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The linear and nonlinear dynamics of centrifugal instability in Taylor–Couette flow are
investigated when fluids are stably stratified and highly diffusive. One-dimensional local
linear stability analysis (LSA) of cylindrical Couette flow confirms that the stabilising
role of stratification in centrifugal instability is suppressed by strong thermal diffusion
(i.e. low Prandtl number Pr ). For Pr � 1, it is verified that the instability dependence
on thermal diffusion and stratification with the non-dimensional Brunt–Väisälä frequency
N can be prescribed by a single rescaled parameter PN = N 2 Pr . From direct numerical
simulation (DNS), various nonlinear features such as axisymmetric Taylor vortices at
saturation, secondary instability leading to non-axisymmetric patterns or transition to
chaotic states are investigated for various values of Pr � 1 and Reynolds number Rei .
Two-dimensional bi-global LSA of axisymmetric Taylor vortices, which appear as primary
centrifugal instability saturates nonlinearly, is also performed to find the secondary critical
Reynolds number Rei,2 at which the Taylor vortices become unstable by non-axisymmetric
perturbation. The bi-global LSA reveals that Rei,2 increases (i.e. the onset of secondary
instability is delayed) in the range 10−3 < Pr < 1 at N = 1 or as N increases at Pr = 0.01.
Secondary instability leading to highly non-axisymmetric or irregular chaotic patterns is
further investigated by three-dimensional DNS. The Nusselt number Nu is also computed
from the torque at the inner cylinder for various Pr and Rei at N = 1 to describe how the
angular momentum transfer increases with Rei and how Nu varies differently for saturated
and chaotic states.
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1. Introduction
Thermal diffusion in fluid flows is characterised by the (thermal) Prandtl number
Pr = ν0/κ0, which denotes the ratio between kinematic viscosity ν0 and thermal
diffusivity κ0. The Prandtl number Pr varies from fluid to fluid; for instance, we typically
consider Pr ∼ O(103) for glycerol, Pr � 7 for water, Pr � 0.7 for air, Pr ∼ O(10−1) in
the Earth’s liquid outer core, Pr ∼ O(10−2) for liquid metals, Pr ∼ O(10−6) or less in
the interior of the Sun and stars (Calkins et al. 2012; Horn et al. 2013; Garaud 2020a;
Legaspi & Waite 2020). The Prandtl-number dependence has been examined for various
flows coupled with heat transfer. In convection, Kerr & Herring (2000) studied a thermal
convection problem with no-slip vertical boundaries and free-slip lateral boundaries and
they proposed different scaling laws for the Nusselt number Nu versus the Rayleigh
number Ra transitions as Nu ∼ Ra2/7 for Pr ∼ O(1) and Nu ∼ Ra1/4 for low Pr � 1.
Miquel et al. (2020) investigated the convection in a different configuration with internal
sources and sinks and they proposed a different scaling law as Nu ∼ Ra1/2 Prχ , where
the exponent χ transitions from χ � 1/2 for Pr � 0.04 to χ � 1/6 for Pr > 0.04. The
Prandtl-number dependence has also been explored in studies of stratified flows. For
instance, it is found that turbulence in stably stratified fluids permits high-wavenumber
temperature fluctuation that leads to the appearance of small-scale turbulence structures
as Pr increases when Pr > 1 (Legaspi & Waite 2020). The effect of thermal diffusion
is examined in a study of exact coherent structures in stratified plane Couette flow in the
limits of either Pr → 0 or Pr → ∞, the former in which the thermal diffusion is dominant
over stratification and the density variation away from a linear profile of the stratification
vanishes and the latter in which the density can be mixed and homogenised by advection
and its stratification profile deviates from a linear profile (Langham et al. 2020).

Fluid flows with stratification and strong thermal diffusion with Pr � 1 have been the
subject of interest in geophysics and astrophysics due to their relevance to the interior of
the Earth and stars including the Sun (Lignières 1999; Calkins et al. 2012; Garaud 2020a).
Figure 1 illustrates a configuration in which a fluid parcel is hypothetically displaced
upwards over a length scale L0 in a stably stratified fluid with the temperature gradient
along the vertical direction of gravity. The temperature of the parcel is lower than the
surrounding temperature so the parcel absorbs heat at a rate with a characteristic diffusion
time scale τdi f f = L2

0/κ0. Simultaneously, the stratification acts as a restoring force on
the parcel leading to internal oscillation with a period τint = 1/N0, where N0 is the
dimensional Brunt–Väisälä frequency derived from the stratification. On the one hand,
if the thermal diffusivity is low as κ0 � N0L2

0 (i.e. the diffusion time scale is much larger
than the internal oscillation period as τdi f f � τint ), the restoring force is dominant and
the fluid parcel descends to the original position due to the gravitational force, a well-
known mechanism for the generation of internal gravity waves. On the other hand, if the
thermal diffusivity is high as κ0 � N0L2

0 (i.e. τdi f f � τint ), the gravitational force will
be weakened due to the rapidly increased temperature of the fluid parcel. In this case, the
parcel descends and stops at a position higher than the original position (figure 1a). This
implies that strong thermal diffusion can suppress the internal oscillation and the effect of
stratification suppressing the vertical fluid motion becomes weak as a consequence.

Such a stratification effect affected by strong thermal diffusion has been considered
in prescribing shear instability-driven turbulence and associated angular momentum
transport in stellar radiation zones where fluids are stably stratified and the Prandtl
number Pr is low. For instance, for low Péclet number Pe = RePr , where Re is the
Reynolds number, Lignières (1999) proposed a small-Péclet-number approximation that
provides an asymptotic form of the Boussinesq equations in the small-Pe limit where
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Figure 1. (a) Illustration of how the internal oscillation of a fluid parcel in stably stratified fluid is suppressed
by a fast thermal diffusion process. (b) Schematic of Taylor–Couette flow with stable temperature
stratification.

thermal diffusion and stratification can be combined and described as a single physical
process. For vertical shear instability in stratified and highly diffusive fluids, Lignières
et al. (1999) revealed that instability characteristics for various N0 and Pr � 1 can be
expressed in terms of a single rescaled number RP = Ri Pe, where Ri = N 2

0 /S2
0 is the

Richardson number with a characteristic shear S0. Instead of the classical Richardson
number criterion for shear instability in stratified flow, Ri < 1/4, the modified Richardson
number criterion RP < O(1) is adopted in the prescription of turbulent effective viscosity
in the low-Pe limit for simulations of the evolution of stars (e.g. Zahn 1992; Mathis
et al. 2018; Prat & Mathis 2021). For horizontal shear flows in stratified-rotating fluids,
Park et al. (2020, 2021b) reported similar dynamical behaviours such as the stratification
effect suppressed by high thermal diffusivity or instability characteristics described by the
rescaled parameter RP for shear instabilities in the low-Pe limit. The small-Péclet-number
approximation with the rescaled parameter RP is also used in turbulence simulations of
horizontal and vertical shear flows in stratified and highly diffusive fluids (Prat & Lignières
2013, 2014) and more attention has been paid recently to the low-Pr and low-Pe regimes
in stratified turbulence (Cope et al. 2020; Garaud 2020a; Chang & Garaud 2021; Garaud
et al. 2024b). It is noteworthy that Péclet numbers of actual astrophysical systems are too
high (e.g. Pe ∼ O(107) with Re ∼ O(1013) and Pr ∼ O(10−6) for the solar tachocline;
see also Garaud 2020b) and fully resolved astrophysical turbulence for such high Re and
Pe is not achievable yet from any state-of-the-art simulations. The current study also
cannot address high-Re/high-Pe turbulence but still aims to explain the role of strong
thermal diffusion at low Pr .

Despite the increasing interest in the effect of strong thermal diffusion on stratified
shear flows, the Prandtl-number dependence has not been studied considerably in the
context of Taylor–Couette flow, a canonical shear flow between two concentric cylinders
rotating independently, in a stably stratified fluid (figure 1b). Stratification in Taylor–
Couette flow tends to suppress the vertical fluid motion and, as a result, the onset of
centrifugal instability is delayed and the vertical length scale of axisymmetric Taylor
vortices is reduced as the stratification becomes strong (Withjack & Chen 1975; Boubnov
et al. 1995; Caton et al. 2000). An interesting phenomenon in stratified Taylor–Couette
flow is non-axisymmetric strato-rotational instability (SRI), which occurs due to the
resonance between inertia–gravity waves confined between the two cylinders (Molemaker
et al. 2001; Yavneh et al. 2001). The SRI has been explored extensively by theoretical
investigations (e.g. Rüdiger & Shalybkov 2009; Le Dizès & Riedinger 2010; Park & Billant
2013; Leclercq et al. 2016; Wang & Balmforth 2018; Robins et al. 2020), experiments (e.g.
Le Bars & Le Gal 2007; Ibanez et al. 2016; Rüdiger et al. 2017; Park et al. 2018; Seelig
et al. 2018) and numerical simulations (e.g. Lopez & Marques 2020; Meletti et al. 2021;
Lopez & Marques 2022). These instability studies considered the Prandtl number of O(1)
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for fluids like water or air or simply Pr = ∞ to neglect the effect of thermal diffusion
in theoretical analyses, or they considered the analogous Schmidt number Sc = ν0/D0
(where D0 is a diffusivity of scalars like density, salinity, etc.) of O(100) if stratification of
water by salt is considered in experiments. Investigating the dynamics of stratified Taylor–
Couette flow under the influence of thermal diffusion, in particular in the low-Pr limit,
is important as the results can further be used to provide insights into large-scale flows
and propose turbulent viscosity models in multi-physics simulations of astrophysical and
geophysical systems such as simulations of the evolution of stars (Richard & Zahn 1999;
Dubrulle et al. 2005). However, Taylor–Couette flow in stratified and highly diffusive
fluids is still poorly understood and this motivates our study of stratified Taylor–Couette
flow and firstly its centrifugal instability under the influence of strong thermal diffusion at
low Prandtl number Pr � 1.

The paper consists of the following sections to investigate the centrifugal instability
of Taylor–Couette flow in stratified and diffusive fluids. In § 2, the problem formulation
and details of numerical methods are provided. In § 3, one-dimensional (1-D) local linear
stability analysis (LSA) is performed to present LSA results on centrifugal instability of
cylindrical Couette flow for various parameters. In § 4, two-dimensional (2-D) and three-
dimensional (3-D) direct numerical simulations (DNS) are conducted to investigate the
nonlinear dynamics of centrifugal instability such as saturation, secondary instability or
transition to chaotic states. In § 5, conclusion and discussion are provided.

2. Problem formulation and methodology

2.1. Navier–Stokes equations under the Boussinesq approximation
In this study, we consider the Boussinesq approximation in which the reference density
ρ0 is assumed to be much larger than the density variation � (i.e. ρ0 � �). The density
variation � is assumed to satisfy a linear relation with the total temperature ϑ as
�/ρ0 = −α0(ϑ − ϑ0) where α0 > 0 is the thermal expansion coefficient and ϑ0 is the
reference temperature. For velocity U = (Ur , Uθ , Uz), temperature variation Θ = ϑ − ϑ0
and associated pressure variation P in cylindrical coordinates (r, θ, z), we consider the
following continuity, momentum and energy equations:

∇ · U = 0, (2.1)

∂U
∂t

+ U · ∇U = − 1
ρ0

∇ P + α0gΘ	ez + ν0∇2U, (2.2)

∂Θ

∂t
+ U · ∇Θ = κ0∇2Θ, (2.3)

where g is the gravitational acceleration in the vertical direction z, ν0 is the kinematic
viscosity, κ0 is the thermal diffusivity and ∇2 is the Laplacian operator. We consider
cylindrical Couette flow in a stably stratified fluid as a base state with base velocity
U B = (0, VB(r), 0) and base temperature TB(z) as

VB(r) = Ar + B

r
, A = Ωi

μ − η2

1 − η2 , B = Ωi R2
i

1 − μ

1 − η2 , TB(z) = �T

�z
z, (2.4)

where VB(r) is the base azimuthal velocity, A and B are constants as a function of the
angular velocities Ωi and Ωo and radii Ri and Ro (where the subscripts i and o denote
the inner and outer cylinders, respectively), μ = Ωo/Ωi is the angular velocity ratio,
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η = Ri/Ro is the radius ratio and �T is the temperature difference along the vertical
distance �z. Throughout this paper, we consider only the case in which the outer cylinder
is fixed and only the inner cylinder rotates (i.e. Ωo = 0 and μ = 0). The temperature
gradient �T/�z is assumed to be positive and constant so the fluid is stably stratified and
the base temperature TB increases linearly with z. The base pressure PB(r, z) balances the
velocity VB and temperature TB by satisfying the following relations:

−V 2
B

r
= − 1

ρ0

∂ PB

∂r
, 0 = − 1

ρ0

∂ PB

∂z
+ α0gTB . (2.5)

Equations (2.1)–(2.3) can be expressed in a non-dimensional form by considering Ri as
the reference length, Ω−1

i as the reference time, RiΩi as the reference velocity, ρ0 R2
i Ω2

i
as the reference pressure and �T as the reference temperature. The distance �z can
be chosen arbitrarily without loss of generality; thus we choose �z = Ri for simplicity.
The coordinates z and r are considered non-dimensional hereafter, and hence the base
temperature can simply be expressed as TB(z) = z.

