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Abstract. Let G ∈ {Matn(�), GLn(�), SLn(�)}, let Oq(G) be the quantum
function algebra – over �[q, q−1] – associated to G, and let Oε(G) be the specialisation
of the latter at a root of unity ε, whose order � is odd. There is a quantum Frobenius
morphism that embeds O(G), the function algebra of G, in Oε(G) as a central Hopf
subalgebra, so that Oε(G) is a module over O(G). When G = SLn(�), it is known by
[3], [4] that (the complexification of) such a module is free, with rank �dim(G). In this
note we prove a PBW-like theorem for Oq(G), and we show that – when G is Mat n or
GLn – it yields explicit bases of Oε(G) over O(G). As a direct application, we prove
that Oε(GLn) and Oε(Mn) are free Frobenius extensions over O(GLn) and O(Mn),
thus extending some results of [5].

2000 Mathematics Subject Classification. Primary 20G42. Secondary 81R50.

1. The general setup. Let G be a complex semisimple, connected, simply
connected affine algebraic group. One can introduce a quantum function algebra
Oq(G), a Hopf algebra over the ground ring �[q, q−1], where q is an indeterminate,
as in [7]. If ε is any root of 1, one can specialize Oq(G) at q = ε, which means taking
the Hopf �-algebra Oε(G) := Oq(G)/(q − ε)Oq(G). In particular, for ε = 1 one has
O1(G) ∼= O(G), the classical (commutative) function algebra over G. Moreover, if the
order � of ε is odd, then there exists a Hopf algebra monomorphism Fr:O(G) ∼=
O1(G) ↪−−−→Oε(G), called quantum Frobenius morphism for G, which embeds O(G)
inside Oε(G) as a central Hopf subalgebra. Therefore, Oε(G) is naturally a module over
O(G). It is proved in [4] and in [3] that such a module is free, with rank �dim(G). In the
special case of G = SL2, a stronger result was given in [8], where an explicit basis was
found. We shall give similar results when G is GLn or Mn := Matn; namely we provide
explicit bases of Oε(G) as a free module over O(G), where in addition everything is
defined replacing � with �. The proof is via some (more or less known) PBW theorems
for Oq(Mn) and Oq(GLn) – and Oq(SLn) as well – as modules over �[q, q−1].

Let Mn := Matn(�). The algebra O(Mn) of regular functions on Mn is the unital
associative commutative �-algebra with generators t̄i,j (i, j = 1, . . . , n). The semigroup
structure on Mn yields on O(Mn) the natural bialgebra structure given by matrix
product – see [6], Ch. 7. We can also consider the semigroup-scheme (Mn)� associated
to Mn, for which a like analysis applies: in particular, its function algebra O �(Mn) is a
�-bialgebra, with the same presentation as O(Mn) but over the ring �.
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Now we define quantum function algebras. Let R be any commutative ring with
unity, and let q ∈ R be invertible. We define OR

q (Mn) as the unital associative R-algebra
with generators ti,j (i, j = 1, . . . , n) and relations

ti,jti,k = qti,kti,j, ti,kth,k = qth,kti,k ∀ j < k, i < h,

ti,l tj,k = tj,kti,l, ti,ktj,l − tj,l ti,k = (
q − q−1) ti,l tj,k ∀ i < j, k < l.

It is known that OR
q (Mn) is a bialgebra, but we do not need this extra structure in

the present work (see [6] for further details – cf. also [1] and [12]).
As to specialisations, set �q := �[q, q−1], let � ∈ �+ be odd, let φ�(q) be the �-th

cyclotomic polynomial in q, and let ε := q ∈ �ε := �q/(φ�(q)), so that ε is a (formal)
primitive �-th root of 1 in �ε. Then

O �ε

ε (Mn) = O �q
q (Mn)

/(
φ�(q)

)
O �q

q (Mn) ∼= �ε ⊗� O �q
q (Mn).

