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POINCARE INEQUALITY FOR ABSTRACT SPACES

ALIREZA RANJBAR-MOTLAGH

The Poincare inequality is generalised to metric-measure spaces which support a
strong version of the doubling condition. This generalises the Poincare inequality for
manifolds whose Ricci curvature is bounded from below and metric-measure spaces
which satisfy the measure contraction property.

1. INTRODUCTION

In this article, the Poincare inequality is extended to quite general abstract metric-
measure spaces, that is, a metric space (X, d) with a measure \i (see [7, 12, 20] for
the basic definitions). Recently, many authors have studied the Sobolev spaces for maps
over abstract spaces. See for instance Heinonen [12] and the references therein. A
Poincare type inequality is one of the main theorems that we expect to be satisfied (and
meaningful) for abstract spaces. The Poincare inequality means, roughly speaking, that
the ZAnorm of a function can be controlled by the ZAnorm of its derivative (up to a
universal constant). It is well-known that the Poincare inequality implies the Sobolev
and isoperimetric inequalities in doubling and smooth spaces; see [11, 19]. Also, Cheeger
[5] provided applications of Poincare type inequalities for metric-measure spaces.

Heinonen and Koskela [131. Bourdon and Pajot [2], Laakso [17], Hanson and
Heinonen [9], Garofalo and Nhit-.u [8], and Lanconelli and Morbidelli [18], Semmes [24],
Strum [25] and Kuwae and Shioya [16] studied the Poincare type inequality on abstract
spaces. The author [21] introduced a version of the triangle comparison property on
metric spaces and the uniform doubling condition on metric-measure spaces such that
the Poincare type inequality is valid for such spaces. For more work about this topic
on Riemannian manifolds, groups, and graphs see [19, 23, 26]. See also [11] and the
references therein.

The main purpose of this article is to introduce a strong version of the doubling
condition on metric-measure spaces which implies the Poincare inequality (see [6] for the
basic properties of doubling spaces). In particular, this implies that if the domain of
functions is a Riemannian manifold whose Ricci curvature is bounded from below, then
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a Poincare type inequality is valid for such manifolds (on the bounded domains). As
a consequence, we obtain the Sobolev and isoperimetric inequalities for such manifolds
which generalises a well-known result of Buser [3]. Here, we use the definition of (ex-
tended) upper gradient (see Definition 2.1) on abstract spaces so that in the Poincare
inequality the norm of the derivative remains meaningful. This article is an extension
of the author's work [21]. Moreover, the definition of the strongly doubling condition,
Definition 2.4, generalises the definition of weak measure contraction property in [25,
Definition 4.1] and weak measure contraction property of Bishop-Gromov type in [15]
(see also Remark 2.2 and 2.5).

2. DEFINITIONS

In this section, we introduce a sufficient condition on abstract spaces which implies
the Poincare inequality. This condition is a strong version of the doubling condition on
metric-measure spaces and it can also be interpreted as a version of the conclusion of the
Bishop-Gromov volume comparison theorem in Riemannian geometry; for instance see
[19].

First, we recall and generalise some basic definitions relating to metric-measure
spaces. For simplicity, we assume that all metric spaces are second countable and locally
compact and all (outer) measures are Radon (see [7] for definitions). We denote the
closed ball of radius r > 0 with centre at x by B{x,r) (in a metric space (X, d)).

Let (X, d, n) be a metric-measure space. It is said that A" is a locally doubling space,
if for every R > 0 there is CR > 0 such that

fi(B(x,2r)) ^CRn(B(x,r)),

for all x € X and 0 < r < R. The constant CR is called the (local) doubling constant

of X. A locally doubling space X is called a doubling space, if there is C > 0 such that
CR < C, for all R > 0.

A metric-measure space (X, d, fj.) is called a locally uniformly doubling space (see
[21]), if the condition

fi(B{x,2r))

holds for all x,y € X and 0 < r < R whenever d(x,y) ^ 2R. The constant CR is called

the (local uniform) doubling constant of X. A locally uniformly doubling space X is

called a uniformly doubling space, if there is C > 0 such that CR ^ C, for all R > 0.

A metric-measure space {X,d,n) is called locally Ahlfors regular, if for every

0 < R < diam(X) there are KR > 0 and n > 0 such that

r)) ^ KRrn,
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for all x 6 A" and 0 < r < R. The number n is called the dimension of X. A locally

Ahlfors regular space X is called Ahlfors regular, if there exists positive number K such

that KR ^ K, for all 0 < R < d i am(X) .

It is easy to see tha t every (locally) Ahlfors regular metric-measure space is a (locally)

uniformly doubling space.

A metric space (X, d) is called a geodesic space, if for every x,y € X, there

is a geodesic j x < y : [0,1] —> X (with the velocity d(x,y)) from x to y, that is,

d(7x,y(s),7x,»W) - I s ~ * l d ( I . J / ) i 7(0) = x and 7(1) = y. Next, we recall the defi-

nition of (extended) upper gradient which is a generalisation of the norm of gradient over

smooth functions.