We consider perturbation with its velocity u = U − U B = (ur , uθ , uz), pressure p =
P − PB and temperature T = Θ − TB . By applying the base state and perturbation to
(2.1)–(2.3) and subtracting the base-state equations (2.4)–(2.5), we obtain the Navier–
Stokes equations for perturbation as follows:

∂ur

∂r
+ ur

r
+ 1

r

∂uθ

∂θ
+ ∂uz

∂z
= 0, (2.6)

∂ur

∂t
+ Ω

∂ur

∂θ
− 2Ωuθ + Nr = −∂p

∂r
+ 1

Re

(
∇2ur − ur

r2 − 2
r2

∂uθ

∂θ

)
, (2.7)

∂uθ

∂t
+ Ω

∂uθ

∂θ
+ Zur + Nθ = −1

r

∂p

∂θ
+ 1

Re

(
∇2uθ − uθ

r2 + 2
r2

∂ur

∂θ

)
, (2.8)

∂uz

∂t
+ Ω

∂uz

∂θ
+ Nz = −∂p

∂z
+ N 2T + 1

Re
∇2uz, (2.9)

∂T

∂t
+ Ω

∂T

∂θ
+ uz + NT = 1

RePr
∇2T, (2.10)

where Ω(r) = VB/r is the base angular velocity, Z(r) = (1/r)d(r2Ω)/dr is the base axial
vorticity and Nr , Nθ , Nz and NT are nonlinear terms:

Nr = ur
∂ur

∂r
+ uθ

r

∂ur

∂θ
+ uz

∂ur

∂z
− u2

θ

r
, (2.11)

Nθ = ur
∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uz

∂uθ

∂z
+ ur uθ

r
, (2.12)

Nz = ur
∂uz

∂r
+ uθ

r

∂uz

∂θ
+ uz

∂uz

∂z
, (2.13)

NT = ur
∂T

∂r
+ uθ

r

∂T

∂θ
+ uz

∂T

∂z
. (2.14)

The parameters Re, N and Pr are the Reynolds number, non-dimensional Brunt–Väisälä
frequency and Prandtl number, respectively, which are defined as
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Re = R2
i Ωi

ν0
, N =

√
α0g

Ω2
i

�T

�z
, Pr = ν0

κ0
. (2.15)

For convenience in comparison with other literature, we also use a conventional inner-
cylinder-based Reynolds number Rei defined as

Rei = RiΩi d

ν0
= Re

(
1 − η

η

)
, (2.16)

where d = Ro − Ri is the gap size between the two cylinders.

2.2. Pseudo-spectral formulation for direct numerical simulation
In this study, spectral-based DNS are conducted to solve (2.6)–(2.10) numerically. To do
so, we decompose the perturbation into the sum of modes using the following Fourier
representation: ⎛

⎜⎜⎜⎝
ur
uθ

uz
T
p

⎞
⎟⎟⎟⎠=

M∑
j=−M

K∑
l=−K

⎛
⎜⎜⎜⎝

ũjl(r, t)
ṽjl(r, t)
w̃jl(r, t)
T̃jl(r, t)
p̃jl(r, t)

⎞
⎟⎟⎟⎠ exp

(
imjθ + ikl z

)
, (2.17)

where M and K are the cut-off numbers of modes considered in the azimuthal direction
θ and axial direction z, respectively, ũjl , ṽjl , w̃jl , p̃jl and T̃jl are the time-dependent mode
shapes, m j = jm is the j th multiple of the principal azimuthal wavenumber m and kl = lk
is the lth multiple of the principal axial wavenumber k. The above ansatz (2.17) is used
for various problems such as the Taylor–Couette formulation in nsCouette code (López
et al. 2020) or convection problems (Saltzman 1962; Park et al. 2021a). The formulation
is also analogous to semi-linear models, which are applied to centrifugal instability of anti-
cyclonic vortices (Yim et al. 2020, 2023). The semi-linear theory allows us to investigate
directly nonlinear interaction between base flow and an instability mode, and the method
is generalised by considering nonlinear interaction among multiple instability modes in
low-order harmonics while neglecting the triad interaction leading to harmonics of orders
higher than the cut-off numbers. For each mode with indices j and l, we apply the ansatz
(2.17) to (2.6)–(2.10) and obtain

∂ ũjl

∂r
+ ũjl

r
+ imj ṽjl

r
+ iklw̃jl = 0, (2.18)

∂ ũjl

∂t
+ imjΩ ũjl − 2Ωṽjl + Ñr, jl = −∂ p̃jl

∂r
+ 1

Re

(
∇̃2

jl ũjl − ũjl

r2 − 2imj ṽjl

r2

)
, (2.19)

∂ṽjl

∂t
+ imjΩṽjl + Zũjl + Ñθ, jl = − imj p̃jl

r
+ 1

Re

(
∇̃2

jl ṽjl − ṽjl

r2 + 2imj ũjl

r2

)
, (2.20)

∂w̃jl

∂t
+ imjΩw̃jl + Ñz, jl = −ikl p̃jl + N 2T̃jl + 1

Re
∇̃2

jlw̃jl , (2.21)
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∂ T̃jl

∂t
+ imjΩ T̃jl + w̃jl + ÑT, jl = 1

RePr
∇̃2

jl T̃jl , (2.22)

where Ñr, jl , Ñθ, jl , Ñz, jl and ÑT, jl are the terms convoluted from the nonlinear terms
(2.11)–(2.14) using the Fourier transform and ∇̃2

jl = ∂2/∂r2 + (1/r)∂/∂r − k2
l − m2

j/r2 is
the modal Laplacian operator. For the boundary conditions, we consider

ũjl = ṽjl = w̃jl = ∂ T̃jl

∂r
= 0, (2.23)

at both cylinders r = 1 and r = 1/η.
An advantage of using the equations in a modal form is that (2.18)–(2.22) can further be

simplified by eliminating the pressure p̃jl as follows:

A jl
∂ q̃jl

∂t
=B jl q̃jl + Ñjl , (2.24)

where q̃jl is the vector of three variables, A jl and B jl are the differential operator matrices
and Ñjl is the vector comprised of the nonlinear terms, all of which depend on indices
j and l such as whether l = 0 or not and whether j = 0 or not. We refer the reader to
Appendix A for more details of these vectors and matrices. For spatial discretisation in the
radial direction r , a spectral method using the Chebyshev collocation points is considered
(Antkowiak & Brancher 2004; Park 2012). The vector Ñjl is computed at each step using
a pseudo-spectral method, similar to that in Deloncle et al. (2008). Equation (2.24) is
written in a spectral form in the azimuthal and axial directions and we use the backward
Fourier transform to obtain the vector qjl in the physical space (r, θ, z). Then qjl is used
to compute the nonlinear term Njl in the physical space and apply the forward Fourier
transform to Njl to compute Ñjl in the spectral space (r, m j , kl). In this pseudo-spectral
approach, we consider the numbers of collocation points Nθ = 2M + 1 and Nz = 2K + 1
in the azimuthal and axial directions, respectively. The pseudo-spectral approach is
similar to that in Guseva et al. (2015) who also consider the axial periodicity with the
Fourier method but utilise a fractional time-stepping method by carefully computing an
intermediate pressure using the influence-matrix method, which is especially effective in
solving equations for the magnetic field. On the contrary, we avoid the use of the pressure
p̃jl by considering different operator matrices A jl and B jl that depend on the indices
j and l. Unlike Deloncle et al. (2008), the de-aliasing technique, which is required in
turbulence simulations, is not implemented as the Reynolds number Rei considered in this
work is not large enough to observe small-scale turbulence. For time advancement, we use
a conventional semi-implicit scheme (see e.g. Kim et al. 1987) with the Crank–Nicolson
method for the linear term and the Adam–Bashforth method for the nonlinear term. For
instance, at each step n, we find the next step solution q̃(n+1)

jl by solving numerically the
discretised version of (2.24):(

A jl − �t

2
B jl

)
q̃(n+1)

jl =
(
A jl + �t

2
B jl

)
q̃(n)

jl + �t

2

(
3Ñ

(n)

jl − Ñ
(n−1)

jl

)
, (2.25)

where �t is the time step. In this study, the time step �t is fixed to �t = 0.01, which is
found to be sufficiently small for parameters considered in this study. It is verified that the
Courant–Friedrichs–Lewy condition for perturbation velocity is satisfied and every DNS
demonstrates no numerical divergence with this �t .
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2.3. One-dimensional local linear stability analysis
By assuming that the perturbation is infinitesimally small, we can neglect nonlinear terms
and perform 1-D local LSA using the normal mode:⎛

⎜⎜⎜⎝
ur
uθ

uz
T
p

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

û(r)

v̂(r)

ŵ(r)

T̂ (r)

p̂(r)

⎞
⎟⎟⎟⎠ exp (imθ + ikz − iωt) + c.c., (2.26)

where c.c. denotes the complex conjugate, û, v̂, ŵ, p̂ and T̂ are the mode shapes, m is the
azimuthal wavenumber, k is the axial wavenumber and ω is the complex frequency ω =
ωr + iωi , where ωr = Re(ω) is the temporal frequency and ωi = Im(ω) is the temporal
growth rate. Throughout the paper, the non-dimensional wavenumber kd = kd/Ri =
k(1 − η)/η rescaled by the gap size d is also used for convenience in comparison with
other literature. The normal mode (2.26) is applied to (2.6)–(2.10) with the nonlinear terms
neglected and, after manipulations, we can eliminate the pressure mode shape and obtain
the following simplified eigenvalue problem:

−iωAq̂ =Bq̂, (2.27)

where q̂ = (û, v̂, T̂ )T and A and B are the operator matrices, which are essentially the
same as A11 and B11, respectively, the operator matrices in (2.24) with j = l = 1. To
solve the eigenvalue problem (2.27), the MATLAB routine eig is used with the following
boundary conditions imposed at both cylinders r = 1 and r = 1/η:

û = v̂ = ŵ = dT̂

dr
= 0. (2.28)

The Chebyshev spectral method is used for discretisation in the radial direction r and
a number of collocation points Nr between 60 and 120 is considered in this study. The
choice of Nr depends on how large are the parameters such as the Reynolds number Re or
the Péclet number Pe = RePr , how the eigenmodes are confined near the boundaries, etc.
For more details of the LSA and numerical methods, we refer the reader to our previous
work (e.g. Park 2012; Park & Billant 2013) that used the same code.

2.4. Two-dimensional bi-global linear stability analysis
For parameters considered in this study, 1-D LSA reveals that the axisymmetric mode
with m = 0 is the most unstable one for cylindrical Couette flow. As demonstrated in
the next sections, centrifugal instability develops nonlinearly and saturates leading to
axisymmetric Taylor vortices as a new base state. The new 2-D base state Q̄(r, z) = (Ū, T̄ )

is comprised of the new base velocity Ū(r, z) = (Ū (r, z), V̄ (r, z), W̄ (r, z)) and the new
base temperature T̄ (r, z). For this Taylor vortex flow, we can analyse its secondary
instability through 2-D bi-global LSA by considering a non-axisymmetric perturbation
q̄ with m 
= 0 expressed in the following ansatz:

q̄ =

⎛
⎜⎜⎜⎝

ūr
ūθ

ūz

T̄
p̄

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

ûm(r, z)
v̂m(r, z)
ŵm(r, z)
T̂m(r, z)
p̂m(r, z)

⎞
⎟⎟⎟⎠ exp (imθ − iωmt) + c.c., (2.29)
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where ûm , v̂m , ŵm , T̂m and p̂m are the 2-D global mode shapes and ωm is the complex
frequency of the global mode. Similar to the 1-D local LSA, an eigenvalue problem can
be formulated as

−iωmAm q̂m =Bm q̂m, (2.30)

where Am and Bm are the operator matrices detailed in Appendix A.2 and q̂m =
(ûm, v̂m, T̂m)T is the mode shape. The matrices Am and Bm in the 2-D bi-global LSA
have a much larger size than the size of the matrices A and B in (2.27). Thus we use the
MATLAB routine eigs that computes only a few eigenvalues near a specified value using
the Krylov–Schur algorithm (Stewart 2002). To solve the eigenvalue problem (2.30), we
consider the following boundary conditions:

ûm = v̂m = ŵm = ∂ T̂m

∂r
= 0. (2.31)

The Chebyshev and Fourier spectral methods are used for discretisation in the radial
and axial directions, respectively. The Fourier method imposes the periodic boundary
condition in the axial direction z given that the axisymmetric Taylor vortices as a new
base state are also periodic in z with wavelength λz = 2π/k.