It is also known that there is a bialgebra isomorphism

O �
1 (Mn) ∼= O �q

q (Mn)
/

(q−1)O �q
q (Mn) ↪−� O �(Mn), ti,jmod(q−1)O �q

q (Mn) �→ t̄i,j

and a bialgebra monomorphism, called quantum Frobenius morphism (ε and � as
above),

Fr�:O �(Mn) ∼= O �
1 (Mn) ↪−−−→ O �ε

ε (Mn), t̄i,j �→ t�i,j
∣∣
q=ε

whose image is central in O �ε
ε (Mn). Thus O �ε(Mn) := �ε ⊗� O �(Mn) becomes

identified – via Fr�, which clearly extends to O �ε(Mn) by scalar extension – with a
central subbialgebra of O �ε

ε (Mn), so the latter can be seen as an O �ε(Mn)-module. By
the result in [4] and [3] mentioned above, we can expect this module to be free, with
rank �n2

.
All the previous framework also extends to GLn and to SLn instead of Mn.

Indeed, consider the quantum determinant Dq := ∑
σ∈Sn

(−q)�(σ )t1,σ (1)t2,σ (2) · · · tn,σ (n) ∈
OR

q (Mn), where �(σ ) denotes the length of any permutation σ in the symmetric group
Sn. Then Dq belongs to the centre of OR

q (Mn), hence one can extend OR
q (Mn) by a

formal inverse to Dq, i.e. defining the algebra OR
q (GLn) := OR

q (Mn)[D−1
q ]. Similarly,

we can define also OR
q (SLn) := OR

q (Mn)/(Dq − 1). Now OR
q (GLn) and OR

q (SLn) are
Hopf R-algebras, and the maps OR

q (Mn) ↪−→ OR
q (GLn), OR

q (GLn) −−� OR
q (SLn),

OR
q (Mn) −−� OR

q (SLn) (the third one being the composition of the first two) given
by ti,j �→ ti,j are epimorphisms of R-bialgebras, and even of Hopf R-algebras in the
second case. The specialisations

O �ε

ε (GLn) = O �q
q (GLn)

/
(φ�(q))O �q

q (GLn) ∼= �ε ⊗� O �q
q (GLn)

O �ε

ε (SLn) = O �q
q (SLn)

/
(φ�(q))O �q

q (SLn) ∼= �ε ⊗� O �q
q (SLn)

enjoy the same properties as above, namely there exist isomorphisms O �
1 (GLn) ∼=

O �(GLn) and O �
1 (SLn) ∼= O �(SLn) and there are quantum Frobenius morphisms

Fr�:O �(GLn) ∼= O �
1 (GLn) ↪−→ O �ε

ε (GLn),

Fr�:O �(SLn) ∼= O �
1 (SLn) ↪−→ O �ε

ε (SLn)
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described by the same formulæ as for Mn. Moreover, D±1
q mod(q − 1) �→ D±1 in

the isomorphisms and D±1 ∼= D±1
q mod(q − 1) �→ D±�

q mod(q − ε) in the quantum
Frobenius morphisms for GLn (which extend those of Mn). In addition, all these
isomorphisms and quantum Frobenius morphisms are compatible (in the obvious
sense) with the natural maps which link O �q

q (Mn), O �q
q (GLn) and O �q

q (SLn), and their
specialisations, to each other.

Like for Mn, the image of the quantum Frobenius morphisms are central in
O �ε

ε (GLn) and in O �ε
ε (SLn). Thus O �ε(GLn) := �ε ⊗� O �(GLn) identifies to a central

Hopf subalgebra of O �ε
ε (GLn), and O �ε(SLn) := �ε ⊗� O �(SLn) identifies to a central

Hopf subalgebra of O �ε
ε (SLn); so O �ε

ε (GLn) is an O �(GLn)-module and O �ε
ε (SLn) is

an O �(SLn)-module.
In § 2, we shall prove (Theorem 2.1) a PBW-like theorem providing several different

bases for OR
q (Mn), OR

q (GLn) and OR
q (SLn) as R-modules. As an application, we

find (Theorem 2.2) explicit bases of O �ε
ε (Mn) as an O �ε(Mn)-module, which then

in particular is free of rank �dim(Mn). The same bases are also O �ε(GLn)-bases for
O �ε

ε (GLn), which then is free of rank �dim(GLn). Both results can be seen as extensions
of some results in [4].

