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PROPERTY PRESERVING OPERATORS

EVELYN M. SiLviA

o0

Let S denote the class of functions of the form f(z) =z + E arz* that are analytic and
k=2

univalent in |z] < 1. Given f € S and a, b, c, real numbers other than 0, -1,-2,..., let

(a,b,ci f) = Fla,b,c;2)" f(z) where 2= F(a,b,c;2) = 1+ 33 ((@)u 1)/ ()5 (1)) #*
k=1

is a hypergeometric Gauss function with (a), =1 and (a), =a(a+1)...(a+k ~ 1) and
* denotes the Hadamard product. For gn(z) = z+az222 + ...+ anz® (an #0, n =5,6)
in S, it is shown that Q(v+ 1,1,7+ 2;qn) = ®4(gn) = ((v+ 1)/z'7)j0‘ t7-1q.(t)dt,
4 > —1, is univalent in |z| < 1. This extends the result previously known for n = 3 and
n = 4. Also, we obtain a necessary and sufficient condition involving a, b, and ¢ such
that Q(a,b,c;:) preserves the subclass of S consisting of starlike functions of order «,
0 < a1, with a3 <0.

1. INTRODUCTION

Let S denote the class of functions of the form

f(z) =z + Z anz"

n=2

that are analytic and univalent in A = {z : |z|] < 1}, with S*(a), 0 € a < 1,
designating the subclass of S consisting of functions starlike of order a. We shall
denote by T the subclass of S consisting of functions that may be expressed in the

form
oo

f(z) =z - Z anz", a, 20,
n=2
and will set T*(a) = T N §*(a). It is known [10] that f € T*(«a) if and only if its
coefficients satisfy the inequality

oo

(1) S (n-a)an <(1-a)

n=2
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n
The class of polynominals of degree n, ¢u(z) = 24+ Y. arz*, a,, # 0, that are univalent
k=2

in A will be designated by P, . In the next section, we will consider the general integral

operator
+1 5o
2,5 =020 [oopwa o> -,
The Hadamard product or convolution of two power series
f(z) = Z anz" and h(z) = Z L
n=0 n=0

is defined as the power series

(f*h)(2)= Z Ancnz".

n=90

For G(z) = i ((v +1)/(y + n))z" we note that ®,(f(z)) = (f *G)(z). Since

n=1
G(z) is known [8] to be convex for v > 0, it follows from the work of Ruscheweyh

and Sheil-Small [9] that ®,(f), v > 0, is close-to-convex or starlike of order «
whenever f(z) is such. It was shown in [12] that for f € T*(a) we actually have
®,(f(2)) € T*((2+ av)/(3 +v — @) which is a little better than we get from closure
under convolution with a convex function.

The question of preservation of univalence under ¥, is still relatively open for
discussion. In [5] an example of an f(z) univalent in A with ®4(f) not univalent is
given. For v = 1, the radius of close-to-convexity for S [4] assures the univalence of
®,(f(2)), f €S,in |z] < p where 080 < p < 0.81. Whether p can be replaced
by 1 is still unknown. In [6], it is shown that if f € P,, then ®¢(f) is univalent
for |z] < 2sin(w/n) and ®,(f) is univalent for |z| < 2sin(n/(n +1)). Hence, ¥,
preserves P, for n < 6 and &, preserves P, for n < 5. Finally, from [11], we know
that ®,(P,) C P, for n = 3, 4 and for all ¥ > —1. In Section 2, we extend the
latter result to n = 5 and n = 6. In Section 3, we will consider a generalisation of the
operator &, .

For f € S, and a, b, ¢ real numbers other than 0,-1,-2,..., let

Qa,b,¢; f) = F(a,b,c;2) * f(2)
where

-1 = (a)(b)y &
z7 F(a,b,c;2) = —E
(b2 =142, 50,
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is a hypergeometric Gauss function and (a), =1, (e}, = a{a +1)---(a+ k —1). Note
that Qv+ 1,1,v+2; f) = &,(f).

In [11], it was shown that for ¢ € P; and ¢ 2 |a| > 0, a,1,¢;q) € Ps. Let
k(a,b,c; z) denote the kth partial sum of F(a,b,c;z). We know that X3(a,b,c;z2) is

convex in A if and only if
(2) 4la| [b] < |cl.

In [2], it is shown that for f(z) = z + Bz% + 62%, B, & real, and 0 < 6§ < 1/15, the
condition (1 + 96)/4 > B > 85/(1 + 58) implies that f is convex. Thus, X3(a,b,c;2)
is convex for 0 < (a),(b),/(c), < 2/15 and

2(c); + 9(a),(b), “_'b 8(a),(b),
®) 50, C c 20, + 5a),0),

It follows that Q;(a,b,¢;-) and Q3(a,b,c;-) preserve the subsets of P, and P; con-
sisting of functions that are convex, starlike of order a and close-to-convex as long
as (2) and (3) are satisfied, respectively. In the last section, we obtain a necessary
and sufficient condition involving a, b and ¢ such that Q(a,b,c;-) preserves the class
T*(a).

