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PROPERTY PRESERVING OPERATORS

EVELYN M. SILVIA

oo
Let S denote the class of functions of the form /(z) = z + J^ afcz* that are analytic and

univalent in \z\ < 1. Given / € S and o, b, c, real numbers other than 0, - 1 , —2,... , let

n{a,b,c;f) = F(a,b,c;zYf(z) where z~x F(a, b, c;z) = 1 + f) ((a)k(b)k)/({c)k(l)k)z
k

is a hypergeometric Gauss function with (a)0 = 1 and (a)k = o(o + 1) . . . (a + k - 1) and
* denotes the Hadamard product. For qn{z) = z + a2z

2 •+•... + anz
n (an ^ 0, n = 5,6)

in S, it is shown that n ( 7 + 1,1,7 + 2; qn) = *7(?n) = ((7 + I)/*7) /„* V~lqn(t)dt,
7 > — 1, is univalent in \z\ < 1. This extends the result previously known for n = 3 and
n = 4. Also, we obtain a necessary and sufficient condition involving o, 6, and c such
that fJ(a, t, c; •) preserves the subclass of S consisting of starlike functions of order a,
0 < a < 1, with ak < 0.

1. INTRODUCTION

Let 5 denote the class of functions of the form

n = 2

that are analytic and univalent in A = {z : \z\ < 1}, with S*(a), 0 < a < 1,
designating the subclass of 5 consisting of functions starlike of order a. We shall
denote by T the subclass of 5 consisting of functions that may be expressed in the
form

n = 2

and will set T*(a) =Tn S*(a). It is known [10] that / £ T*(a) if and only if its
coefficients satisfy the inequality

(1) ^ (n - a K < (1 - a).
n=2
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n
The class of polynominals of degree n, qn{z) — z+ £] auzk , an ^ 0, that are univalent

fc=2

in A will be designated by Pn. In the next section, we will consider the general integral
operator

{j^L [ (7 > - i ) .
The Hadamard product or convolution of two power series

oo oo

./(*) = £>„*" and/i(z) = £ c n z r

is defined as the power series

n=0 n=0

n = 0

oo

For G(z) = E ((7 + l)/(7+n))zn we note that #7(/(z)) = (/*G)(z). Since
n=l

G(z) is known [8] to be convex for 7 > 0, it follows from the work of Ruscheweyh
and Sheil-Small [9] that $ 7 ( / ) , 7 > 0, is close-to-convex or starlike of order a
whenever f{z) is such. It was shown in [12] that for / € T"*(a) we actually have
$y(f(z)) £ r*((2 + a7)/(3 + 7 - a)) which is a little better than we get from closure
under convolution with a convex function.

The question of preservation of univalence under $ 7 is still relatively open for
discussion. In [5] an example of an f(z) univalent in A with $o(/) not univalent is
given. For 7 = 1, the radius of close-to-convexity for 5 [4] assures the univalence of
$ 7 ( / (z) ) , / e S, in \z\ < p where 0.80 < p < 0.81. Whether p can be replaced
by 1 is still unknown. In [6], it is shown that if / 6 Pn, then $o(/) is univalent
for \z\ < 2sin(7r/n) and $ i ( / ) is univalent for \z\ < 2sin(7r/(n + 1)). Hence, $0
preserves Pn for n ^ 6 and $1 preserves Pn for n ^ 5. Finally, from [11], we know
that * 7 (P n ) C Pn for n = 3, 4 and for all 7 > —1. In Section 2, we extend the
latter result to n = 5 and n = 6. In Section 3, we will consider a generalisation of the
operator <!>-,..

For / € 5, and a, b , c real numbers other than 0, —1, —2,... , let

where

z-1F{a,b,c;z) =-1 EV- L „ „* _ ! , Y^ (a)fc(6)t _fc

https://doi.org/10.1017/S0004972700003312 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003312
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is a hypergeometric Gauss function and (a)0 = 1, (a)fc = a(a + 1) • • • (a + k — 1). Note

that n ( 7 + 1 , 1 , 7 + 2;/) = * 7 ( / ) .
In [11], it was shown that for q € P3 and c > \a\ > 0, 17(a, l,c; g) € P3 . Let

Efc(a,6, c;z) denote the fcth partial sum of F(a,b, c; z). We know that £2(0., 6, c;z) is
convex in A if and only if

(2) 4|a| |6| < |c|.

