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Abstract. In this paper I first review some of the simple structural concepts associated with com-
pressible turbulence. In particular the hierarchical or self-similar fractal structure to be expected 
is formulated in a manner readily compared to the observations, and to previous work. In the 
next section I present the first results of a wavelet analysis on molecular clouds, which seem to 
comfirm the hierarchical scaling. I conclude with an extention of the theory to include magnetic 
fields. This latter theory represents an alternative to the more conventional dynamo theory. 

1. Compressible Turbulence and Fractal Hierarchies 

All quantitative science depends on a quantitative description of the phenomenon in ques-
tion. In the case of the interstellar molecular clouds various authors (Zinnecker,1984; 
Henriksen and Turner, 1984; Henriksen, 1986 ; Elmegreen, 1989) have suggested that the 
phenomenon is sufficiently complex and hierarchical to be termed 4turbulent'. In such a 
framework the concept of fractal geometry is known to permit a precise and quantitative 
description, although in general an infinite set of parameters is required. Fortunately these 
can be greatly restricted by selection on the basis of their physical significance. I shall begin 
by introducing the parameters that I have tried to use consistently in my own descriptions 
of the molecular cloud turbulence, taking care to emphasize their physical significance. 

The fractal capacity or Hausdorf dimension D is defined, in a discrete model, in terms 
of the number of objects of scale £ in the structure say n(£). Thus if two scales £ and L 
have the ratio r = £/L, then the number of fragments of size £ per fragment of size L is 
given by 

n(£)/n(L)=r-D

y (1) 

where for a self-similar structure r is constant over all the various stages. Notice that the 
pieces may be irregular in detailed shape, but that in a statistical average they should be 
characterizable by one scale in this simple picture. Otherwise anisotropic fractal structure 
is required. 

It is important to note that on passing to a continuum model of the structure wherein 
N(L) gives the total number of fragments having £ < L, the correspondence with the 
discrete n(£) is the logarithmic derivative of Ν with respect to £. For we clearly must 
associate equal ratios with equal differences in the logarithmn. Thus 

d N ~ ° , (2) 
d\n(£) 

for the continuum model. 
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Now let us in addition introduce a dimension (Henriksen, 1986) that gives the variation 
of the mean density on a scale £ with £. By mean density we shall mean here p(£) such 
that the mass of an element of scale £ is 

M(£) = p(£)£3. (3) 

Previously, I have used the density of a subscale fragment (Henriksen 1986) so that 3 in 
equation (3) is replaced by a fractal dimension. I hereby renounce that somewhat confusing 
procedure! Then I introduce Dp so that 

p ( * ) « r D ' . (4) 

These two dimensional indices allow us to construct the dependence of various signif-
icant physical quantities on scale. Thus the total mass on a scale £ ,n(£)M(£) is related to 
that on a superscale L as 

n(£)M{£) = n ( L ) M ( L ) r ( 3 - ( D + D > » . (5 ) 

It is convenient to introduce an 'aggregation index' 

h = 3 - (D + Dp), 

such that i\ = 0 in a pure aggregation or fragmentation hierarchy where each superscale 
is composed solely of fragments of subscale £. In this case D and Dp are not independent. 
However such a case is rather idealised for the molecular clouds where one expects there 
to be lower density material filling the voids between the subscale density peaks, that 
is 'fragments'. Such a 'smoothed' aggregation hierarchy requires the two independent 
dimensions, and the difference between i\ and 0 is a measure of the deviation from a 
pure geometric hierarchy, with i\ > 0 implying that there is mass between the subscale 
fragments (in the uniform limit z'i = 3 ) . 