3. Linear centrifugal instability in stratified and diffusive fluids
Linear instability of stratified flows in thermally diffusive fluids, especially with low Pr ,
has been investigated for various planar shear flows in a linear profile (Barker et al. 2019,
2020; Dymott et al. 2023), a periodic sinusoidal profile (Chang & Garaud 2021; Garaud
et al. 2024b) and a hyperbolic tangent profile (Park et al. 2020, 2021b). They consider
flows with vertical shear, horizontal shear or mixed shear (where the ‘vertical’ direction
in these studies implies the direction of gravity and stratification) and investigate linear
and nonlinear properties of shear instabilities. In this section, we similarly investigate
linear centrifugal instability of Taylor–Couette flow, a horizontally sheared rotating flow,
in stratified and diffusive fluids. The linear analysis results are followed by nonlinear
simulation results presented in § 4.

3.1. Neutral stability curves
Figure 2(a) shows the growth rate ωi of the axisymmetric mode (m = 0), which is found
to be most unstable, versus the wavenumber kd for different parameter sets of (N , Pr) at
μ = 0, η = 0.9 and Rei = 200. For every case presented in figure 2(a), the corresponding
frequency ωr is zero. It is known that centrifugal instability reaches its maximum ωi,max
as k → ∞ in the inviscid limit Re → ∞ as the growth rate scales as ωi,inviscid = ωi,max

− A0/k2 (Billant & Gallaire 2005; Park et al. 2017) while the viscous growth rate scales
as ωi,viscous = ωi,inviscid − A1k2/Re (Yim et al. 2016), where A0 and A1 are positive
constants that depend on stratification and other parameters. Due to this characteristic
varying with k, the viscous growth rates are positive in a finite range of kd and each curve
reaches its peak at a certain wavenumber kd,max . As the stratification increases from N = 0
(grey) to N = 1 (black) for Pr = 1, the growth-rate curves descend while the wavenumber
kd,max at the peak of ωi increases. For fixed N = 1, as the Prandtl number Pr decreases
from Pr = 1, the growth rate increases and, remarkably, the growth-rate curves for
Pr = 10−2 and 10−4 overlap with the grey curve, the unstratified case with N = 0. This
implies that the centrifugal instability in stratified and highly diffusive fluids with Pr � 1
behaves as the instability in unstratified fluids as the effect of stratification is suppressed
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Figure 2. (a) Growth-rate curves for various sets of (N , Pr) at μ = 0, η = 0.9, Rei = 200 and m = 0.
(b) Neutral stability curves in the parameter space (N , Rei ) for different Pr at μ = 0, η = 0.9 and m = 0.
(c) The curves for different Pr same as (b) but over a wider range of N . (d) The curves same as (c) overlapped
due to the rescaled parameter PN = N 2 Pr on the abscissa. An additional thick grey line is a neutral stability
curve obtained from the small-Pr approximation.

by strong thermal diffusion. Another remarkable result in figure 2(a) is that the growth-
rate curves overlap for (N , Pr) = (10, 10−2) and (102, 10−4), the cases with the same
PN = N 2 Pr = 1. The growth rate for other values of N and Pr � 1 is invariant if the
rescaled parameter PN is the same. Such an invariant feature at the same PN but different
N and Pr is similarly reported for both vertical and horizontal shear instabilities in
vertically stratified fluids (Lignières et al. 1999; Park et al. 2020, 2021b).

Figure 2(b) display neutral stability curves, which denote the critical Reynolds number
Rei,c at which the growth rate ωi of the most unstable mode is zero, in the parameter space
(N , Rei ) for different values of Pr at μ = 0, η = 0.9 and m = 0. For Pr � 1, the neutral
stability curves increase rapidly with N , a feature similarly found in Park et al. (2017), and
the Pr = 1 case is more stable than other cases with Pr > 1 when N > 3. This is expected
as thermal dissipation is proportional to the diffusivity κ0; thus lower diffusivity κ0 (i.e.
higher Pr ) implies less thermal dissipation and more instability. In the range 0 < N < 3,
the situation is more complicated since the Pr = 10 case is more stable than other Pr
cases for the axisymmetric perturbation. Although such high-Pr dynamics at a moderate
N should be further investigated due to its great importance in geophysical and other
contexts (e.g. oceanic flows where the analogous Schmidt number Sc is around 700), the
current study will only focus on the highly diffusive regime with low Pr � 1. For Pr < 1,
the curves increase very slowly as N increases and it is difficult to see in figure 2(b) the
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Figure 3. (a,b) Real (solid) and imaginary (dashed) parts of the mode shape v̂(r) and rescaled mode T̂ (r)/Pr
for Pr = 1 (red), Pr = 10−2 (blue) and Pr = 10−4 (grey) at μ = 0, η = 0.9, Rei = 200, N = 1, m = 0 and
kd = 3.91. (c) Perturbation temperature T (r, z) reconstructed from T̂ (r) for Pr = 10−2.

increase of the curves at Pr = 10−4 and 10−6 over the range 0 � N � 20. Figure 2(c)
displays the same neutral stability curves for Pr � 1 over a wider range of N to see how
slowly the neutral stability curves increase with N as Pr decreases. This increasing trend
confirms that, while stratification enhances the stability of stratified Taylor–Couette flow,
strong thermal diffusion destabilises by preventing the stabilising role of stratification and
making the flow behave like an unstratified flow. In figure 2(d), we plot again the same
neutral stability curves but over the rescaled parameter PN on the abscissa. All the curves
now overlap each other, even for the case with Pr = 1, and can be described by a linear
relation as Rei,c = 131.6 + 8.965PN , where Rei,c = 131.6 is the critical Reynolds number
for the unstratified case N = 0 at m = 0 and η = 0.9, the number agreeing with DiPrima
et al. (1984).

Figure 3 shows the real and imaginary parts of eigenmode shapes v̂(r) and T̂ (r) for
different Pr for the wavenumber set (m, kd) = (0, 3.91). The mode shapes are normalised
by the maximum value of v̂ and it is found that the mode shape T̂ has a smaller amplitude
than v̂ for small Pr . As the Prandtl number Pr decreases, the amplitude of T̂ decreases
and scales as O(Pr). For a better comparison, figure 3(b) displays the mode shape
T̂ (r) divided by Pr and we see that the rescaled T̂ /Pr has the same mode shape for
the cases with Pr = 10−2 and Pr = 10−4. In figure 3(c), the perturbation temperature
T (r, z) = T̂ exp(ikz) + T̂ ∗ exp(−ikz) for Pr = 10−2 is plotted. Two in-phase waves,
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one near the inner cylinder and the other near the outer one, are clearly shown. The shape of
this axisymmetric mode is different from that of a non-axisymmetric centrifugal instability
mode, which is weakly sheared, or that of a SRI mode that is out of phase (Park et al. 2017,
2018). The perturbation temperature has one node (i.e. the zero crossing) around r � 1.053
as it is the first mode which becomes the most unstable. Higher-order modes with a greater
number of nodes are, on the other hand, found to be stable for the parameter set in figure 3
with Pr = 10−2.

3.2. Small-Pr approximation
The single dependence on PN for different N and Pr in the limit Pr � 1 can be
understood by taking the small-Pr approximation. Consider the Taylor expansions in
terms of small Pr as û = (û, v̂, ŵ)T = û(0) + Pr û(1) + O(Pr2) and similarly for T̂ and
p̂ as T̂ = T̂ (0) + Pr T̂ (1) + · · · and p̂ = p̂(0) + Pr p̂(1) + · · · . For the Péclet number Pe
being small, Pe = RePr � 1 (i.e. Re ∼ O(1) and Pr � 1), we obtain the leading-order
equation for T̂ (0) as

1
RePr

∇̂2T̂ (0) = 0, (3.1)

which leads to the analytic solution T̂ (0)(r) = a1Im(kr) + a2Km(kr), where a1 and a2 are
constants and Im and Km are modified Bessel functions of the first and second kinds,
respectively (Abramowitz & Stegun 1965). The constants a1 and a2 become zero if the
no-flux conditions dT̂ (0)/dr = 0 are imposed at both cylinders; thus the leading-order
solution simply becomes zero (i.e. T̂ (0)(r) = 0). At the next order, we obtain the following
equations:

dû(0)

dr
+ û(0)

r
+ imv̂(0)

r
+ ikŵ(0) = 0, (3.2)

−iωû(0) + imΩ û(0) − 2Ωv̂(0) = −d p̂(0)

dr
+ 1

Re

(
∇̂2û(0) − û(0)

r2 − 2imv̂(0)

r2

)
, (3.3)

−iωv̂(0) + imΩv̂(0) + Zû(0) = − im p̂(0)

r
+ 1

Re

(
∇̂2v̂(0) − v̂(0)

r2 + 2imû(0)

r2

)
, (3.4)

−iωŵ(0) + imΩŵ(0) = −ik p̂(0) + PN T̂ (1) + 1
Re

∇̂2ŵ(0), (3.5)

ŵ(0) = 1
Re

∇̂2T̂ (1), (3.6)

where PN = N 2 Pr . We see that the two parameters N and Pr representing thermal
stratification and diffusion are simplified into a single parameter PN , as observed in other
studies under the small-Péclet-number approximation (e.g. Lignières 1999; Park et al.
2020). By considering the continuity equation and eliminating the pressure, (3.2)–(3.6)
can further be simplified into the following eigenvalue problem:

−iωA(0)q̂(0) =B(0)q̂(0)
, (3.7)

1010 A3-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

26
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.261


Journal of Fluid Mechanics

where q̂(0) is the mode shape vector and A(0) and B(0) are the operator matrices detailed in
Appendix A. In figure 2(d), it is clearly shown that a neutral stability curve computed from
(3.7) overlaps with other neutral stability curves when they are plotted over the rescaled
Prandtl number PN = N 2 Pr as the abscissa.

3.3. Perturbation energy analysis
The instability characteristics can also be understood by examining the evolution of
perturbation energy. We first define the total perturbation energy E(t) as

E(t) = 1
2

∫ Lz

0

∫ 2π

0

∫ 1/η

1

(
u2

r + u2
θ + u2

z + N 2T 2
)

r dr dθ dz = 1
2

〈
qE : qE

〉
, (3.8)

where Lz is a vertical length of the domain assumed to be periodic (e.g. Lz = 2π/k
if we consider one periodic length of a normal mode with the axial wavenumber k),
the angle brackets denote the volume integral defined as 〈X〉 = ∫ Lz

0
∫ 2π

0

∫ 1/η

1 X rdrdθdz,
qE = (ur , uθ , uz, N T )T and : denotes the Frobenius product (for more details, see also
Park et al. 2017). For the momentum and energy equations (2.7)–(2.10), we multiply
both sides by (ur , uθ , uz, N 2T )T and, after some manipulations, we obtain the following
equation for perturbation energy:

∂ E

∂t
=
〈
−dΩ

dr
(rur uθ ) − 1

Re

[
∇u : ∇u + N 2

Pr
(∇T : ∇T )

]〉
, (3.9)

where the first term on the right-hand side within the angle brackets denotes the
contribution from the mean angular shear dΩ/dr and the second term corresponds to the
kinetic and potential energy dissipation. The contribution from the mean angular shear is
a main source of energy production if the momentum transfer term ur uθ is anti-correlated
with the mean angular shear dΩ/dr , a well-known mechanism for instability called the
Orr mechanism (Orr 1907). The momentum and thermal dissipation terms are always
negative and thus stabilise the perturbation energy. We note that this mechanism is valid
for both linear and nonlinear cases as the evolution equation (3.9) is derived from the
nonlinear perturbation equations (2.7)–(2.10) and the nonlinear terms are cancelled out in
the derivation process in which continuity is taken into account. If we apply the normal
mode (2.26) to the evolution equation (3.9), we obtain the following expression for the
growth rate:

ωi = 1

Ê

〈
−dΩ

dr

r
(
û∗v̂ + ûv̂∗)

2
− 1

Re

[
∇̂û : ∇̂û + N 2

Pr

(
∇̂ T̂ : ∇̂ T̂

)]〉
r

, (3.10)

where ∗ denotes the complex conjugate, <>r denotes the line integral over the radial
coordinate r as

〈
X̂
〉
r
= ∫ 1/η

1 X̂ rdr and Ê =
〈
|û|2 + |v̂|2 + |ŵ|2 + |N T̂ |2

〉
r
.