Finally, in § 3 we use the above mentioned bases to prove that O �ε(Mn) is a free
Frobenius extension of its central subalgebra O �ε(Mn), and to explicitly compute
the associated Nakayama automorphism. The same we do for O �ε

ε (GLn) as well.
Everything follows from the ideas and methods in [5], now applied to the explicit
bases given by Theorem 2.2.

2. PBW–like theorems.

THEOREM 2.1. (PBW theorem for OR
q (Mn), OR

q (GLn) and OR
q (SLn) as R-modules)

Assume (q − 1) is not invertible in Rq := 〈q, q−1〉, the subring of R generated by q and
q−1.

(a) Let any total order be fixed in {1, . . . , n}×2. Then the following sets of ordered
monomials are R-bases of OR

q (Mn), resp. OR
q (GLn), resp. OR

q (SLn), as modules over R:

BM :=
{ n∏

i,j=1

tNi,j

i,j

∣∣∣∣Ni,j ∈ �∀i, j
}

B∧
GL :=

{ n∏
i,j=1

tNi,j

i,j D−N
q

∣∣∣∣N, Ni,j ∈ �∀i, j; min
({Ni,i}1≤i≤n∪ {N}) = 0

}

B∨
GL :=

{ n∏
i,j=1

tNi,j

i,j DZ
q

∣∣∣∣Z ∈ �, Ni,j ∈ �∀i, j; min{Ni,i}1≤i≤n = 0
}

BSL :=
{ n∏

i,j=1

tNi,j

i,j

∣∣∣∣Ni,j ∈ �∀i, j; min{Ni,i}1≤i≤n = 0
}
.

(b) Let � be any total order fixed in {1, . . . , n}×2 such that (i, j) � (h, k) � (l, m)
whenever j > n+1−i, k = n+1−h, m < n+1−l. Then the following sets of ordered
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monomials are R-bases of OR
q (GLn), resp. OR

q (SLn), as modules over R:

B∧,−
GL :=

{ n∏
i,j=1

tNi,j

i,j D−N
q

∣∣∣∣N, Ni,j ∈ �∀i, j; min({Ni,n+1−i}1≤i≤n∪ {N}) = 0
}

B∨,−
GL :=

{ n∏
i,j=1

tNi,j

i,j DZ
q

∣∣∣∣Z ∈ �, Ni,j ∈ �∀i, j; min{Ni,n+1−i}1≤i≤n = 0
}

B−
SL :=

{ n∏
i,j=1

tNi,j

i,j

∣∣∣∣Ni,j ∈ �∀i, j; min{Ni,n+1−i}1≤i≤n = 0
}
.

Proof. Roughly speaking, our method is a (partial) application of the diamond
lemma (see [2]): however, we do not follow it in all details, as we use a specialisation
trick as a shortcut.

If we prove our results for the algebras defined over Rq instead of R, then the same
results will hold as well by scalar extension. Thus we can assume R = Rq, and then we
note that, by our assumption, the specialised ring R := R/(q − 1)R �= {0} is non-trivial.

Proof of (a): (see also [10], Theorem 3.1, and [12], Theorem 3.5.1)
We begin with OR

q (Mn). It is clearly spanned over R by the set of all (possibly
unordered) monomials in the tij’s: so we must only prove that any such monomial
belongs to the R-span of the ordered monomials. In fact, the latter are linearly
independent, since such are their images via specialisationOR

q (Mn) −−� OR
q (Mn)/(q−

1)OR
q (Mn) ∼= OR

1 (Mn).
Thus, take any (possibly unordered) monomial in the tij’s, say t := ti1,ji ti2,j2 · · · tik,jk ,

where k is the degree of t: we associate to it its weight, defined as

w(t) := (k, d1,1, d1,2, . . . , d1,n, d2,1, d2,2, . . . , d2,n, d3,1, . . . , dn−1,n, dn,1, dn,2, . . . , dn,n)

where di,j := |{s∈{1, . . . , k}|(is, js) = (i, j)}| = number of occurrences of ti,j in t. Then
w(t) ∈ �n2+1, and we consider �n2+1 as a totally ordered set with respect to the (total)
lexicographic order ≤lex. By a quick look at the defining relations of OR

q (Mn), namely

ti,jti,k = qti,kti,j, ti,kth,k = qth,kti,k ∀ j < k, i < h,

ti,l tj,k = tj,kti,l, ti,ktj,l − tj,l ti,k = (q − q−1)ti,l tj,k ∀ i < j, k < l.

one easily sees that the weight defines an algebra filtration on OR
q (Mn).