2. THE OPERATOR &,

In order to show that P, is preserved under ®, for n =5 and n = 6, we will use

two lemmas.

LEMMA A. [11] For g4(z) = z + ;2% + ... + ax2* € Py, a sufficient condition for
®.(qx) to bein Py is that the polynomial

it 0 1.

=0
have all of its zeros in |z| < 1.

LEMMA B. [7] (Cohn’s Rule) For f(z) = ag + a1z + ... + anz™, let f*(z)
Goz™ + 812" "' + ...+ @,. Then, if |ag| < |an|, the polynomial f, given by zf,(z)
@nf(z) — aof*(z) has one zero less than f hasin A.

Given a polynomial of degree n, as long as it is applicable, we can use Lemma B
successively n — 1 times to obtain a first degree polynomial. It follows that if the zero
of the first degree polynomial is in A, then all n zeros of the original polynomial lie in
A. Using this method we have:
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THEOREM 1. For 2< k< 6, if qx € Pr, then ®.,(qr) € Py forall v > —1.

PROOF: For k = 2, the result is trivial. The cases k =3 and k = 4 were obtained
earlier [11]. For k = 5, from Lemma A, it suffices to show that all the zeros of

v+1 y+1 Y+1\ , Y+H1\ 5 4
= 4 6 —— 4
G(z2) 7+5+ (7+4)z+ <7+3)z + o 2z’ +z

lie in |z| < 1. Since (v +1)/(y +5) < 1, Lemma B applies and we can form

’Y+1

2Gy(2) =1-G(z) - pourr -G*(2)
from which we obtain
G(s) = SEEE - G(2)
_ D) +5) S+ D+5) D +5) s
T (r+2)(v+4) (v + 3)° (r+2)(v+49)° ’

For v > —1, we have (v + 1)(v + 5)/((v + 2)(y + 4)) < 1. To apply Lemma B we form

(r+1)(r+5) Gi(z).

#6a(2) =1-Gale) - (v +2)(v +4)

This leads to

(7+2) (7+4) é(z)

3(272 + 127 + 13)
_ (D) +5)(2r* + 127 +19) 4+t DO+ 2 +4)(r +5)
T (r+3)4 (2 + 129 +13) (7 +3)*(27% + 12y + 13)
=pu+ 4z + 2%,

Gz(z)

Once again we have p <1 for v > —1, 50 we let
2Ga(z) = 1-Ga(2) — - Gi(2)

and obtain )
1 ~ 4
G3(Z) = T “2 . G3(Z) = m + 2.

Now, since 0 < p <1, 4A/(1 + ) < 1 if and only if

Ay + 1)(7 + 2)(7 + 4)(y +5) < (v +3)*(27* + 12y + 13)
+ (@ + 1) +5)(29% + 127 +19)
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which is equivalent to 4(2’72 + 12y + 13) > 0. This last inequality is satisfied for
4 > ~1. Therefore, G3 has one root in A. Applying Lemma B sequentially, it follows
that G, has 2 roots in A, G; has 3 roots there and, finally, G has all 4 roots in A.
Thus, by Lemma A, $.,(P;) C Ps.
The process detailed for k = 5 goes just as smoothly for ¥ = 6. To apply Lemma
A, we consider
N (5), T+l . ;
)= ; (j)[’7+6—j]z '

We obtain the following finite sequence of auxiliary polynomials

(v+1)(v+6)  ,(y+1)(v+6) (v+1)(v+6) ,
Hl(z)_(7+2)(7+5)+4(7+3)(7+4)z 6(7+3)(7+4)"
(7+1)(7+6)z3+z4
(r+2)(r+5)
Ha(z) = (v + (v +6)(7* + Ty + 14) 3+ D +2)(r +5)(v +6)

G+ + )+ +8) () + ) +Tr+8)
(v + 1)y + 2)(y + 5)(v + 6)
(r+3)(r+4)(* +7v+8)

(v + D(v + 2)(v + 5)(v + 6)
44 4 1443 4 6992 4 140+ + 90’