Table 1 presents examples of the maximum growth rate ωi,max and corresponding
wavenumber kd,max for various parameter sets of (N , Pr, m) at μ = 0, η = 0.9 and
Rei = 200. The table also details the production and dissipation terms PΩ , εk and εp,
which are defined as

PΩ =
〈
−dΩ

dr

r
(
û∗v̂ + ûv̂∗)

2

〉
r

, εk = − 1
Re

〈
∇̂û : ∇̂û

〉
r
, εp = − N 2

RePr

〈
∇̂ T̂ : ∇̂ T̂

〉
r
.

(3.11)
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N Pr m kd,max ωi,max PΩ/Ê εk/Ê εp/Ê (PΩ + εk + εp)/Ê

0 1 0 3.74 0.667 1.813 −1.146 0 0.667
1 1 0 3.91 0.574 1.769 −1.185 −0.010 0.574
1 1 1 3.90 0.564 1.763 −1.188 −0.011 0.564
1 10−2 0 3.74 0.666 1.808 −1.142 −0.0003 0.666
10 10−2 0 4.03 0.535 1.791 −1.236 −0.020 0.535

Table 1. Values of the maximum growth rates ωi,max with the corresponding wavenumber kd,max , production
and dissipation terms for various N , Pr and m at μ = 0, η = 0.9 and Rei = 200.

The production and dissipation terms are calculated by implementing the eigenfunction
into the expressions (3.11) and their sum shows a good agreement with the eigenvalue
ωi,max . For every case, the contribution from the thermal dissipation εp to the growth rate
is small as Pr � 1 and the growth rate ωi is mainly determined by a difference between
the production PΩ and the viscous dissipation εk . For the cases with Pr � 1, if we apply
the small-Pr approximation, we can re-express the thermal dissipation εp as

εp � − PN

Re

〈
∇̂ T̂1 : ∇̂ T̂1

〉
r
∼ O

(
PN

Re

)
, (3.12)

where the dependence on the two parameters N and Pr is now expressed by the single
parameter PN under the small-Pr approximation. The scaling for thermal dissipation εp ∼
O(PN /Re) is based on the assumption T̂1 ∼ O(1) under the small-Pr approximation.

3.4. Parametric investigations
Figures 4(a) and 4(b) show neutral stability curves for axisymmetric and non-
axisymmetric cases in the parameter space (N , Rei ) at μ = 0 and η = 0.9 for Pr = 1 and
10−4, respectively. For both Pr values, all the neutral stability curves increasing with N
ascend as m increases; thus the lowest curves correspond to the axisymmetric case with
m = 0. A difference between the two Pr values is that, for Pr = 1, neutral stability curves
for non-axisymmetric cases (m > 0) stay closer to the curve for the axisymmetric case
(m = 0) as N increases, while for Pr = 10−4, the curves for m > 0 stay further from the
curve for m = 0 as N increases. This implies that for strongly stratified fluids with N � 0
for Pr = 1, the axisymmetric mode will appear at the instability onset Rei = Rei,c but then
non-axisymmetric perturbations will also become unstable immediately after the onset;
thus competition between the axisymmetric and non-axisymmetric modes will occur
right above Rei > Rei,c. On the other hand, for low Pr and above the instability onset
Rei > Rei,c, the axisymmetric mode will become more dominant over non-axisymmetric
modes as N increases. Figure 4(c) displays neutral stability curves over the rescaled PN
for different Pr at m = 2. As similarly observed for the axisymmetric case m = 0 in
figure 2(c), the curves for Pr � 10−2 overlap and agree with the prediction from the
small-Pr approximation. It is found that the line from the small-Pr approximation for
m = 2 scales as Rei,c = 134.4 + 9.971PN , where Rec = 134.4 as the Rei -axis intercept
at PN = 0 corresponds to the critical Reynolds number for unstratified case N = 0. The
slope 9.971 for m = 2 is higher than the slope 8.965 of the m = 0 case. It is verified that
the critical Reynolds number and the slope increase with m and thus they are at the lowest
for m = 0. This implies that for low Pr , the axisymmetric mode with m = 0 is expected to
be the most unstable one for PN = N 2 Pr � 0.
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Figure 4. Neutral stability curves for different m for (a) Pr = 1 and (b) Pr = 10−4 at μ = 0 and η = 0.9.
(c) Neutral stability curves for different Pr over the rescaled parameter PN at μ = 0, η = 0.9 and m = 2. A
thick grey line denotes the neutral stability curve from the small-Pr approximation (SPA).
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Figure 5. Neutral stability curves obtained from the small-Pr approximation at μ = 0.

Figure 5 shows neutral stability curves obtained from the small-Pr approximation in the
wide parameter space (η, Rei ) for different values of PN at μ = 0. The curve for PN = 0
agrees with the result in DiPrima et al. (1984). The azimuthal wavenumber of the curves
corresponds to m = 0 as the axisymmetric perturbation is found to be more unstable than
non-axisymmetric perturbations. An advantage of using the small-Pr approximation is
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Case Rei N Pr Nr Nθ Nz k kd Lz Rc

1 145 1 1 60 33 33 30.6 3.40 2π/k 1.035
2 200 1 0.01 120 65 65 28.2 3.13 2π/k 1.519
3 200 1 1 120 65 65 30.6 3.40 2π/k 1.427

Table 2. Physical and numerical parameters for representative 3-D DNS cases.

that, for Pr � 1, the stability curves depend solely on a single parameter PN = N 2 Pr
instead of two parameters N and Pr ; thus parametric investigations become simplified.
As PN increases, the curves ascend and, in particular, the wide-gap Taylor–Couette flow
with small η is strongly stabilised. It is also shown that the curves are less sensitive to the
change in PN when η is close to 1 (i.e. Taylor–Couette flow with a small gap).

This section has described how linear centrifugal instability of stratified Taylor–Couette
flow is affected by strong thermal diffusion. It is shown that the stratification having a
stabilising effect on the instability is suppressed by strong thermal diffusion. For the cases
with Pr � 1, the dependence on N and Pr is simplified further by a single rescaled
parameter PN = N 2 Pr as derived by the small-Pr approximation. In § 4, we study how
the instability modes develop nonlinearly in stratified and diffusive fluids. Nonlinear
dynamical behaviours such as nonlinear saturation, secondary instability of the saturated
state or transition to chaotic states are examined.

4. Nonlinear development of centrifugal instability
In this section, we investigate via DNS how the centrifugal instability develops nonlinearly.
Table 2 provides details of physical and numerical parameters used for the main 3-D
DNS cases that are thoroughly analysed. There are more 3-D and 2-D DNS results
with similar parameters in the paper; however, we focus on the analysis of these three
main cases featuring nonlinear saturation, secondary instability and transition to chaotic
states. These nonlinear features are thoroughly discussed in the following subsections.
In the table, parameters to be noted are the axial wavenumber k and the domain length
Lz = 2π/k (i.e. one periodic length). The wavenumber k in table 2 is chosen as k = kc,
which is the critical wavenumber at the critical Reynolds number Rei = Rei,c at the onset
of primary instability. This wavenumber choice is coherent with previous studies that
investigated axisymmetric Taylor vortices for Rei > Rei,c by considering the characteristic
wavenumber k close to kc as k � kc, although a better agreement with experiments can
be met for the torque of Taylor-vortex flow and wavy-vortex flow at high Rei � Ri,c
if a suitable variation of the wavenumber is taken into account (see e.g. Meyer 1966;
Davey et al. 1968; DiPrima et al. 1984). Our study considers the Reynolds number
Rei not too far from Rei,c (i.e. the Reynolds-number ratio Rc = Rei/Rei,c < 2); thus
the flow is not turbulent. In this case, the choices of the wavenumber k = kc and the
corresponding domain length Lz = 2π/k are seemingly appropriate for comparison with
other studies. We support this presumption by providing in Appendix B the validation
against experiments and numerical verification of the domain length dependence. The
principal azimuthal wavenumber m in DNS is m = 1 so that the entire angle θ = [0, 2π]
with its azimuthal periodicity is considered as the azimuthal domain.

If the Fourier representation (2.17) is taken into account, the perturbation energy E(t)
can be expressed as the sum: E(t) =∑M

j=−M
∑K

l=−K Ẽ jl(t), where Ẽ jl is the modal
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Figure 6. (a) Time evolution of the total energy E(t) (black) and representative modal energy components:
Ẽ01 (blue), Ẽ11 (green) and Ẽ00 (red) for case 1. The dashed lines denote 1-D LSA predictions on the growth of
the modes with (m = 0) (blue) and m = 1 (green). The green dotted line denotes a 2-D bi-global LSA prediction
on the decay of the non-axisymmetric mode (m = 1). (b) Velocity field on the plane (r, z) at θ = 0 and t = 500
with contours denoting the total azimuthal velocity Uθ and vector plot denoting the transverse velocity field
(ur , uz). (c) The total temperature profile Θ(r, z) at t = 500.

energy defined as

Ẽ jl = π Lz

∫ 1/η

1

(
|ũjl |2 + |ṽjl |2 + |w̃jl |2 + N 2|T̃jl |2

)
r dr. (4.1)

For 3-D DNS conducted in this study, we consider a controlled initial condition as
the combination of axisymmetric modes with ( j, l) = (0, ±1) and Ẽ jl = 5 × 10−7 for
each mode, which is most unstable, and other unstable non-axisymmetric modes with
( j, l) = (±1, ±1) at a smaller amplitude with Ẽ jl = 5 × 10−9 for each mode. These modes
are computed from the 1-D local LSA and the non-axisymmetric modes are normalised
to be out of phase, the case in which secondary instability can be promoted at the
equilibrium state (i.e. axisymmetric Taylor vortices) reached by nonlinear saturation of the
axisymmetric mode (see also Davey et al. 1968; Eagles 1974). Consideration of the non-
axisymmetric modes with j = ±1 (i.e. m = ±1) is essential to allow the nonlinear energy
transfer to modes with higher azimuthal wavenumber |m| > 1 and axial wavenumber
jk with | j |� 1. For the analysis of secondary instability with the 2-D bi-global LSA
presented in the following subsections, 2-D DNS are also conducted by considering the
axisymmetric modes only (i.e. M = 0 and Nθ = 1).

4.1. Nonlinear saturation to axisymmetric Taylor vortices
Figure 6(a) shows an example of the time evolution of the total energy E(t) for case 1
and a few representative examples of the modal energy Ê jl for the axisymmetric mode
with ( j, l) = (0, 1), the non-axisymmetric mode with ( j, l) = (1, 1) and the mean-flow
distortion with ( j, l) = (0, 0). It is recalled that the indices j and l are from the
azimuthal wavenumber m j = jm and axial wavenumber kl = lk. At the initial stage,
the perturbation energy is small enough and the total energy grows exponentially as
E(t) ∼ exp(2Im(ω01)t), where ω01 is the growth rate of the most unstable axisymmetric
mode (i.e. j = 0 and l = 1). A good agreement between the LSA prediction and DNS
is clearly shown in figure 6(a) for the growth of the m = 0 and m = 1 modes at early
stage. Once the energy of the axisymmetric mode increases and saturates, the flow reaches
an equilibrium state featuring axisymmetric Taylor vortices as shown in figure 6(b).
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In this saturation process, the mean-flow distortion also grows and its energy Ê00 saturates.
While the energies of the axisymmetric mode and mean-flow distortion remain constant
at large t , the energy of the non-axisymmetric mode with ( j, l) = (1, 1) decays as the
Taylor vortices appear. It is not shown here but other modes with higher m or k also
decay as the Taylor vortices appear. Using the Taylor vortices at saturation as a new
base state, the bi-global LSA can predict the decay of non-axisymmetric modes with
the index l = 1 as we see a good agreement on the decay rate between the DNS and
the bi-global LSA predictions. In figure 6(c), the total temperature Θ(r, z) = TB + T at
the equilibrium state is displayed. For case 1, thermal diffusion is moderate with Pr = 1
and thus the temperature perturbation T can grow and have an amplitude comparable to
TB at equilibrium. In this case, the total temperature Θ no longer varies linearly but is
affected and mixed by the Taylor vortices; i.e. the temperature Θ increases (decreases) in
the region where the direction of the velocity is upwards (downwards). The Taylor vortices
in stratified fluids lead to baroclinicity with a radial temperature gradient; however, for
case 1 with moderate N = 1 and Rei = 145, the overturning of the temperature does not
occur and it does not become secondarily unstable. Supplementary movie 1 available at
https://doi.org/10.1017/jfm.2025.261 demonstrates the nonlinear development of the Taylor
vortices and perturbation through the saturation process. It is not shown here but with the
same physical parameters of case 1, different sets of numerical parameters are tested (i.e.
a higher-resolution case with (Nr , Nθ , Nz) = (120, 65, 65) and another case with a longer
domain Lz = 8π/k with resolution (Nr , Nθ , Nz) = (60, 33, 129)). The results are found
to be the same qualitatively with the appearance of axisymmetric Taylor vortices without
secondary instability and quantitatively with insignificant differences in the energy growth
curves.