Now, using these same relations, one can re-order the tij’s in any monomial
according to the fixed total order. During this process, only two non-trivial things
may occur, namely:

–1) some powers of q show up as coefficients (when a relation in the first line is
employed);

–2) a new summand is added (when the bottom-right relation is used);

If only steps of type 1) occur, then the process eventually stops with an ordered
monomial in the tij’s multiplied by a power of q. Whenever instead a step of type 2)
occurs, the newly added term is just a coefficient (q − q−1) times a (possibly unordered)
monomial in the tij’s, call it t′: however, by construction w(t′) �lex w(t). Then, by
induction on the weight, we can assume that t′ lies in the R-span of the ordered
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monomials, so we can ignore the new summand. The process stops in finitely many
steps, and we are done with OR

q (Mn).
Second, we look at OR

q (GLn). Let us consider f ∈ OR
q (GLn). By definition, there

exists N ∈ � such that f DN
q ∈ OR

q (Mn); therefore, by the result forOR
q (Mn) just proved,

we can expand f DN
q as an R-linear combination of ordered monomials, call them

t = ∏n
i,j=1 tNi,j

i,j . Thus, f itself is an R-linear combination of monomials tD−N
q , so the

latter span OR
q (GLn).

Now consider an ordered monomial t = ∏n
i,j=1 tNi,j

i,j in which Ni,i > 0 for all i. Then
we can re-arrange the ti,i’s in t so to single out a factor t1,1t2,2 · · · tn−1,n−1tn,n, up to
“paying the cost” (perhaps) of producing some new summands of lower weight: the
outcome reads

t = qst0t1,1t2,2 · · · tn−1,n−1tn,n + l.t.’s (2.1)

for some s ∈ �, with t0 := ∏n
i,j=1 tNi,j−δi,j

i,j having lower weight than t, and the expression
l.t.’s standing for an R-linear combination of some monomials ť such that w(ť) �lex

w(t). Then we re-write the monomial t1,1t2,2 · · · tn−1,n−1tn,n using the identity

t1,1t2,2 · · · tn−1,n−1tn,n = Dq −
∑
σ∈Sn
σ �=id

(−q)�(σ )t1,σ (1)t2,σ (2) · · · tn,σ (n) = Dq + l.t.’s

(2.2)

and we replace the right-hand side of (2.2) inside (2.1). We get t = qst0Dq + l.t.’s (for
Dq is central!), where now t0 and all monomials within l.t.’s have strictly lower weight
than t.

If we look now at tDz
q (for some z ∈ �), we can re-write t as above, thus getting

tDz
q = qst0DqDz

q + l.t.’s = qst0Dz+1
q + l.t.’s (2.3)

where l.t.’s is an R-linear combination of monomials t̃Dz+1
q such that w(t̃) �lex w(t).

By repeated use of (2.3) as a reduction argument, we can easily show – by induction
on the weight – that any monomial of type tD−N

q (N ∈ �) can be expanded as an R-
linear combination of elements of B∧

GL or elements of B∨
GL. Thus, both these sets do

span OR
q (GLn).

To finish with, both B∧
GL and B∨

GL are R-linearly independent, as their image
through the specialisation epimorphism OR

q (GLn)−�OR
1 (GLn) ∼= OR(GLn) are R-

bases of OR(GLn).
As to OR

q (SLn), we can repeat the argument for OR
q (GLn). First, BSL is linearly

independent, for its image through specialisation OR
q (SLn) −� OR

1 (SLn) ∼= OR(SLn)

is an R-basis of OR(SLn). Second, the epimorphism OR
q (Mn) −� OR

q (SLn)(ti,j �→ ti,j),

and the result for OR
q (Mn), imply that the R-span of SSL := {∏n

i,j=1tNi,j

i,j |Ni,j ∈�∀i, j}
is OR

q (SLn). Thus one is only left to prove that each monomial t = ∏n
i,j=1 tNi,j

i,j ∈ SSL

belongs to the R-span of BSL: as before, this can be done by induction on the weight,
using the reduction formula t = qst0Dq + l.t.’s (see above), and plugging into the
relation Dq = 1.
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Alternatively, we recall there is an isomorphism OR
q (SLn) ⊗R R[x, x−1] ∼=

