter (e.g., Geminiani et al., 2021, Cárdenas-
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Hurtado, 2023).

Another extension of the GLVM-LSS framework involves relaxing the linearity as-

sumption in the specification of the (linear) predictor ηi,φ(z). Following the generalized

additive model specification in the GAMLSS regression framework, for each distributional

parameter φi ∈ θi we could model the relationship between the observed and latent vari-

ables using splines (Ramsay and Abrahamowicz, 1989, de Boor, 2001). This approach

extends previous research in non-linear latent variable models using polynomials (Mc-

Donald, 1962, 1967, Yalcin and Amemiya, 2001, Rizopoulos and Moustaki, 2008). It

also has connections with existing models in the LVM literature, such as the unidimen-

sional semi-parametric IRT models (e.g., Ramsay and Winsberg, 1991, Rossi et al., 2002,

Johnson, 2007, Falk and Cai, 2016b,a).
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