4.2. Bi-global linear stability analysis and secondary instability
For the Taylor vortex flow, which is axisymmetric, we can explore its secondary instability
by performing a 2-D bi-global LSA. To obtain the axisymmetric base state Q̄(r, z) =
(Ū(r, z), T̄ (r, z)) for the bi-global LSA, 2-D DNS with Nθ = 1 (i.e. M = 0) are conducted
instead of 3-D DNS for computational efficiency. Another reason for using 2-D DNS is
that the base state Q̄ does not become secondarily unstable but remains saturated, and thus
we can use this steady and axially periodic base state in the bi-global LSA (see also Park
et al. 2011). Figure 7 shows examples of the growth rates of the most unstable modes versus
the Reynolds-number ratio Rc = Rei/Rei,c. Results are computed from the 1-D local LSA
(dashed lines) and 2-D bi-global LSA (solid lines). Highly non-axisymmetric modes not
appearing in figure 7 are more stable than the modes shown in figure 7. For every 1-D case
in figure 7, the axisymmetric mode with m = 0 becomes primarily unstable, as shown
by black dashed lines. In both 1-D and 2-D LSA, the axial wavenumber k = kc of the
axisymmetric mode at the onset of instability Rc = 1. In the bi-global LSA, we use the
Taylor vortices with axial wavenumber k = kc, the value at the onset of instability Rei =
Rei,c, and compute growth rates of non-axisymmetric modes with m > 0 by increasing
Rc. For Rc < 1, growth rates of non-axisymmetric modes computed from the bi-global
LSA are the same as those from the 1-D LSA since the axisymmetric Taylor vortices
are not developed and the base state obtained from 2-D DNS is essentially cylindrical
Couette flow (2.4). For the unstratified case with N = 0 in figure 7(a), the axisymmetric
mode becomes unstable at Rei,c � 131.6. As the axisymmetric Taylor vortices appear for
Rei > Rei,c, the growth rates of non-axisymmetric modes for m � 1 are attenuated by this
new base state as shown by coloured solid lines in figure 7(a). In the presence of the Taylor
vortices, growth rates of weakly non-axisymmetric modes for 1 � m � 4 increase slowly
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Figure 7. Growth-rate curves from 1-D LSA (dashed lines) and 2-D bi-global LSA (solid lines) for
(a) unstratified case N = 0 with numbers denoting m, (b) (N , Pr) = (1, 1), (c) (N , Pr) = (1, 0.01) and
(d) (N , Pr) = (1.5, 0.01). Black dashed lines denote the growth rate of the axisymmetric mode m = 0 and
other coloured curves in descending order (for Rc < 1) denote the growth rate for m = 1 and higher m.

with Rc and the non-axisymmetric mode with m = 1 becomes unstable at Rc = 1.075
(i.e. Rei = Rei,2 � 141.5, where Rei,2 denotes the secondary critical Reynolds number
at which a non-axisymmetric mode becomes secondarily unstable). When Rc = 1.075,
the growth rates of highly non-axisymmetric modes increase faster with Rc for the base
flow case with Taylor vortices than the case with cylindrical Couette flow. This implies
that highly non-axisymmetric modes are strongly promoted by the axisymmetric Taylor
vortices for large Rc. However, the m = 1 mode is the second unstable mode and it is
difficult to predict in advance which non-axisymmetric mode becomes the next dominant
mode for Rei > Rei,2 as nonlinear interactions involving the growth of the m = 1 mode
will lead to a new non-axisymmetric base state.

Characteristics of secondary instability are similar for a stratified case with (N , Pr) =
(1, 1) in figure 7(b), the case where the axisymmetric mode becomes primarily unstable at
a higher Rei,c � 140.10 and the non-axisymmetric mode with m = 1 becomes secondarily
unstable at a higher Reynolds-number ratio Rc = 1.085 (i.e. Rei,2 � 152.1) than the
unstratified case. For a highly diffusive case with Pr = 0.01 in figure 7(c), characteristics
of secondary instability change as weakly non-axisymmetric modes with m = 1 and 2
are stabilised by the Taylor vortices while a highly non-axisymmetric mode with m = 7
becomes secondarily unstable at Rc = 1.3 (i.e. Rei,2 = 171.31). This implies that the onset
of secondary instability is delayed by strong thermal diffusion at Pr = 0.01 and highly
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non-axisymmetric modes become dominant while weakly non-axisymmetric modes are
suppressed. The onset of secondary instability is further delayed as stratification becomes
stronger with N = 1.5 as shown in figure 7(d), the case where the Taylor vortices become
unstable by the m = 9 mode at a higher ratio with Rc = 1.466 (i.e. Rei,2 = 193.25).

The prominence of highly non-axisymmetric modes, which become dominant over
weakly non-axisymmetric modes with low m, can be understood by conducting
an energetics analysis. Similar to (3.9), one can obtain an equation for the
temporal evolution of perturbation energy from the linearised perturbation equations
(A11)–(A15) as

∂ Ē

∂t
=PŪ +PV̄ +PW̄ +PT̄ −Dk −Dp, (4.2)

where PŪ ,V̄ ,W̄ ,T̄ are the production terms induced by axisymmetric Taylor vortices with
(Ū , V̄ , W̄ , T̄ ) and DK ,P are the viscous and thermal dissipation terms, respectively, all of
which are defined as follows:

PŪ = −
〈
∂Ū

∂r
ū2 + Ū

r
v̄2 + ∂Ū

∂z
ūw̄

〉
, PV̄ = −

〈(
∂ V̄

∂r
− V̄

r

)
ūv̄ + ∂ V̄

∂z
v̄w̄

〉
,

PW̄ = −
〈
∂W̄

∂r
ūw̄ + ∂W̄

∂z
w̄2
〉
, PT̄ = −N 2

〈
∂T̄
∂r

ūT̄ + ∂T̄
∂z

w̄T̄

〉
,

DK = 1
Re

〈∇ū : ∇ū〉 , DP = N 2

RePr

〈∇ T̄ : ∇ T̄
〉
. (4.3)

We note that the dissipation terms DK ,P are always positive and play a stabilising role
while the production terms PŪ ,V̄ ,W̄ ,T̄ are not necessarily positive as they depend on the
correlation between the base state (Ū , V̄ , W̄ , T̄ ) and perturbation variables (ū, v̄, w̄, T̄ ).
Applying the normal mode (2.29) to (4.2) and considering the normalisation Êm = 1,
where Êm is the modal energy defined as

Êm =
〈
|ûm |2 + |b̂m |2 + |ŵm |2 + N 2|T̂m |2

〉
r z

,
〈
X̂m

〉
r z

=
∫ Lz

0

∫ 1/η

1
X̂m r dr dz, (4.4)

we obtain the following relation between the growth rate ωm,i and the modal contribution
terms:

ωm,i = P̂m,Ū + P̂m,V̄ + P̂m,W̄ + P̂m,T̄ − D̂m,K − D̂m,P , (4.5)

where

P̂m,Ū = −
〈
∂Ū

∂r
|ûm |2 + Ū

r
|v̂m |2 + ∂Ū

∂z

(
û∗

mŵm + ûmŵ∗
m

2

)〉
r z

,

P̂m,V̄ = −
〈(

∂ V̄

∂r
− V̄

r

)(
û∗

m v̂m + ûm v̂∗
m

2

)
+ ∂ V̄

∂z

(
v̂∗

mŵm + v̂mŵ∗
m

2

)〉
r z

,

P̂m,W̄ = −
〈
∂W̄

∂r

(
û∗

mŵm + ûmŵ∗
m

2

)
+ ∂W̄

∂z
|ŵm |2

〉
r z

,

P̂m,T̄ = −N 2

〈
∂T̄
∂r

(
û∗

m T̂m + ûm T̂ ∗
m

2

)
+ ∂T̄

∂z

(
ŵ∗

m T̂m + ŵm T̂ ∗
m

2

)〉
r z

,

D̂m,K = 1
Re

〈
∇̂m ûm : ∇̂m ûm

〉
r z

, D̂m,P = N 2

RePr

〈
∇̂m T̂m : ∇̂m T̂m

〉
r z

. (4.6)
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Rei N Pr m Case ωm,i P̂m,Ū P̂m,V̄ P̂m,W̄ P̂m,T̄ D̂m,K D̂m,P The sum (4.5)

200 1 0.01 0 1-D LSA 0.6274 0 1.5854 0 0 0.9577 0.0003 0.6273
200 1 0.01 1 1-D LSA 0.6165 0 1.5821 0 0 0.9654 0.0004 0.6164
200 1 0.01 1 2-D LSA −0.0147 −0.0005 1.1594 0.0030 0.0000 1.1764 0.0005 −0.0150
200 1 0.01 5 2-D LSA −0.0134 0.0112 1.2137 −0.0219 0.0000 1.2121 0.0046 −0.0136
200 1 0.01 9 2-D LSA 0.1525 0.0335 1.4639 −0.0641 0.0000 1.2700 0.0110 0.1522
200 1 0.01 13 2-D LSA −0.0303 0.0371 1.4953 −0.1295 0.0000 1.4202 0.0133 −0.0306

200 1 1 0 1-D LSA 0.5441 0 1.5699 0 0 1.0143 0.0115 0.5441
200 1 1 1 1-D LSA 0.5346 0 1.5677 0 0 1.0213 0.0119 0.5345
200 1 1 1 2-D LSA 0.0105 0.0008 1.1757 0.0018 0.0269 1.1470 0.0479 0.0103
200 1 1 5 2-D LSA 0.1336 0.0147 1.3567 −0.0086 0.0192 1.2128 0.0360 0.1334
200 1 1 9 2-D LSA 0.0736 0.0259 1.4480 −0.0430 0.0112 1.3309 0.0377 0.0734
200 1 1 13 2-D LSA −0.1690 0.0267 1.4451 −0.0981 0.0054 1.5029 0.0453 −0.1692

Table 3. Growth rates ωm,i and contribution terms computed from 1-D local LSA and 2-D bi-global LSA for
(Rei , N , Pr) = (200, 1, 0.01) and (Rei , N , Pr) = (200, 1, 1).

Examples of the growth rate ωi and instability contribution terms (4.6) computed from
the eigenfunction q̂m are presented in table 3. In the table, the growth rate ωm,i computed
from the eigenvalue problems (2.27) and (2.30) and the sum on the right-hand side of (4.5),
which is obtained by integrating the eigenfunction computed from either (2.27) for 1-D
LSA cases or (2.30) for 2-D LSA cases, are in good agreement with a very small difference
of O(10−4). For 1-D LSA cases in which the base flow is cylindrical Couette flow, the
axisymmetric mode with m = 0 is most unstable due to the largest production P̂m,V̄ and the
least total dissipation D̂m = D̂m,K + D̂m,P . This applies to both cases with Pr = 0.01 and
Pr = 1 although the thermal dissipation D̂m,P is small when Pr is small. As m increases,
the production P̂m,V̄ decreases while the dissipation D̂m increases, which leads to the
decrease of the growth rate. For m = 1, we compare the 1-D LSA cases against the 2-D
LSA cases where the base flow is 2-D axisymmetric Taylor vortices. It is clearly shown that
the growth rate decreases as the flow becomes 2-D with decrease in the total production
term P̂m = P̂m,Ū + P̂m,V̄ + P̂m,W̄ + P̂m,T̄ and increase in the total dissipation D̂m . While
other production terms such as P̂m,Ū , P̂m,W̄ and P̂m,T̄ appear for 2-D cases due to the
velocity and temperature gradients of the Taylor vortices in the radial and axial directions
(see also figure 6b,c), their contribution to the growth rate is smaller than the contribution
from the azimuthal velocity V̄ (i.e. P̂m,V̄ ). What is noteworthy in secondary instability of
axisymmetric Taylor vortices is that the total dissipation D̂m increases monotonically with
m while the total production P̂m increases and then decreases as m increases.