Moreover, following Henriksen and Turner (1984), the collision time between two 
fragments of scale £ moving in a volume I? is a measure of the dynamical coupling between 
the scales when compared to the dynamical time on the scale L. An interesting example is 
afforded by a simple binary hierarchy, wherein a resonance between the period of one binary 
and the time scale of the encounter between two such binaries on the next superscale can 
be expected to produce the most pronounced exchange of angular momentum and energy 
between the scales (see e.g. Lattanzio and Henriksen,1988). We calculate this quantity in 
a straightforward way as (vi is the velocity dispersion on the scale L) 

*«(/) = 1 

or on using equation (5 ) and the definitions above and after multiplying this expression 
top and bottom by M(£), one obtains 

tc{t) = — χ r<D~ 2>. (6) 
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In this way one defines a 'dynamical coupling index' ii such that 

i2 = D- 2. (7) 

When %2 = 0, we see that there is strong dynamical coupling wherein tc = L/vi. 
When %2 < 0, the subscale collision time is longer than the superscale dynamical time,which 
reduces the resonance between the scales, while when %2 > 0 the collision time is relatively 
short and one expects collisional damping to terminate the dynamical cascade ultimately. 
In Henriksen and Turner (1984) i\ = 0 so that a pure aggregation hierarchy was assumed 
implicitly, and thus %2 = 1 — Dp. Subsequently the imposition of the dynamical condition 
tc = L/VL, so that %2 = 0 allowed HT to deduce that Dp = 1 and that the velocity scaling 
was oc tll2. They did not use the index D, but in Henriksen (1986) we now see that D 
is constrained to be 2 if the pure aggregation hierarchy is maintained. For general D and 
Dp, neither one of the indices i\ and %2 are 0, and the scaling in the turbulence depends 
only on the constants λ = p£D' and Newton's constant G. This general predicted scaling 
(Henriksen, 1990) is 

v{i) = v ^ ( 1 " D ' / 2 ) u ( 0 > 
p(£) = \Γ°>μ(£), 

B^VGX*^-0'^^), (8) 

p = GA 2 * 2 < 1 - D '>P(0 , 
GXt2 

The indices i\ and %2 remain useful as indicators of the respective physical hierarchies 
discussed above. 

One of the interesting applications of these ideas is the predicted relation ( Henriksen, 
1986) between these indices and the index of the scaling portion of the IMF defined as 

a. = -log(<iiV/<flogM.). 

As in Henriksen (1986) but using now M{i) oc ίζ~Ό>, one obtains directly from 
equation (2) that for the clouds 

a = D/(Z - Dp). (9) 

Subsequently Henriksen(1986) assumed that the mass of a star formed in a cloud 
would be proportional to the mass of the cloud. However at this meeting Larson has 
argued that the relation may be closer to 

M+ oc M0A3. 

In general we may want to introduce a degree of freedom here (see e.g. Zinnecker 1989) 
and call this power / . Then we have simply that 

a . = a / / = U / ( / ( 3 - D , ) ) . 
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If a = 0.6 as suggested at this conference by Elisabeth Lada, then a* = 1.4 with / = 0.43. 
In such a case D = 1.2 from (9) if Dp = 1. This does not however agree with more direct 
measures of the dimension D (see the next section). At the other extreme, / = 1, Dp = 1, 
and D = 2.7 give a = 1.35, the Salpêtre value, which dimension was the suggestion of 
Henriksen(1986). This value however appears to overestimate the importance of the clouds 
of small mass relative to the value found by Lada and others. 

2. Wavelet Analysis 

In this section I wish to present what I believe is the first application of wavelet transform 
theory to a description of molecular clouds. The full description of this work is to be 
found in a paper by Gill and Henriksen (1990). Our intention is to use the velocities 
characterising emissivity peaks as the third coordinate for these peaks orthogonal to the 
plane of the sky. In this AV — t — b 'phase' space the wavelet analysis allows us to measure 
a dimension directly. Even without further interpretation of the velocity-scale relation, a 
fractional but well defined value provides evidence for a scaling fractal hierarchy in phase 
space indicative of turbulent processes. 