OR
q (GLn) (of R-algebras) given by ti,j ⊗ xz �→ D−δi,1

q ti,j · Dz
q (cf. [11]). This along with

the result about B∨
GL clearly implies that also BSL is an R-basis forOR

q (SLn), as claimed.

Proof of (b): First look at OR
q (GLn). If f ∈ OR

q (GLn), as in the proof of (a) we
expand f DN

q as an R-linear combination of ordered (according to �) monomials of type

t = t−t=t+, with t− := ∏
j>n+1−i tNi,j

i,j , t= := ∏
j=n+1−i tNi,j

i,j and t+ := ∏
j<n+1−i tNi,j

i,j . So f
is an R-linear combination of monomials t−t=t+D−N

q , hence the latter span OR
q (GLn).

We show that each (ordered) monomial t−t=t+D−N
q belongs both to the R-span of

B∧,−
GL and of B∨,−

GL , by induction on the (total) degree of the monomial t=. The basis of
induction is deg(t=) = 0, so that t= = 1 and t−t=t+D−N

q = t−t+D−N
q ∈ B∧,−

GL ∩ B∨,−
GL .

As a matter of notation, let N−, resp. H, resp. N+, be the R-subalgebra of OR
q (Mn)

generated by the ti,j’s with j > n+1− i, resp. j = n+1− i, resp. j < n+1− i. Note that
H is Abelian, and t− ∈ N−, t= ∈ H, t+ ∈ N+.

Now assume that all the exponents Ni,n+1−i’s in the factor t= are strictly
positive. As H is Abelian, we can draw out of t= (even out of t = t−t=t+)
a factor tn,1tn−1,2 · · · t2,n−1t1,n. Now recall that Dq can be expanded as Dq =∑

σ∈Sn
(−q)�(σ )tn,σ (n)tn−1,σ (n−1) · · · t2,σ (2)t1,σ (1) (see, e.g., [12] or [10]). Then we can re-write

the monomial tn,1tn−1,2 · · · t2,n−1t1,n as

tn,1tn−1,2 · · · t1,n = (−q)−�(σ0)Dq −
∑
σ∈Sn
σ �=σ0

(−q)�(σ )−�(σ0)tn,σ (n)tn−1,σ (n−1) · · · t1,σ (1) (2.4)

where σ0 ∈ Sn is the permutation i �→ (n + 1 − i). Note also that we can reorder the
factors in the summands of (2.4) so that all factors ti,j from N− are on the left of those
from N+.

Now we replace the right-hand side of (2.4) in the factor t= within t = t−t=t+, thus

t−t=t+ = (−q)−�(σ0)t−t=0 Dqt+ + l.t.’s = (−q)−�(σ0)t−t=0 t+Dq + l.t.’s.

Here t=0 := t=(tn,1tn−1,2 · · · t2,n−1t1,n)−1 has lower (total) degree than t=, and the
expression l.t.’s stands for an R-linear combination of some other monomials t̂−t̂= t̂+

(like t−t=t+ above) in which again the degree of t̂= is lower than the degree of t=. In
fact, this holds because when any factor ti,σ (i) ∈ N− is pulled from the right to the left
of any monomial in ť= ∈ H the degree of ť= is not increased. By induction on this
degree, we can easily conclude that every ordered monomial t−t=t+Dz

q (with z ∈ �)
belongs to both the R-span of B∧,−

GL and the R-span of B∨,−
GL . That is, both sets span

OR
q (GLn).