Figure 8(a,b) demonstrates behaviours of the growth rate ωm,i , production P̂m and
dissipation D̂m with varying m for different Pr at (Rei , N ) = (200, 1). Except for Pr =
0.01, the growth rate ωm,i increases first and then decreases as m increases (figure 8a).
This is due to the fact that the production P̂m increases only for small m and decreases as
m increases further while the dissipation D̂m increases exponentially with m (figure 8b).
This results in the growth rate ωm,i being positive only in a finite range of m. The growth
rates for Pr = 10−4 and Pr = 10−6 are very similar to each other and are higher than
ωm,i for Pr = 1. The growth rate behaviour for Pr = 0.01 is more complicated as ωm,i is
negative for m � 5 before it shows a similar increasing/decreasing trend. Only highly non-
axisymmetric modes in the range 6 � m � 12 are secondarily unstable for Pr = 0.01 while
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Figure 8. (a,b) Growth rate ωm,i (filled circles in a), production P̂m (open circles in b) and dissipation
D̂m (crosses in b) versus azimuthal wavenumber m for different Pr : Pr = 10−6 (black), 10−4 (blue), 0.01
(red) and 1 (green) at (Rei , N ) = (200, 1). (c) Production and dissipation terms versus m for (Rei , N , Pr) =
(200, 1, 0.01).

non-axisymmetric modes for other Pr cases are unstable in broader ranges of m such as
1 � m � 10 for Pr = 1 and 1 � m � 13 for Pr = 10−4 and 10−6. This implies that a highly
non-axisymmetric flow pattern, as further discussed in the next subsection, can appear for
Pr = 0.01 by secondary instability of Taylor vortices. Figure 8(c) describes variations
of all the production and dissipation terms with m at (Rei , N , Pr) = (200, 1, 0.01). The
dominant production and dissipation terms are P̂V̄ and D̂K while other terms are small.
The production term P̂W̄ becomes negative as m > 1 increases implying the stabilising
role of the axial velocity W̄ .

Figure 9 details how the growth rate, production and dissipation vary with Pr for
various non-axisymmetric modes at Rei = 200 and N = 1. In figure 9(a), we see that,
for low m � 7, the growth rate ωm,i decreases as Pr decreases from Pr = 1 and then it
increases as Pr further decreases from Pr = 10−1 to 10−2. For high m � 8, the growth
rate increases monotonically as Pr decreases. Such behaviours are similar for the total
production term P̂m while the dissipation term D̂m decreases overall monotonically as Pr
decreases, as shown in figure 9(b). As revealed in figure 8(c), the dominant contributions
to the production and dissipation come from P̂m,V̄ and D̂m,K , respectively, which have the
magnitude of O(1) (figure 9c). The Pr behaviour of P̂m,V̄ is similar to that of the total
production P̂m , which drives the growth rate. Although it is not straightforward to delineate
the Pr tendency on which non-axisymmetric mode becomes most unstable, one can infer
from figure 9(c) that highly non-axisymmetric modes overall contribute to the secondary
instability via its interaction with the azimuthal velocity V̄ when Pr is sufficiently low
as Pr < 10−2, while the behaviour is more complicated in the range 10−2 < Pr < 1. In
figure 9(d), we describe other contribution terms P̂m,Ū , P̂m,W̄ and D̂m,P , which are minor
with a magnitude of O(0.1) or less. The production P̂m,Ū is overall positive except for
m = 1 around Pr = 10−2 and behaves similar to P̂m,V̄ while the contribution P̂m,W̄ is
overall negative except for the case with m = 1, which is positive, and overall decreases as
Pr decreases. As can be inferred from the expression in (4.6), thermal dissipation D̂m,P
overall decreases to zero as Pr decreases.

Figure 10 displays different neutral stability curves obtained from the 1-D local LSA
(solid lines) and 2-D bi-global LSA (dashed lines) to show how the critical Reynolds
numbers Rei,c and Rei,2 vary with the Prandtl number Pr or the Brunt–Väisälä
frequency N . For (N , Pr) = (1, 1) in figure 10(a), primary centrifugal instability by
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Figure 10. Neutral stability curves from the 1-D LSA of the axisymmetric mode m = 0 (solid lines denoting
Rei,c) and bi-global LSA of the non-axisymmetric modes (dashed lines denoting Rei,2) for (a) N = 1 and
(b) Pr = 0.01. The numbers above the dashed lines indicate the azimuthal wavenumbers of the non-
axisymmetric mode which becomes secondarily unstable.

an axisymmetric mode occurs at Rei,c = 140.2 while secondary instability occurs at
Rei,2 = 152.0 by a non-axisymmetric mode with m = 1. At N = 1, the critical Reynolds
number Rei,c decreases monotonically as Pr decreases while the secondary critical
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Figure 11. (a) Temporal evolution of the total energy E(t) (black) and modal energy components Ẽ jl for
case 2: Ẽ00 (red), Ẽ01 (blue), Ẽ11 (green), Ẽ91 (yellow), and other energy components denoted by grey lines.
(b) The corresponding instantaneous velocity profiles at different times on the plane (r, z) at θ = 0. The
contours denote the azimuthal velocity Uθ (r, z) and the vector plot denotes the transverse velocity field
(Ur , Uz).

Reynolds number Rei,2 increases as Pr decreases from Pr = 1 to Pr = 0.06 and then
Rei,2 decreases monotonically from the peak at Pr = 0.06 as Pr further decreases. It
is noteworthy that, in the range 10−3 < Pr < 1, the secondary instability is triggered by
highly non-axisymmetric modes with m � 4; thus for Rei > Rei,2, we expect to observe
highly non-axisymmetric flow patterns in this range of Pr . This highly non-axisymmetric
pattern is further discussed in the following subsection. In the range Pr � 10−3, the
critical Reynolds numbers Rei,c and Rei,2 approach those of the unstratified case at N = 0
(i.e. Rei,c = 131.6 and Rei,2 = 141.5), the case with secondary instability triggered by a
non-axisymmetric mode with m = 1. At Pr = 0.01, it is shown in figure 10(b) that the
critical Reynolds number Rei,c does not change significantly in the range 0 � N � 2 (e.g.
Rei,c = 131.6 at N = 0 and Rei,c = 132.0 at N = 2) while the secondary critical Reynolds
number Rei,2 increases monotonically with N . The corresponding azimuthal wavenumber
of the non-axisymmetric mode, which triggers secondary instability, also increases
with N .

Neutral stability curves in figure 10 delineate the regimes of axisymmetric and non-
axisymmetric flow patterns in the parameter space (Rei , Pr) or (Rei , N ). The results
are obtained by 1-D and 2-D LSA and we discuss in the next subsection about nonlinear
simulation results how flow patterns change from axisymmetric Taylor vortices to non-
axisymmetric wavy vortices via secondary instability or how the flow transitions to a
chaotic and irregular state, a precursor stage prior to turbulence.

4.3. Transition of flow patterns
We now consider case 2 at (Rei , N , Pr) = (200, 1, 0.01), a case where the axisymmetric
Taylor vortices become secondarily unstable by highly non-axisymmetric modes (see
also figures 7c and 10a). The perturbation energy plot in figure 11(a) shows that the
axisymmetric mode becomes unstable and saturates quickly to the state of axisymmetric
Taylor vortices (e.g. figure 11b at t = 100). At this first saturation state, the energies of
weakly non-axisymmetric modes like the m = 1 mode (green line in figure 11a) decay
exponentially. In contrast, highly non-axisymmetric modes like the m = 9 mode (yellow
line in figure 11a) become unstable as the axisymmetric Taylor vortices sustain and their
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Figure 12. Time evolution of the vertical velocity uz in the (x, y) plane at z = 0 for case 2.

amplitudes become comparable to that of the axisymmetric mode as t > 200. The flow
reaches a second saturation state in which the Taylor vortices start to oscillate vertically
(figure 11b and supplementary movie 2) and become non-axisymmetric. The transition
at which non-axisymmetric modes become dominant is clearly illustrated by the vertical
velocity uz(x, y) plot for different time t (figure 12 and supplementary movie 3). The
most energetic non-axisymmetric mode with m = 1 loses its energy at the first transition
stage (e.g. uz at t = 100) while other non-axisymmetric modes with higher m gain their
energies and become comparable in the transition stage 150 < t < 200. Weakly and highly
non-axisymmetric modes compete during the transition (e.g. uz at t = 150 and 190) and
after t > 200, the non-axisymmetric mode with m = 9 becomes the second dominant
mode after the axisymmetric mode m = 0 forming the wavy Taylor vortices. This non-
axisymmetric pattern in uz has a maximum amplitude around the centreline between the
two cylinders and is different from the feature of SRI, which is triggered by two out-of-
phase inertia–gravity waves confined near the two cylinders and has maxima near the
cylinders (Park & Billant 2013; Park et al. 2017). Contours of the azimuthal vorticity
ωθ = ∂ur/∂z − ∂uz/∂r in figure 13(a) clearly show the axisymmetric Taylor vortices at
t = 100 as the first saturation state and non-axisymmetric wavy Taylor vortices as the
second saturation state. Various modal energies of the perturbation are expected to either
saturate or decay after t > 500 and thus non-axisymmetric Taylor vortices sustain for
large t .
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Figure 13. (a) Contours of the azimuthal vorticity ωθ at the boundary surfaces for case 2. (b) Profiles of the
averaged velocity Ūθ (r) and cylindrical Couette flow VB(r) for case 2. (c) Nusselt number Nu as a function of
time t for case 2 (black) and case 3 (blue).

Figure 13(b) shows profiles of the total averaged azimuthal velocity Ūθ (r, t) = VB(r) +
ṽ00(r, t), the latter which is the azimuthal velocity of the mean-flow distortion denoting
the azimuthal perturbation velocity averaged in the directions θ and z. Compared with the
profile of Ūθ at t = 100 for the axisymmetric Taylor vortices at the first saturation, the
distortion in the azimuthal velocity is reduced for non-axisymmetric wavy Taylor vortices
at the second saturation. The reduced distortion in mean flow implies the reduction in the
velocity gradient at the inner cylinder and the corresponding torque applied at the inner
cylinder. Following Martínez Arias (2015), we define an axially averaged non-dimensional
torque G at the inner cylinder as

G =
(

ηRei

1 − η

)
1

2π Lz

∫ 2π

0

∫ Lz

0

(
Uθ

r
− ∂Uθ

∂r

)∣∣∣∣
r=1

dθ dz, (4.7)

which gives the laminar torque G lam for cylindrical Couette flow Uθ = VB(r) as

G lam = 2η(1 − μ)Rei

(1 + η)(1 − η)2 . (4.8)

We also define the Nusselt number Nu as Nu = G/Glam, which is the ratio between the
transverse convective transport of angular velocity and the molecular transport of angular
velocity as a measure of the non-dimensional angular momentum transfer (Dubrulle &
Hersant 2002; Eckhardt et al. 2007; Martínez Arias 2015). Figure 13(c) shows how
the Nusselt number Nu changes over time for case 2 (black line). Compared with the
axisymmetric Taylor vortices in the range 50 � t � 150 having a constant Nu = 1.77
during the first saturation process, the wavy Taylor vortices at the second saturation in
the range t > 200 have a lower Nu = 1.68. This implies that the non-axisymmetric Taylor
vortices after secondary instability lead to reduced angular momentum transfer compared
with the axisymmetric Taylor vortices after primary centrifugal instability.

Case 3 with (N , Pr) = (1, 1) considers the Reynolds number Rei = 200 at the ratio
R2 = Rei/Rei,2 = 1.316, which is larger than the ratio R2 = 1.168 in case 2. In this case,
it is observed that the secondary instability bypasses the saturation but leads to an irregular
fluctuation as shown by the temporal variation of the Nusselt number Nu in figure 13(c)
and modal energies of perturbation in figure 14(a). Primary centrifugal instability breaks
down as t > 100 where other non-axisymmetric modes including the mode with m = 1
become dominant with strong nonlinear modal interaction. For case 3, the most energetic
mode varies over time and the flow exhibits a rather chaotic temporal fluctuation as shown
by the energy evolution in figure 14(a) and by the velocity and temperature fields in the
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Figure 14. (a) Temporal evolution of the total energy E(t) (black) and modal energy components Ẽ jl for
case 3: Ẽ00 (red), Ẽ01 (blue), Ẽ11 (green), Ẽ41 (brown), and other energy components denoted by grey lines.
Corresponding instantaneous velocity field uz(x, y) at z = 0 at (b) t = 200 and (c) t = 500.