I proceed by presenting briefly the wavelet analysis in its simplest form. A more 
general discussion can be found for example in Argoul et al. (1989). One works either in 
the space of 'scales' a (1/a is the magnification) or in position space b corresponding to 
wave vector space and position space of ordinary Fourier analysis. Here we have supposed 
that the scaling is isotropic so that it is characterised by a single parameter, and morover we 
do not rotate our spatial axes from point to point, consistent with this presumed isotropy. 
One would not expect to obtain a convergent result if either of these constraints are badly 
broken. We have in mind the representation of real functions over the plane of the sky in 
terms of carefully chosen base functions (the analysing wavelets) g(y). The wavelet that 
we consider best for our purposes to date is the so-called Mexican Hat wavelet which has 
the form 

<Uf(£) = (2-C)e"(^). (10) 

In order that the transform theorem hold, the wavelet must satisfy in practice 

/ g(y)dy = o, 

which is the case for the Mexican Hat. In addition it is worth noting that gu = 0 where 
y = \/2α, and that it is 2 at the origin but —2/e2 at the position of the negative maximum 
2a. The simplest statement of the wavelet transform theorem now reads for a properly 
behaved function p(x) ; 

Tg(a,b) = J 9 ^ ^ j P(x)dx, (11) 

p(x) = K J Tg(a,x)a-i/2da. (12) 
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Here Κ is a numerical constant which need only be calculated once. 
For our purposes we work with the wavelet transform Tg(a, b) itself since it possesses 

the important property of scaling with the analysed function. That is if p(Xx) oc λαρ(χ) 
then 

Τ,(λα,δ) oc \QTg(a,b). (13) 

Thus a plot of logT^ versus log α will yield a straight line of slope a if indeed the 
function being analysed scales in the assumed manner. Such a demonstration of scaling is 
important in itself, although the physical interpretation is more problematical and clearly 
dependent on the function being analysed. 

However, a second remarkable property of the wavelet transform is that some po-
sitional information is retained even at a single value of the scale a. In fact in Gill and 
Henriksen (1990) it is shown that if the maximum scale ad to which the well defined straight 
line in the logT^ — log α extends is used, then Τ^α^,δ) maps the dominant structure of 
the analysed function over the plane of the sky reasonably well. 

We have applied this technique to 1 3 CO spectra of the L1551 star forming region 
kindly loaned to us for this purpose by Moriarty-Schieven and Snell (1988). Approximately 
one half of the some 1500 spectra had sufficiently good S/N ratios that the velocity at the 
emissivity peak could be identified both by eye and by fitting a Gaussian. There were 
essentially no incidences of well defined multiple peaks in the data, so that on average one 
emissivity peak was observed per line of sight. 

The spectra were distributed over a 42 χ 44 step grid which included the region of 
12 CO molecular outflow and the source 1RS 5 itself. The high velocity cloud that overlaps 
the region was removed from the velocity data as in Moriarty-Schieven and Snell (1988), 
and the mean velocity of the remaining LI551 cloud was also subtracted from the peak 
velocity data. The resulting set of corrected peak velocities constituted the function p(x) 
that was analysed using equations (10) and (11). We used an average over all points b 
on the grid for each value of a (see figure caption) so that we postulate a homogeneous 
scaling on the grid (or subgrid). The calculation was actually done using a Fast Fourier 
Transform over b for each scale a, making use of the fact that equation (11) is recognisably 
a convolution integral. Finally the transform was inverted and the result is shown in figure 
1. 

One sees that these emissivity peak velocities do show a scaling law indicative of 
hierarchical structure. If moreover we adopt the view that the peak velocity is a measure 
of the position of the region of dominant emission orthogonal to the plane of the sky 
(see Gill and Henriksen, 1990 for a justification), then the transform makes a statistical 
estimate of the rate at which the number of such emissivity peaks in a volume increases 
with the characteristic scale a. That is, we obtain a direct estimate of the fractal capacity 
or Hausdorf dimension. This gives D = 2.42 ± 0.01 in the notation used above in section 
1 if we adopt the value found for the region outside the molecular outflow only, and 
D = 2.35 ± 0.01 for the average over the entire cloud. 