Eventually, both B∧,−
GL and B∨,−

GL are linearly independent, as their image through
the specialisation epimorphism OR

q (GLn) −−� OR
1 (GLn) ∼= OR(GLn) are R-bases of

OR(GLn).
Second, we look at OR

q (SLn). As for claim (a), we can repeat again – mutatis
mutandis – the argument for OR

q (GLn), which does work again – one only has to
plug in the additional relation Dq = 1 too. Otherwise, as an alternative proof, we can
note that the isomorphism OR

q (SLn) ⊗R R[x, x−1] ∼= OR
q (GLn) together with the result

about B∨,−
GL easily implies that B−

SL too is an R-basis for OR
q (SLn), q.e.d. �
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REMARK 2.2. (1) Claim (a) of Theorem 2.1 for Mn only was independently proved
in [12] and in [10], but taking a field as ground ring. In [10], claim (b) for GLn only
was proved as well. Similarly, the analogue of claim (b) for SLn only was proved in [9],
§ 7, but taking as ground ring the field k(q) – for any field k of zero characteristic. Our
proof then provides an alternative, unifying approach, which yields stronger results
over R.

(2) We would better point out a special aspect of the basic assumption of
Theorem 2.1 about q and R. Namely, if the subring 〈1〉 of R generated by 1 has prime
characteristic (hence it is a finite field) then the condition on (q − 1) is equivalent to
q being trascendental over Rq or q = 1. But if instead the characteristic of 〈1〉 is zero
or positive non-prime, then (q − 1) might be non-invertible in Rq even though q is
algebraic (or even integral) over 〈1〉.

The end of the story is that Theorem 2.1 holds true in the “standard” case of
trascendental values of q, but also in more general situations.

(3) The argument used in the proof of Theorem 2.1 to get the result for OR
q (SLn)

from those for OR
q (GLn), via the isomorphism OR

q (SLn) ⊗R R[x, x−1] ∼= OR
q (GLn),

actually works both ways. Therefore, one can also prove the results directly forOR
q (SLn)

– as we have sketched above – and from them deduce those for OR
q (GLn). Even more, as

we have proved independently the results for OR
q (GLn) – i.e., B∨

GL and B∨,−
GL are R-bases

– and for OR
q (SLn) – i.e., BSL and B−

SL are R-bases – we can use them to prove that the
algebra morphism OR

q (SLn) ⊗R R[x, x−1] −→ OR
q (GLn) is in fact bijective.

(4) The orders considered in claim (b) of Theorem 2.1 refer to a triangular
decomposition of OR

q (GLn) and OR
q (SLn) which is opposite to the standard one. This

opposite decomposition was introduced – and its importance was especially pointed
out – in [10].

We are now ready to state and prove the main result of this paper:

THEOREM 2.3. (PBW theorem forO �ε
ε (G) as anO �ε(G)-module, for G∈{Mn, GLn})

Let any total order be fixed in {1, . . . , n}×2. Then the set of ordered monomials

BM
GL :=

{ n∏
i,j=1

tNi,j

i,j

∣∣∣∣0 ≤ Ni,j ≤ �−1,∀i, j
}

thought of as a subset of O �ε
ε (Mn) ⊂ O �ε

ε (GLn), is a basis of O �ε
ε (Mn) as a module over

O �ε(Mn), and a basis of O �ε
ε (GLn) as a module over O �ε(GLn).

In particular, both modules are free of rank �dim(G), with G ∈ {Mn, GLn}.
Proof. When specialising, Theorem 2.1(a) implies thatO �ε

ε (Mn) is a free �ε-module
with BM|q=ε = {∏n

i,j=1 tNij

ij |Nij ∈ �∀i, j} as basis – where, by abuse of notation, we write

again tij for tij|q=ε. Now, whenever the exponent Nij is a multiple of �, the power tNij

ij

belongs to the isomorphic image Fr�(O �ε(Mn)) ofO �ε(Mn) insideO �ε
ε (Mn), hence it is a

scalar for theO �ε(Mn)-module structure ofO �ε
ε (Mn). Therefore, reducing all exponents

modulo � we find that BM
GL is a spanning set for the O �ε(Mn)-module O �ε

ε (Mn). In

addition, O �(Mn) clearly admits as �-basis the set BM = {∏n
i,j=1 t̄Nij

ij |Nij ∈ �∀i, j}. It

follows that BM is also a �ε-basis of O �ε(Mn), so Fr�(BM) = {∏n
i,j=1 t�Nij

ij |Nij ∈ �∀i, j}
is a �ε-basis of Fr�(O �ε(Mn)). This last fact easily implies that BM