+3 22+z3,

Hi(z)=¢+4 €24 22 for £ =

and

£
H = —_
4(2) =2+ T4¢
1
Since v* + 1493 + 694% 4 140y + 90 = E(A + B) where

A=(r+3)(v+49)(*+Tr+8)

and
B=(y+1)(y+6)(y’ + 77 +14),

we know that 1/2(A+ B) >0 for v > —1 and ¢ > 0. Also, £ <1 if and only if

(v 4+ 1)(r + 2)(v + 5)(v +6) < (v* + 147° + 697 + 140y + 90)

which is equivalent to
2(7* + 147 +15) > 0

and is satisfied for ¥ > —1. Therefore, /(£ + 1) < 1. We conclude that H, has one
root in A and H has 5 roots there. ]
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Remarks 1. To see that the sufficient condition is not met for k =7, v > —~1, Lemma
B proves to be a bit unwieldy. Instead we can appeal to the Schur-Cohn Criteria [7]:
If for the polynomial f(z) =a¢ + a1z + ...+ a,2z", all the determinants

ag 0 0 oo 0 ap @pnoy .. Gpogyr
ay Qg 0 P 0 0 Ay cie Op_kt2
Q1 Gk _2 Q-3 a 0 0 an
A = - _ _
(1% 0 0 0 do aj ag—-1
@n_1 n 0 0 0 & Gk_2
(_Iln_]c+1 an_k+2 &n_k+3 ve. Gp 0 0 e ag
for k = 1,2,3,...,n are different from 0, then f has no zeros on the circle |z| = 1

and p zeros in this circle, where p is the number of variations of sign in the sequence
1,A1,A2,...,8,. Thus in order for f to have n zeros in A the sequence must have

alternating signs. For the case k = 7 we consider
6 .
%0 GS)
i= Y+7—-7

Then, for v > -1, A =1, Ay = (-12(y + 4))/ ((7 + 7)2) < 0, and

720(7 +4)*(27% + 16 + 19)
(v +2)° (7+6) (v +7)*

However,

_ 345, 600( + 4)° (7% + 87y — 3) (27* + 329° + 17997 + 408y + 279)
(v +2)* (v +3)°(y +5)* (v + 6) (v + 7)°

is positive for v > —4+ +/19. Thus, at least for v > —4 + /19, the sufficient condition

given in Theorem 1 is not met.

2. As noted earlier, ®, does not preserve the class S [6]. Thus, we know that
there exists a univalent polynomial p, such that ®,(p) ¢ 5. We've also noted that it
is an open problem as to whether ®,(P,) C S for v > 0 and all n =1,2,.... The

sufficient condition of univalence of ®,(P,) not being met for n = 7 suggests that we
try to show that ®q(P;) € P;. It is natural to consider the polynominals

o "\ (n-k+1 sin(kjr/(n+1)) o
p(z;n;7) §< sin(j7r/(7l+1))>
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which were shown to be univalent in A by Suffridge [13]. On the other hand, there are
reasons for doubting that ®,(p(z;7;5)) ¢ S for j = 1,2,...,7. In particular, it can

7
be shown directly that for &,(p(z;7;5)) =z + Y bjrz*,
k=2

sin (km/8)

FNEOR (k=2,3,...,7)

6% + bjs—k| < (1+bj7)-

for each 7 = 1,2,...,7 and for all ¥ > —1. This set of coefficient conditions was
shown in [13] to be necessary for univalence. In addition, we have used a symbolic
manipulation program and the Schur-Cohn Criteria to verify that, for j = 1,2,...,7,
the derivative of each ®,(p(z;7;7)) is nonzero in A for ¥ = 0,1,2,...,15. Since

neither of the conditions is sufficient for univalence, this leaves us with the following

Open Problem 1. Find a univalent polynomial of degree 7, p, such that &,(p) is
not univalent for some v > —1.

3. Since for ¢, € P,, lim ®,(¢n) = gn € Pn, and (y+1)/(7 +n) <1, it is also
Yoo

natural to pose
Open Problem 2. For v large enough, show that &.(P,) C P, for all n.
3. THE OPERATOR ¥(a,b,c;-).
Using a method due to Khokhlov [3], we obtain:
THEOREM 2. A necessary and sufficient condition such that Q(a,b,c;T*(c)) C

T*(a) is that a >0, 5> 0, ¢>a+b and I'(c — a — b)I'(c) < 2I'(c — a)['(c ~ b).

PROOF: For f(z)=2— Y. anz" € T*(a), let
n=2

9(z) = Ya,b,c; f) =2z — Z dnz"

n=2

where d,, = ((a),,_;(0),,_1)/(()n_1(1),,_,) - @an = 0. From (1), g € T*(«) if and only
l-«
Thus,

if 3 ((n—a)/(1—a))ld.] <1. We also know [10] that |a,| <

n=2 n-—uo«

n=2 n=2

It is well-known [14] that F(a,b,c;2) is convergent in A for ¢ > a + b and
F(a,b,¢;1) = T(c — a — b)T(c)/(T(c — a)[(c — b)). Therefore, for ¢ > a + b, we have
Y ((n—a)/(1 = a))ldn| < 1 if and only if (I'(c — a — b)(c)/T(c — a)l(c — b)) — 1 <

n=2

1. L
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Remark. For ¢ > 3, we note that (1,1,¢;T*(a)) C T*(a). Therefore, for n > 2,
the generalised Biernacki operators

z ™ T2
n!zl""/ / I@d‘r] coodry,
0o Jo 0 T1

preserve the class T*(a).
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