On referring back to our discussion of section 1, we see that this value of D gives 
(equation 9) an α of either 1.21 or 1.17 respectively, if Dp = 1, which is roughly twice 
the value reported at this conference and previously from direct cloud counts. Moreover if 
indeed / is significantly different from 1, then a* becomes ultimately too large (a value as 
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log(a) 

Fig. 1. The Mexican Hat wavelet transform of the peak velocity fluctuations of the 1 3 CO 
spectra in the £1551 region. Positive values of Tg are logarithmically averaged with a S/N 
weighting scheme. The solid line is averaged over the entire cloud, the dashed line is averaged 
over the region outside the 1 2 CO molecular outflow while the dotted line is averaged over the 
outflow region alone. The scale parameter a is defined such that log(a) = —0.6 0.5pc in 
L1551. The slopes for log(a) < -0.6 = log(ad) are respectively, 2.35 ± 0.01,2.42 ± 0.01, and 
2.29 ±0.01. 

small as .7 is however acceptable). Thus this method of determining the index D would 
be highly suspect were it not for the measurement of Dp = 1.36 ± 0.02 reported here by 
Falgarone as the fractal dimension in the plane of the sky. If the 12 CO measurements are 
optically thick, so that the dimension obtained is essentially that of a planar intersection 
with the true spatial distribution, then indeed Dp = D — 1 and the agreement between 
these two highly independent measurements is essentially perfect. But to obtain this 
agreement, one must conclude that indeed AV oc a in the region. This latter 'Hubble' 
law is an indication of turbulence, but is not the form usually quoted for molecular clouds 
(AV oc α 1 / 2 ) . Perhaps the velocity field throughout the region has been disturbed by the 
molecular outflow. In this connection I note that Prasad and Sreenivasan ( 1990) give 
D = 2.36 ± 0.05 for the Kolmogorov range of the turbulence associated with a water jet 
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in quiet surroundings. 

3. Magnetic Turbulence 

If the indications of dynamical turbulence discussed in the preceeding sections are taken 
seriously, then a corresponding treatment of the magnetic field is necessary. In this sec-
tion we wish to generalize the equations of Chaboyer and Henriksen (1990) for stochastic 
magnetic fields to include a Hubble type cloud divergence or contraction, as well as a feed-
back loop to the dynamical equations. This latter modification opens the question of true 
'stochastic dynamos', although I do not pretend to close it here! The fundamental physical 
picture is that although the magnetic field may be ordered on the large scales, and again 
on the small protostellar scales, it is likely to be turbulent due to many competing dynam-
ical processes on intermediate scales. On these scales then, the best global predictions for 
the magnetic field are probably in terms on the ensemble averaged two-point correlation 
functions in the spirit of Hoyng (1987a,b; 1988) and of Chandrasekhar (1955a,b; 1957). 
Observational evidence bearing on such a stochastic hierarchical image of magnetic stuc-
tures is discussed in Chaboyer and Henriksen (1990), and recent results were presented by 
Heiles at this conference. 

The fundamental approach to the description of the turbulence follows the self-similar 
model introduced by Henriksen and Turner (1984) following earlier work by Sedov (1982) 
and developed further in Henriksen (1986) and Henriksen (1988). The basic equations are 
the MHD equation with a non-constant turbulent resistivity η as; 

and H = à/a in terms of the overall scale factor a(t). The coordinates xl axe Eulerian. In 
the same notation the fundamental dynamical equation is 

(14) 

where the velocity should be taken as 

Ρ 

+ flf'*(Veu
e) (15) 

Ρ Ρ 

where 

( 2 / 3 ) ( V a u
a y * 

ρ = - Ν ' Φ , 
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Finally the continuity equation takes the form 

dtp + V.(pü) = -V.(HpR). 