GL is also O �ε(Mn)-
linearly independent, hence it is a basis of O �ε

ε (Mn) over O �ε(Mn) as claimed.
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As to O �ε
ε (GLn), from definitions and the analysis in § 1 we get (with Dε := Dq|ε)

O �ε

ε (GLn) = O �ε

ε (Mn)
[
D−1

ε

] = O �ε

ε (Mn)
[
D−�

ε

]
= O �ε(Mn)[D−1]

⊗
O �ε(Mn)

O �ε

ε (Mn) = O �ε(GLn)
⊗

O �ε(Mn)

O �ε

ε (Mn)

thus the result for O �ε
ε (GLn) follows at once from that for O �ε

ε (Mn). �

3. Frobenius structures.

3.1 Frobenius extensions and Nakayama automorphisms. Following [5], we say that
a ring R is a free Frobenius extension over a subring S, if R is a free S-module of
finite rank, and there is an isomorphism F : R −→ HomS(R, S) of R − S-bi-modules.
Then F provides a non-degenerate associative S-bilinear form �: R × R −→ S, via
�(r, t) = F(t)(r). Conversely, one can characterise Frobenius extensions using such
forms. When S = Z is contained in the centre of R, there is a Z-algebra automorphism
ν : R −→ R, given by rF(1) = F(1)ν(r) (for all r ∈ R), and such �(x, y) = �(ν(y), x).
This is called the Nakayama automorphism, and it is uniquely determined by the pair
Z ⊆ R, up to Int(R).

PROPOSITION 3.2. (cf. [5], § 2)
Let R be a ring, Z an affine central subalgebra of R. Assume that R is free of finite

rank as a Z-module, with a Z-basis B that satisfies the following condition: there exists a
Z-linear functional �: R → Z such that for any non-zero a = ∑

b∈B zbb ∈ R there exists
x ∈ R for which �(xa) = uzb for some unit u ∈ Z and some non-zero zb ∈ Z.

Then R is a free Frobenius extension of Z. Moreover, for any maximal ideal m of Z,
the finite dimensional quotient R/mR is a finite dimensional Frobenius algebra.

This result is used in [5] to show that many families of algebras – in particular,
some related toOε(G), where G is a (complex, connected, simply-connected) semisimple
affine algebraic group – are indeed free Frobenius extensions. But the authors could
not prove the same for Oε(G), as they did not know an explicit O(G)-basis of Oε(G).
Now, following their strategy and using Theorem 2.3, I shall now prove that O �ε

ε (G) is
free Frobenius over O �ε(G) when G is Mn or GLn.

THEOREM 3.3. Let G be Mn or GLn. Then O �ε
ε (G) is a free Frobenius extension of

O �ε(G), with Nakayama automorphism ν given by ν(ti,j) = ε2(i+j−n−1)ti,j (i, j = 1, . . . , n).

Proof. We prove that there is a suitable O �ε(G)-linear functional �:O �ε
ε (G) −→

O �ε(G) as required in Proposition 3.2, so that this result applies to R := O �ε
ε (G) and

Z := O �ε(G).

Define � on the elements of the O �ε(G)-basis BM
GL of O �ε

ε (G) (see Theorem 2.3)
by

�

⎛
⎝ n∏

i,j=1

tNi,j

i,j

⎞
⎠ :=

n∏
i,j=1

δNi,j,�−1 =
{

1, if Ni,j = � − 1∀i, j
0, if not

(3.1)