In [2], it is shown that for f(z) = z + f3z2 + 6z3 , (3, 6 real, and 0 < 6 s$ 1/15, the
condition (1 + 96)/4 > f3 ̂  85/(1 +56) implies that / is convex. Thus, S3(a, b,c;z)
is convex for 0 < (a)2(^)2/(c)2 ^ 2/15 and

,„, 2(c)2 + 9(a)2(6)2 ^ a - 6 ^ 3(a)2(6)2

8(c)2 " c " 2(c)2 + 5(a)2(6)2-

It follows that fi2(ai^>c;-) an<i ^3(a)^ici") preserve the subsets of P2 and P3 con-
sisting of functions that are convex, starlike of order a and close-to-convex as long
as (2) and (3) are satisfied, respectively. In the last section, we obtain a necessary
and sufficient condition involving a, 6 and c such that fl(a,6,c;-) preserves the class

2. THE OPERATOR $ 7

In order to show that Pn is preserved under $ 7 for n = 5 and n = 6, we will use
two lemmas.

LEMMA A. [11] For qk(z) = z + a2z
2 + ... + akz

k € Pk , a sufficient condition for
$y(qk) to be in Pk is that the polynomial

fc-i

-g
iiave all of its zeros in \z\ ^ 1.

LEMMA B. [7] (Cohn's Rule) For f(z) = a0 + a^z + ... + anz
n, let f*(z) =

aoz
n + a,\Zn~1 + . . . + Sn . Tiien, if |ao| < |an|, the polynomial f\ given by zfi(z) =

dnf(z) — dof*(z) has one zero less them f has in A.

Given a polynomial of degree n, as long as it is applicable, we can use Lemma B
successively n — 1 times to obtain a first degree polynomial. It follows that if the zero
of the first degree polynomial is in A , then all n zeros of the original polynomial lie in
A. Using this method we have:
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THEOREM 1. For 2 ^ k < 6, if qk £ Pk , then $^(qk) e Pk for all 7 > - 1 .

PROOF: For k = 2, the result is trivial. The cases k = 3 and k — 4 were obtained

earlier [11]. For k — 5, from Lemma A, it suffices to show that all the zeros of

lie in \z\ < 1. Since (7 + l ) / ( 7 + 5) < 1, Lemma B applies and we can form

z G 1 ( z ) l G { z )

from which we obtain

For 7 > - 1 , we have (7 + l)(7 + 5)/((7 + 2)(7 + 4)) < 1. To apply Lemma B we form

This leads to

l ) ( 7 + 5 ) ( 2 7 2 + 1 2 7 + 19) | ^ 7 + 1)(7 + 2)(7 + 4)(7 + 5) _ | _a

13) ( 3 ) 2 (2 2 2 13)

z2.

Once again we have fi < 1 for 7 > — 1, so we let

and obtain

Now, since 0 < n < 1, 4A/(1 + /x) < 1 if and only if

4(7 + 1)(7 + 2)(7 + 4)(7 + 5) < (7 + 3)2 (27
2 + 127 + 13)
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wliich is equivalent to 4(272 + 127 + 13) > 0. This last inequality is satisfied for
7 > - 1 . Therefore, G3 has one root in A . Applying Lemma B sequentially, it follows
that G2 has 2 roots in A, G\ has 3 roots there and, finally, G has all 4 roots in A.
Thus, by Lemma A, $ 7 (P 5 ) C P$ .

The process detailed for k = 5 goes just as smootlily for k = 6. To apply Lemma
A, we consider

We obtain the following finite sequence of auxiliary polynomials

, (7 + l)(7 + 6) (7 + IX7 + 6) (7 + l)(7 + 6) 2
1{ ' (7 + 2)(7 + 5) + *(7 + 3)(7 + if + (7 + 3)(7 + 4)

(7+IX7 + 6) 2s .4

(7 + 3)(7 + 4)(7
2 + 77 + 8)

(7 + l)(7 + 2)(7 + 5)(7 + 6) 2 ,
(7 + 3)(7 + 4)(7

2 + 77 + 8) +

and

Since 7
4 + 147

3 + 6972 + 1407 + 90 = -(A + B) where

and

S = (7

we know that l/2(vl + B) > 0 for 7 > - 1 and £ > 0. Also, £ < 1 if and only if

(7 + 1)(7 + 2)(7 + 5)(7 + 6) < (7
4 + 1473 + 697

2 + I4O7 + 90)

which is equivalent to
2(72 + 147 + 15) > 0

and is satisfied for 7 > —1. Therefore, £/(£ + 1) < 1. We conclude that ff4 has one
root in A and H has 5 roots there. I
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Remarks 1. To see that the sufficient condition is not met for k — 7, 7 > — 1, Lemma
B proves to be a bit unwieldy. Instead we can appeal to the Schur-Cohn Criteria [7]:
If for the polynomial f(z) = ao + a-yz + ... + anz