The analysis proceeds in terms of ensemble averaged second and third moments of 
these equations (see e.g. Henriksen 1988) expressed at two different points, Ο and O'. The 
results are written in terms of the two-point tensors 

W'j = 

Απρρ' 

S'*'' = (uiBkB'j), 

RiJ = (uV>) , 

Rij>k = (u V u ' * ) , 

together with their various contractions. One has also to use the properties of homogeneous 
and isotropic tensors (Henriksen, 1988; Chaboyer and Henriksen, 1990) which we shall not 
repeat here in the interests of brevity. When specific components of a tensor are given 
they refer to a right-handed reference system with the 1 axis along the line 00', and the 
2 — 3 axes in the orthogonal plane. An asterisk subscript emphasizes this frame specificity. 
One has no need to specify the absolute orientation of this system because of the assumed 
isotropy. The fundamental equations that we have derived for the stochastic dynamo are 
now; 

dtÜ = ^kV
kÜ + ^dL(L

2~S) + HLdLU, (16) 

dtR = 2V f c (SijF**'') - 2V* (δα&*'ή + 2vVkV
kR + 2uVk(\npp')VkR 

-j- 2.F'f ' Vfc(ln ρρ') + H LÔLR, (17) 

(hipp1) = -6a-2Dß\nL. (18) 

In these equations L stands for the distance between the pairs of points considered 
(i.e. the spatial lag), the notation () indicates a2 χ (), the index Dp is defined in a manner 
closely analagous to that of the preceeding sections so that p(L) = exp (In ρρ')/2 oc L~Dp, 
and 5 is a source term depending on the lack of mirror symmetry as 

5 s 5 1 2 , 2 _ 5 2 U (19) 

Now we recall that the assumption of isotropy implies that the traces of the tensors 
Ä*'-7', and If1'* suffice to define these tensors entirely (Henriksen, 1988). Thus our equations 
would be complete were it not for the presence of the third order tensors, which is the fa-
miliar closure problem common to all such moment equations. The tensor Rl^k introduces 
one additional unknown say, as Fl'tk introduces F . 1 1 , 1 . In addition one has both S 
and Si'11, although the latter does not yet appear explicitly. This means only that we 
have not yet specified the 'source' tensor completely. 
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The process of self-similar closure advocated in Henriksen(1988) is capable of relating 
S and U as well as R, Rl1'1 and F*1 1'1. However one additional hypothesis is required in 
general. As an example, one posible choice would be to write the symmetric and anti-
symmetric parts of Stk,i on ik as 

Stk'J = constant χ p(L)Ftk'J + S ί - —jr- J , (20) 

although the physical implications must be explored in order to justify such a hypothesis. 
In any case additional use of the self-similar closure must be made to finally close the 
equations. 

In Chaboyer and Henriksen(1990) the feed-back to the dynamical equation was ig-
nored completely so that equation (17) was not used. The magnetic field behaviour is 
however assumed to be dictated by the velocity field in that the self-similarity symmetry 
of equation (16) is fixed by using the same global constants that appear in the dynam-
ical treatment of non-magnetic turbulence (Henriksen, 1988). This essentially supposes 
equipartition magnetic fields in the ensemble average, since otherwise there would be no 
reason for such self-consistency. 

The details of the solution do not concern us here, but it is worth reporting that the 
solution for U (neglecting the divergence term) that is consistent with the scaling laws 
discussed in section 1 for Dp — 1 is 

U = const + -r. (21) 

This indicates that at large separations the 2-point magnetic correlation tends to a con-
stant, and that it grows in time at a fixed separation presumably as a result of stochastic 
diffusion from the small or protostellar scale where the simple theory has it diverging with 
the density. In fact we deduce that 

Brms OC y/p, (22) 

on the small scales. This behaviour indicates an outward diffusion of magnetic flux consis-
tent with the outward diffusion of angular momentum, and of heat predicted dynamically 
in the turbulent theory, and necessary for the formation of stars. However the effect found 
here changes the magnetic Jean's mass only oc p~ll2 which is too slow if the magnetic 
field is in equipartition on the large scales. This contrasts with the rate of reduction of 
the Jean's mass and of the 'centrifugal mass' which both vary as p~2 in the theory. Thus 
we must conclude that if the field is indeed in equipartition on the large scales then rather 
dramatic processes of magnetic dissipation must occur on the protostellar scale. However 
the conclusion is very sensitive to the magnitude of the mean field in molecular clouds (the 
magnetic Jean's mass oc B3). 
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