(r, z) plane in supplementary movies 4 and 5. Although this irregular flow state does not
show a small length-scale structure (see also figure 14b and supplementary movie 6), the
levels of the modal energies of large-wavenumber modes are not negligible and turbulence
is expected to occur for (N , Pr) = (1, 1) at high Reynolds number Rei > 200, the range
to be further explored in a future study. The Prandtl number Pr = 1 is not small and
the temperature perturbation T is comparable with the base temperature TB . Therefore,
the fluctuation in the total temperature Θ = TB + T induced by the velocity fluctuation
is visible as shown in figure 15(a) although the overturning of temperature, which is
a potential source of baroclinic instability, does not occur. Chaotic fluctuation of the
temperature Θ after t > 100 is also clearly shown in the spatio-temporal diagram measured
near the mid-point at r = 1.05 (figure 15b).

Figure 16(a) shows how the Nusselt number Nu changes with the Reynolds number
Rei for different sets of (N , Pr): (1, 1) (blue), (1, 0.01) (red), (1, 10−4) (green) and the
unstratified case with N = 0 (black). The Nusselt number Nu is computed at the saturation
state of the axisymmetric Taylor vortices (filled circles), which are computed through 3-D
DNS with a numerical resolution the same as that in case 1, or for non-axisymmetric
wavy vortices at the second saturation (filled squares) computed by 3-D DNS with a
numerical resolution the same as that in case 2. For the flow in which its instability
does not saturate and Nu fluctuates like case 3, open squares with error bars are used to
indicate the mean, minimum and maximum Nu averaged in the time interval of fluctuation
(see e.g. figure 13c). In these cases with fluctuations, the same numerical resolution as in
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Figure 16. (a) Nusselt number Nu versus Reynolds number Rei for N = 0 (black), (N , Pr) = (1, 1) (blue),
(N , Pr) = (1, 0.01) (red) and (N , Pr) = (1, 10−4) (green). Filled circles and squares indicate Nu for the
axisymmetric Taylor vortices and non-axisymmetric wavy vortices at saturation, respectively. Open squares
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considered (see also figure 13c). (b) Nusselt number Nu same as (a) but over the rescaled Reynolds-number
ratio Rc. The grey line indicates the Nusselt number from (4.9). (c) Temporal evolution of the total energy
E(t) for different Pr at Rei = 200 and N = 1. Black line denotes the unstratified case with N = 0.

case 3 is used. It is clearly shown that Nu for cases with the axisymmetric Taylor vortices
increases fast with Rei and it increases slowly down as secondary instability occurs. The
increasing trend of the Nusselt number Nu is similar for unstratified cases with N = 0 and
stratified cases with (N , Pr) = (1, 10−4). For both sets, secondary instability leading to a
fluctuating flow state appears for Rei > 160 and there is a jump in Nu around Rei = 180.
The Nusselt number Nu continues to increase similarly for both as Rei increases further
for Rei > 180. For the cases with (N , Pr) = (1, 0.01), the Nusselt number Nu is higher
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than for other cases as secondary instability occurs at a later stage as Rei,2 = 171.31 for
Pr = 0.01. Up to Rei = 210, the breakdown of secondary instability is not observed for
Pr = 0.01. Unlike other cases with critical Reynolds numbers Rei,c = 131.6−131.7, the
centrifugal instability for (N , Pr) = (1, 1) occurs at a higher Rei,c = 140.2 and thus Nu
in this case is smaller than for other cases at the same Rei . Although the onset of primary
centrifugal instability is delayed for (N , Pr) = (1, 1), it is found that the breakdown of
instability occurs early and the fluctuation in Nu is larger than in other cases.

For a better comparison among the cases, we display in figure 16(b) the same Nu
against the Reynolds-number ratio Rc = Rei/Rei,c. For the axisymmetric Taylor vortices,
DiPrima et al. (1984) proposed the following scaling law for Nu as a function of the
ratio Rc:

Nu = 1 + A

(
1 − 1

R2
c

)
+ B

(
1 − 1

R2
c

)2

, (4.9)

where A = 1.246 and B = −0.37 are the constants for η = 0.9 according to DiPrima et al.
(1984). It is clearly shown in figure 16(b) that Nu for every case agrees well with the
scaling law (4.9) in the range Rc � 1.1 where the axisymmetric Taylor vortices are present.
This implies that Nu for the Taylor vortices, which are induced by primary centrifugal
instability, is not strongly influenced by Pr . When the flow is secondarily unstable or
chaotic, the cases with (N , Pr) = (1, 0.01) for which secondary instability appears late as
Rc > 1.3 have higher Nu than the scaling law (4.9) while other cases for which secondary
instability appears early as Rc > 1.1 have lower Nu than the proposed scaling (4.9). This
implies that the angular momentum transport represented by Nu depends on Pr once the
flow becomes secondarily unstable or chaotic. However, as figure 16(a,b) only considers
N = 1, more detailed investigations are required to confirm the relation between Nu and
Pr in a wider parameter space of (N , Rei ), an important topic to be further studied in the
future to unravel the physics of turbulent angular momentum transport that depends on
stratification and thermal diffusion.

As a summary of the nonlinear dynamics with varying Pr , we display in figures 16(c)
and 17 the temporal evolution of the total energy E(t) and instantaneous velocity fields
for different Pr at Rei = 200 and N = 1. We see in figure 16(c) that, as Pr is small,
Pr < 10−4, the energy curves collapse and become identical to the curve of the unstratified
case with N = 0. Instantaneous velocity fields obtained at t = 500 from various DNS,
which started from the same configuration of the initial condition described in the early
part of § 4, are also identical between the stratified cases with Pr = 10−5 and 10−6 and
unstratified case with N = 0. These results support the explanation in the introduction and
figure 1 that the stratification effect is suppressed by strong thermal diffusion and the flow
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behaves as unstratified flow in both linear and nonlinear regimes. Nonetheless, there still
remains a question as to whether our conclusion will remain valid for turbulent cases and
if so, up to which Reynolds number Re. Although DNS investigations like those by Prat
& Lignières (2013) verified this question for Re of O(100), further investigations should
be conducted at higher Reynolds numbers.

5. Conclusion and discussion
In this paper, linear and nonlinear dynamics of centrifugal instability of stratified Taylor–
Couette flow are studied for diffusive fluids in which the Prandtl number Pr is low,
Pr � 1. The LSA reveals that the stratification effect, which suppresses the centrifugal
instability (Boubnov et al. 1995; Caton et al. 2000), is suppressed by strong thermal
diffusion. This implies that the thermal diffusion promotes centrifugal instability of
stratified Taylor–Couette flow, a situation which can be found similarly in other contexts
like shear instabilities in stratified flows in the low-Pr limit (Lignières 1999; Garaud
2020a). When the thermal diffusion is sufficiently strong, we apply the small-Pr
approximation and find that the instability characteristics are self-similar with the new
scaled parameter PN = N 2 Pr (see also Lignières 1999; Park et al. 2020). The thermal
diffusion effect as promoting centrifugal instability is found to be the same for both
axisymmetric and non-axisymmetric perturbations. For the parameters considered here
(i.e. μ = 0, η = 0.9 and Pr � 1), it is found that the axisymmetric perturbation with
m = 0 is most unstable compared with non-axisymmetric perturbations. By conducting
DNS for the Reynolds number Rei above the critical one, Rei > Rei,c, we also study
the nonlinear evolution of centrifugal instability. In the DNS, we use controlled initial
conditions with both the axisymmetric perturbation and a smaller-amplitude non-
axisymmetric perturbation to see how they grow and interact nonlinearly and to understand
their nonlinear modal interaction leading to different states. At the initial stage, the
axisymmetric perturbation grows fastest and saturates along the nonlinear interaction
with base flow. Depending on Rei , a new mean flow in the shape of axisymmetric
Taylor vortices can become secondarily unstable by the growth of non-axisymmetric
perturbation. Unlike the case of primary instability, which is promoted by strong thermal
diffusion, the 2-D bi-global LSA of the Taylor vortices reveals that thermal diffusion in
the range 10−3 < Pr < 1 at N = 1 delays the onset of secondary instability and potentially
laminar–turbulent transition triggered by highly non-axisymmetric perturbations. We note
that the appearance of such a non-axisymmetric flow pattern by the onset of secondary
instability in highly diffusive and stratified flows has not been explored properly in
previous studies. At Pr = 1, we also examine irregular flow patterns leading to chaotic
mixing of temperature, the state as a precursor to turbulence. Furthermore, we analyse
how the Nusselt number Nu as a measure of angular momentum transfer varies with
the Reynolds number Rei for various sets of (N , Pr). It is verified that the secondary
instability slows down the increase of Nu, implying that the momentum transfer is slowly
enhanced after the onset of secondary instability.

In recent years, stratified turbulence in the low-Pr regime has been studied increasingly
not only in fluid dynamics but also in astrophysics due to its relevance to the interior of
stars and the Sun where the Prandtl number Pr is low as 10−6 or below (Garaud 2020a;
Dymott et al. 2023; Garaud et al. 2024b). Although the Reynolds numbers of astrophysical
flows cannot be reached due to their immensely large length scales, simulations at lower
Reynolds numbers and theories unveil new regimes of turbulence and give us a hint as
to how stratified turbulence behaves with strong thermal diffusion (Cope et al. 2020;
Skoutnev 2023; Garaud et al. 2024a). What has not been explored yet though in these
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turbulence studies is how the turbulence is generated via laminar–turbulent transition
processes. In this regard, the current study contributes to our knowledge of how the
centrifugal instability develops nonlinearly towards turbulence in stratified and highly
diffusive fluids. Beyond this paper, we will aim to study first the characteristics of fully
developed stratified-rotating turbulence triggered by centrifugal instability in the low-Pr
regime. At low Pr , an unexpected highly non-axisymmetric pattern can generate turbulent
flow with characteristics different from those of unstratified turbulence. Another topic to
be investigated in the future is how the SRI will behave in the presence of strong thermal
diffusion. From the perspective of linear instability, the thermal diffusion suppressing the
stratification effect is expected to suppress the SRI as well. Linear and nonlinear SRIs need
to be further explored in the low-Pr regime. The nonlinear development of the SRI is also
of great interest in geophysical and astrophysical fluid dynamics, in particular for flows
in the Keplerian or super-rotation regimes, the latter in which the outer part rotates faster
than the inner region (Dubrulle et al. 2005; Le Dizès & Riedinger 2010; Park & Billant
2013).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.261.
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Appendix A. Details of vectors and operator matrices

A.1. Vectors and operator matrices for the evolution equation (2.24) and 1-D LSA
For the case with the index l 
= 0, we consider in (2.24) the following vectors and matrices:

q̃jl =
⎛
⎝ ũjl

ṽjl

T̃jl

⎞
⎠ , Ñjl =

⎛
⎜⎜⎝

−Ñr, jl − i
kl

∂ Ñz, jl
∂r

−Ñθ, jl + m j Ñz, jl
klr

−ÑT, jl

⎞
⎟⎟⎠ , (A1)

A jl =

⎛
⎜⎜⎝

A11
jl A12

jl 0

A21
jl A22

jl 0

0 0 1

⎞
⎟⎟⎠ , B jl =

⎛
⎜⎜⎝

B11
jl B12

jl B13
jl

B21
jl B22

jl B23
jl

B31
jl B32

jl B33
jl

⎞
⎟⎟⎠ , (A2)

where

A11
jl = 1 − 1

k2
l

∂

∂r

(
∂

∂r
+ 1

r

)
, A12

jl = − imj

k2
l r

(
∂

∂r
− 1

r

)
,

A21
jl = − imj

k2
l r

(
∂

∂r
+ 1

r

)
, A22

jl = 1 + m2
j

k2
l r2

, (A3)

B11
jl = −imjΩ + imj

k2
l

(
Ω

∂

∂r
+ dΩ

dr

)(
∂

∂r
+ 1

r

)

+ 1
Re

[
∇̃2

jl − 1
r2 − 1

k2
l

∂

∂r
∇̃2

jl

(
∂

∂r
+ 1

r

)]
,
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B12
jl = 2Ω + imj

k2
l

(
Ω

∂

∂r
+ dΩ

dr

)(
imj

r

)