n , all the determinants

an-k+2

a0

O-k-l

an

n-fe+1

0

a0

Gfc-2

0

a n

an-k+2

0

0

aJk-3

0

0

. . . 0

. . . 0

. . . a0

. . . 0

. . . 0

. . . an

an

0

0

a0

0

0

a0

0

Ofc-2

a0

for k = 1,2,3, . . . , n are different from 0, then / has no zeros on the circle \z\ = 1
and p zeros in this circle, where p is the number of variations of sign in the sequence
1, A i , A 2 , . . . , An . Thus in order for / to have n zeros in A the sequence must have
alternating signs. For the case k = 7 we consider

Then, for 7 > - l , Ao = 1, Aj = ( -12( 7 + 4)) / ( (7 + 7)2) < 0 , and

_
2 ~

720(7 19)

However,

A3 =
345,600(7 + 4)3 (7

2 + 8 7 - 3 ) (27
4 + 327

3 + 17972 + 4O87 + 279)

(7 + 2)4(7 + 3)2(T + 5)2(7 + 6)4(7 + 7)6

is positive for 7 > —4+ \/TS). Thus, at least for 7 > - 4 + "s/19, the sufficient condition
given in Theorem 1 is not met.

2. As noted earlier, $0 does not preserve the class S [5]. Thus, we know that
there exists a univalent polynomial p , such that $0(p) ^ S. We've also noted that it
is an open problem as to whether $ 7 (P n ) C S for 7 > 0 and all n = 1,2,.. . . The
sufficient condition of univalence of §>y(Pn) not being met for n = 7 suggests that we
try to show that $0(-Pi) % Pi • It is natural to consider the polynominals

p{z;n;j) = z
fc=2

n-k sin (kJTr/(n + 1))
sin(;7r/(n + l))
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which were shown to be univalent in A by Suffridge [13]. On the other hand, there are
reasons for doubting that $7(p(z;7; j)) ^ 5 for j = 1,2,... ,7 . In particular, it can

7

be shown directly that for $y(p(z; 7; j)) = z + X) ^j,kzk >
fc=2

for each j = 1,2,..., 7 and for all 7 > —1. This set of coefficient conditions was
shown in [13] to be necessary for univalence. In addition, we have used a symbolic
manipulation program and the Schur-Cohn Criteria to verify that, for j = 1,2,..., 7,
the derivative of each $7(p(z; 7;j)) is nonzero in A for 7 = 0,1, 2 , . . . , 15 . Since
neither of the conditions is sufficient for univalence, this leaves us with the following

Open Problem 1. Find a univalent polynomial of degree 7, p , such that $7(p) is
not univalent for some 7 > — 1.

3. Since for qn £ Pn, lim $7(gn) = qn € Pn, and (7 + l)/(7 + n) < 1, it is also

natural to pose

Open Problem 2. For 7 large enough, show that $7(Pn) C Pn for all n.

3. THE OPERATOR ft(a,6, C;-).

Using a method due to Khokhlov [3], we obtain:

THEOREM 2. A necessary and sufficient condition such that fl(a,b,c;T*(a)) C
T*(a) is that a > 0, 6 > 0, c > a + b and T(c - a - b)T(c) < 2T(c - a)T(c ~ b).

PROOF: For /(z) = z - Y, anz
n € T*(a), let

n=2

n=2

where dn - ( (o ) n _ 1 (6 ) n _ 1 ) / ( (c ) n _ 1 ( l ) n _ 1 ) - an ^ 0. From (1), g € T*(a) if and only

if £ ((n - a) I {I - a))\dn\ s£ 1. We also know [10] that \an\ < —— . Thus,
n=2 n — a

00

n — a

It is well-known [14] that F(a, b, c; z) is convergent in A for c > a + b and
F(a,6,c;l) = T(c - a - b)T(c)/{T(c - a)T(c - b)). Therefore, for c > a + b, we have

§ ( ( n - Q ) / ( 1 - <x))\dn\ ^ 1 i f a n d o n l y i f { T ( c - a - b ) T ( c ) / T ( c - a ) T ( c - b)) - 1 <
n=2
1.
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R e m a r k . For c > 3 , we note that il(l,l,c;T*(a)) C T*(a). Therefore, for n ^ 2,
the generalised Biernacki operators

/

o Jo

preserve the class T*(a).
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