(for all 0 ≤ Ni,j ≤ � − 1), and extend to all of O �ε
ε (G) by O �ε(G)-linearity. In other

words, � is the unique O �ε(G)-valued linear functional on O �ε
ε (G) whose value is 1 on
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the basis element t�−1 := ∏n
i,j=1 t�−1

i,j and is zero on all other elements of the O �ε(G)-
basis BM

GL.
We claim that � satisfies the assumptions of Proposition 3.2, so the latter applies

and proves our statement. Indeed, let us consider any non-zero a = ∑
t∈BM

GL
ztt ∈

O �ε
ε (G), and let t0 = ∏n

i,j=1 tNi,j

i,j in BM
GL be such that zt0

�= 0 and w(t0) is maximal

(w.r.t. ≤lex). Then define t∨0 := ∏n
i,j=1 t

N ′
i,j

i,j (∈ �M
GL) with N ′

i,j := � − 1 − Ni,j for all
i, j = 1, . . . , n. Quoting from the proof of Theorem 2.1(a), we know that t∨0 t0 =
εst�−1 + l .t .′s , where s ∈ � and the expression l.t.’s now stands for an O �ε(G)-linear
combination of monomials ť ∈ BM

GL such that w(ť) �lex w(t�−1); in particular, �(ť) = 0
for all these ť, hence eventually �(t∨0 t0) = εs�(t�−1) = εs. Similarly, if t′ ∈ �M

GL is such
that w(t′) <lex w(t), then t∨0 t′ is an O �ε(G)-linear combination of PBW monomials
whose weight is at most w(t∨0 t′), hence �(t∨0 t′) = 0. As we chose t0 so that w(t0) is
maximal, we eventually find

�
(
t∨0 a

) =
∑

t∈BM
GL

zt�(t) = zt0
�(t0) = εszt0

where εs is a unit in O �ε(G). So � satisfies the assumptions of Proposition 3.2, as
claimed.

As to the Nakayama automorphism ν:O �ε
ε (G) −→ O �ε

ε (G), it is characterized (see
§ 3.1) by the property that �(x, y) = �(ν(y), x) for all x, y ∈ R. Here � is a Z-bilinear
form as in § 3.1, which now is related to � by the formula �(x, y) = �(xy) for all
x, y ∈ R.

As � is an automorphism, and O �ε
ε (G) is generated – over O �ε(G) – by the ti,j’s,

the claim about ν is proved if we show that

�

⎛
⎝ n∏

r,s=1

ter,s
r,s · ti,j

⎞
⎠ = �

⎛
⎝ε2(i+j−n−1)ti,j ·

n∏
r,s=1

ter,s
r,s

⎞
⎠ . (3.2)

Now, our usual argument shows that the expansions of the product of a generator
ti,j and a PBW monomial

∏n
r,s=1 ter,s

r,s (in either order of the factors) as an O �ε(G)-linear
combination of elements of the O �ε(G)-basis BM

GL are of the form

n∏
r,s=1

ter,s
r,s · ti,j = εi+j−2n

n∏
r,s=1

ter,s+δr,iδj,s
r,s + l .t .′s

ti,j ·
n∏

r,s=1

ter,s
r,s = ε2−i−j

n∏
r,s=1

ter,s+δr,iδj,s
r,s + l .t .′s.

This along with (3.1) gives

�

⎛
⎝ n∏

r,s=1

ter,s
r,s · ti,j

⎞
⎠ = εi+j−2n�

⎛
⎝ n∏

r,s=1

ter,s+δr,iδj,s
r,s

⎞
⎠ = εi+j−2n if er,s = � − 1 − δr,iδj,s

�

⎛
⎝ n∏

r,s=1

ter,s
r,s · ti,j

⎞
⎠ = εi+j−2n�

⎛
⎝ n∏

r,s=1

ter,s+δr,iδj,s
r,s

⎞
⎠ = 0 if not
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and similarly

�

⎛
⎝ti,j ·

n∏
r,s=1

ter,s
r,s

⎞
⎠ = ε2−i−j�

⎛
⎝ n∏

r,s=1

ter,s+δr,iδj,s
r,s

⎞
⎠ = ε2−i−j if er,s = � − 1 − δr,iδj,s

�

⎛
⎝ti,j ·

n∏
r,s=1

ter,s
r,s

⎞
⎠ = ε2−i−j�

⎛
⎝ n∏

r,s=1

ter,s+δr,iδj,s
r,s

⎞
⎠ = 0 if not.

Direct comparison now shows that (3.2) holds, q.e.d. �
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