+ 1
Re

[
−2imj

r2 − 1
k2

l

∂

∂r
∇̃2

jl

(
imj

r

)]
, B13

jl = iN 2

kl

∂

∂r
,

B21
jl = −Z − m2

jΩ

k2
l r

(
∂

∂r
+ 1

r

)
+ 1

Re

[
2imj

r2 − imj

k2
l r

∇̃2
jl

(
∂

∂r
+ 1

r

)]
,

B22
jl = −imjΩ − im3

j Ω

k2
l r2

+ 1
Re

[
∇̃2

jl − 1
r2 + m2

j

k2
l r

∇̃2
jl

(
1
r

)]
, B23

jl = −m j N 2

klr
,

B31
jl = − i

k

(
∂

∂r
+ 1

r

)
, B32

jl = m j

klr
, B33

jl = −imjΩ + 1
RePr

∇̃2
jl . (A4)

For the case with l = 0 and j 
= 0, we consider in (2.24) the following vectors and matrices:

q̃ j0 =
⎛
⎝ ũ j0

w̃ j0
T̃ j0

⎞
⎠ , Ñ j0 =

⎛
⎜⎜⎝

−Ñr, j0 − i
m j

(
Ñθ, j0 + r

∂ Ñθ, j0
∂r

)
−Ñz, j0
−ÑT, j0

⎞
⎟⎟⎠ , (A5)

A j0 =
⎛
⎝ A11

j0 0 0
0 1 0
0 0 1

⎞
⎠ , B j0 =

⎛
⎜⎝

B11
j0 0 0

0 B22
j0 B23

j0

0 B32
j0 B33

j0

⎞
⎟⎠ , (A6)

where

A11
j0 = 1 − 1

m2
j

(
r2 ∂2

∂r2 + 3r
∂

∂r
+ 1

)
, (A7)

B11
j0 = i

m j

[
r2Ω

∂2

∂r2 + 3rΩ
∂

∂r
− r2 d2Ω

dr2 − 3r
dΩ

dr
+ (1 − m2

j )Ω

]

− 1
Rem2

j

[
∂

∂r

(
r∇̃2

j0 + r∇̃2
j0

(
r

∂

∂r

))
− m2

j ∇̃2
j0 − ∂2

∂r2 − 1
r

∂

∂r
+ 1 − 3m2

j

r2

]
,

B22
j0 = −imjΩ + 1

Re
∇̃2

j0, B23
j0 = N 2, B32

j0 = −1,

B33
j0 = −imjΩ + 1

RePr
∇̃2

j0. (A8)

For the case with j = l = 0, we consider in (2.24) the following vectors and matrices:

q̃00 =
⎛
⎝ ṽ00

w̃00
T̃00

⎞
⎠ , Ñ00 =

⎛
⎝ −Ñθ,00

−Ñz,00
−ÑT,00

⎞
⎠ , (A9)
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A00 =
⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ , B00 =

⎛
⎜⎝

1
Re

(
∇̃2

00 − 1
r2

)
0 0

0 1
Re ∇̃2

00 N 2

0 −1 1
RePr ∇̃2

00

⎞
⎟⎠ . (A10)

In the eigenvalue problem (2.27), the eigenfunction q̂ and operator matrices A and B are
the same as q̃11, A11 and B11 for given m and k (i.e. j = l = 1).

A.2. Operator matrices in the bi-global stability analysis
For the 2-D base state Q̄(r, z) = (Ū , V̄ , W̄ , T̄ ), we consider the following linearised
perturbation equations:

∂ ūr

∂r
+ ūr

r
+ 1

r

∂ ūθ

∂θ
+ ∂ ūz

∂z
= 0, (A11)

∂ ūr

∂t
+
(

Ū
∂

∂r
+ V̄

r

∂

∂θ
+ W̄

∂

∂z
+ ∂Ū

∂r

)
ūr − 2V̄

r
ūθ + ∂Ū

∂z
ūz

= −∂ p̄

∂r
+ 1

Re

[(
∇2 − 1

r2

)
ūr − 2

r2
∂ ūθ

∂θ

]
, (A12)

∂ ūθ

∂t
+
(

∂ V̄

∂r
+ V̄

r

)
ūr +

(
Ū

∂

∂r
+ V̄

r

∂

∂θ
+ W̄

∂

∂z
+ Ū

r

)
ūθ + ∂ V̄

∂z
ūz

= −1
r

∂ p̄

∂θ
+ 1

Re

[(
∇2 − 1

r2

)
ūθ + 2

r2
∂ ūr

∂θ

]
, (A13)

∂ ūz

∂t
+ ∂W̄

∂r
ūr +

(
Ū

∂

∂r
+ V̄

r

∂

∂θ
+ W̄

∂

∂z
+ ∂W̄

∂z

)
ūz = −∂ p̄

∂z
+ N 2T̄ + 1

Re
∇2

mūz,

(A14)

∂ T̄

∂t
+ ∂T̄

∂r
ūr +

(
∂T̄
∂z

+ 1

)
ūz +

(
Ū

∂

∂r
+ V̄

r

∂

∂θ
+ W̄

∂

∂z

)
T̄ = 1

RePr
∇2T̄ . (A15)

By applying the normal mode (2.29), we obtain the equations in modal form as
follows:

∂ ûm

∂r
+ ûm

r
+ imv̂m

r
+ ∂ŵm

∂z
= 0, (A16)

− iωmûm +
(
L+ ∂Ū

∂r

)
ûm − 2V̄

r
v̂m + ∂Ū

∂z
ŵm = −∂ p̂m

∂r

+ 1
Re

[(
∇̂2

m − 1
r2

)
ûm − 2imv̂m

r2

]
, (A17)
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− iωm v̂m +
(

∂ V̄

∂r
+ V̄

r

)
ûm +

(
L+ Ū

r

)
v̂m + ∂ V̄

∂z
ŵm = − im p̂m

r

+ 1
Re

[(
∇̂2

m − 1
r2

)
v̂m + 2imûm

r2

]
, (A18)

−iωmŵm + ∂W̄

∂r
ûm +

(
L+ ∂W̄

∂z

)
ŵm = −∂ p̂m

∂z
+ N 2T̂m + 1

Re
∇̂2

mŵm, (A19)

−iωm T̂m + ∂T̄
∂r

ûm +
(

∂T̄
∂z

+ 1

)
ŵm +LT̂m = 1

RePr
∇̂2

m T̂m, (A20)

where L= Ū (∂/∂r) + imV̄ /r + W̄ (∂/∂z) is the advection operator and ∇̂2
m = ∂2/∂r2 +

(1/r)(∂/∂r) + m2/r2 + ∂2/∂z2 is the modal Laplacian operator. After eliminating the
pressure p̂m , the above equations can be simplified as the eigenvalue problem (2.30) where
the operator matrices Am and Bm are defined as

Am =
⎡
⎣ A11,m A12,m 0

A21,m A22,m 0
0 0 1

⎤
⎦ , Bm =

⎡
⎢⎣

B11,m B12,m 0
B21,m B22,m N 2

− ∂T̄
∂r −1 − ∂T̄

∂z −L+ ∇̂2
m

RePr

⎤
⎥⎦ , (A21)

where

A11,m = 1 − 1
m2

∂

∂r

(
r + r2 ∂

∂r

)
, A12,m = − 1

m2
∂

∂r

(
r2 ∂

∂z

)
,

A21,m = − 1
m2

∂

∂z

(
r + r2 ∂

∂r

)
, A22,m = 1 − 1

m2
∂

∂z

(
r2 ∂

∂z

)
, (A22)

B11,m = −L− ∂Ū

∂r
+ 1

Re

(
∇̂2

m + 1
r2 + 2

r

∂

∂r

)
+ 2i

m

(
V̄

r
+ V̄

∂

∂r

)

+ 1
m2

∂

∂r

[(
rL+ Ū − r∇̂2

m

Re
+ 1

Rer

)(
1 + r

∂

∂r

)]

− i
m

∂

∂r

(
V̄ + r

∂ V̄

∂r
− 2im

Rer

)
,

B12,m = i
m

[
2V̄

∂

∂z
− ∂

∂r

(
r
∂ V̄

∂z

)]
− ∂Ū

∂z
+ 2

Rer

∂

∂z

+ 1
m2

∂

∂r

[(
rL+ Ū − r∇̂2

m

Re
+ 1

Rer

)(
r

∂

∂z

)]
,

B21,m = −∂W̄

∂r
+ 1

m2
∂

∂z

[(
rL+ Ū − r∇̂2

m

Re
+ 1

Rer

)(
1 + r

∂

∂r

)]

− i
m

∂

∂z

(
V̄ + r

∂ V̄

∂r
− 2im

Rer

)
,
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Figure 18. (a) Normalised torque G/Gc at the inner cylinder versus the Reynolds number Rei for an
unstratified case N = 0 at μ = 0 and η = 0.95. Results are from the laminar solution (black solid line),
experiments (black filled circles) from Donnelly & Simon (1960), axisymmetric 2-D DNS (blue line with
open circles) and non-axisymmetric 3-D DNS (red open squares). (b) The Nusselt number Nu versus time t
for different VCs.

B22,m = −L− ∂W̄

∂z
+ ∇̂2

m

Re
+ 1

m2
∂

∂z

[(
rL+ Ū − r∇̂2

m

Re
+ 1

Rer

)(
r

∂

∂z

)]

− i
m

∂

∂z

(
r
∂ V̄

∂z

)
. (A23)

Appendix B. Validation

B.1. Validation against experiments
To validate the current DNS code, 2-D and 3-D DNS are conducted for unstratified
cases with N = 0, μ = 0 and η = 0.95. The DNS results are compared with experimental
results from Donnelly & Simon (1960), which details an empirical relation for the torque
measured at the inner cylinder. In this case, the critical Reynolds number is Rei,c = 185
for the axisymmetric mode with kd = 3.128 (according to DiPrima et al. (1984) as well
as our 1-D LSA computation). We conduct two types of DNS: an axisymmetric 2-D
DNS by considering only the axisymmetric modes with m = 0 (e.g. M = 0 and Nθ = 1
in the DNS) and a non-axisymmetric 3-D DNS by considering both axisymmetric and
non-axisymmetric modes. For both DNS, one periodic length λz = 2π/k is considered
as the axial domain length. At each Rei , the most unstable axisymmetric mode with
kd = 3.128 with its modal energy Ẽ01 = 5 × 10−7 is considered as an initial condition
in the axisymmetric DNS. In the non-axisymmetric DNS, a non-axisymmetric mode
with (m, kd) = (1, 3.128) with a smaller energy Ẽ11 = 5 × 10−9 is added to the initial
condition. From experiments, Donnelly & Simon (1960) present the relation between the
torque and the Reynolds number Rei . In figure 18(a), we plot the non-dimensional torque
G normalised by the torque Gc at the critical Reynolds number Rei,c = 185 to facilitate
the comparison between their experiments and our DNS. In the range 1 <Rc < 1.1 (i.e.
185 < Rei < 203.5), the axisymmetric DNS demonstrating the saturation of centrifugal
instability with axisymmetric Taylor vortices agree well the experimental results for
the torque. For Rc > 1.1 (i.e. Rei > 203.5), non-axisymmetric modes also develop and
generate more complex interaction between modes and base state, leading to a new
saturated state in oscillatory motion known as wavy Taylor vortices. This explains the
torque difference between the axisymmetric 2-D and non-axisymmetric 3-D DNS cases.
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Case Nr Nθ Nz Lz

VC1 60 33 33 2π/k
VC2 120 65 65 2π/k
VC3 120 65 129 4π/k
VC4 60 33 129 8π/k

Table 4. Numerical parameters for different VCs at Rei = 200, N = 1, Pr = 1, k = 30.6.

As shown in figure 18(a), the torque measured from experiments agrees well with the
prediction from the DNS.

B.2. Validation of numerical resolution and domain size
For case 3 with (Rei , N , Pr) = (200, 1, 1), which is the case where the flow becomes
chaotic, different numerical resolutions and domain sizes are tested as detailed in table 4
where validation case (VC) 2 is the same as case 3 and other VCs have lower resolutions or
longer domain lengths than VC2. As shown in figure 18(b), the Nusselt number Nu, which
is an averaged quantity over the axial domain length, is the same for every case at saturation
and before the flow becomes chaotic. The fluctuation behaviour of Nu is the same for
VC1 and VC4 (low-resolution cases) and for VC2 and VC3 (high-resolution cases). This
implies that the choice of the axial domain size as one periodic axial length is validated for
case 3. Although the fluctuation is different between low- and high-resolution cases, their
time-averaged Nu do not vary significantly; thus the mean Nusselt numbers like those in
figure 16 may vary insignificantly with resolutions. This aspect should, however, be further
validated if the flow becomes fully turbulent at higher Reynolds numbers.
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