D E F I N I T I O N 2 . 1 : Let (X, d, /i) be a metric-measure space. Let X be a geodesic

space. Suppose tha t there is a measurable function $ : X x X x [0,1] —> X such tha t

$ ( x , y, s) = $ (y , x,l-s) = 7*,»(s),

where JXIV is a geodesic from x to y. Let u be a (real-valued) function on X. A non-

negative Borel measurable function g is said t o be an (extended) upper gradient for u, if

the following condition holds:

/•1
\u(x)-u(y)\^d(x,y) / g($(x,y,s)) ds,

Jo

for almost everywhere (x, y) € X x X.

REMARK 2.2. The definition of (extended) upper gradient (as in Definition 2.1) is
slightly weaker than [13, Definition 2.9]. Compare [5, Definition 2.8]. Moreover, in
Definition 2.1, instead of the geodesies 7Ii !P we can consider .fiT-quasi geodesies, that is,
if the condition

d(7*#(«), 7-#W) ^ K I* - *l d{x, y),

holds for some K > 0.

REMARK 2.3. In a quite general setting, the map $ is (can be constructed to be)
measurable. In fact, by a construction which is due to Kuratowski and Ryll-Nardzewski
[1, p. 90], we are able to construct a measurable selection.

Now, we introduce the definition of strongly doubling metric-measure spaces which
can be interpreted as a generalisation of the conclusion of Bishop-Gromov volume com-
parison theorem in Riemannian geometry. Compare [21, Proposition 2.7].

DEFINITION 2.4: Let X and $ be as in Definition 2.1. We say that X is locally

strongly doubling, if for every R > 0 there is bR > 0 such that for almost everywhere
x & X, and any Borel measurable (open) subset A C B(x, R), we have

e B(x, R) : $(x, z, t) 6
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for all 1/2 < t < 1. We say that X is strongly doubling, if there exists 6 > 0 such that
bR ^ b, for all R > 0.

REMARK 2.5. Similarly to [25, 15], we are able to extend Definition 2.4 to (locally)
strongly doubling spaces with exceptional set.

It is clear that every (locally) strongly doubling space is a (locally) doubling space
as well. The author does not know the exact relation between uniformly doubling and
strongly doubling conditions over metric-measure spaces. But, in a metric space with
bounded geometry (see [21, Definition 2.2]), the uniformly doubling condition implies the
strongly doubling condition, see [21, Proposition 2.7]. Therefore, this article generalises
the results of [21]. Moreover, Definition 2.4 (see also Remark 2.2 and 2.5) generalises the
definitions of the weak measure contraction property in [25, Definition 4.1] and the weak
measure contraction property of Bishop-Gromov type in [15]. See also [25, Proposition
4.5]. Therefore, this article recovers the Poincare type inequality proved in [25, Theorem
6.3] and [16, Theorem 4.2] (for the energy norm, we use the upper gradient).

3. GENERALISED CHANGE OF VARIABLES

In this section, we state and proof a generalised change of variables formula for
functions over strongly doubling metric-measure spaces. We start this section with the
following simple fact. As was mentioned before, for simplicity, we assume that all metric
spaces are second countable and locally compact and all (outer) measures are Radon.

LEMMA 3 . 1 . Let (X, d, n) be a metric-measure space. Let E be a measurable
subset of X of positive and finite measure, that is, 0 < n{E) < oo. Let £ be a positive
number. Then, there exist a (closed) subset F C E and 50 > 0 such that

e,

x£F

for all 0 < 6 ̂  50.

PROOF: Let e > 0. There is a compact subset F C E such that n(E\F) ^ e. For

5 > 0, define
Fs:={zeX :d(z,F)^S}.

Note that, for 6 small enough, Fg is compact (by the Lebesgue number lemma) and also

6-+0

Therefore, by choosing S small enough, we have

This completes the proof of lemma. D
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THEOREM 3 . 2 . (Generalised change of variables) Let (X, d, n) be a locally

strongly doubling metric-measure space. Let g be a non-negative Borei measurable func-

tion on X. Let $ be as in Definition 2.1. Then, for almost everywhere a € X, we

have

f (f 9ma,y,s))ds)dn(y)<M [ g(z)d»(z),
JB{a,R) \Jl/2 J JB(a,R)

where R > 0 and M is a constant which depends on 6^ (as in Definition 2.4).

PROOF: Without loss of generality, we can assume that the map h(y,t) := $(a,y, t)
is measurable. Let e be a small positive number and let 1/2 ^ s ^ 1. Since that X
is a locally doubling space, there exist a finite sequence, say {xa}, of points B(a,Rs)
and a finite sequence, say {Aa}, of Borel measurable subsets B(a, Rs) with the following
conditions:

1. B(xi,e/2) n B(xj,e/2) = <j>, for all i # j .

2. B{a,Rs) = \JaAa.

3. AacB{xa,e).

4. Ai n Aj = <f>, for all i ^ j .

Define a finite sequence of subsets B (a, R) as the following:

Ea := {w€B(a,R) :h(w,s) 6 Aa}.

By Lemma 3.1, for any positive number e, there is a (closed) subset Fa of Ea (if n(Ea)

> 0) and a positive number Sa such that n(Ea\Fa) ^ £ and £t(. |J 5(x,r ) ) ^ 2fi(Ea),

for all 0 < r < 6a. Suppose that 0 < 6 ^ min6a. Since that X is a locally doubling

space, there is a (finite) sequence of points F := \Ja Fa, say {yp}, such that

1. B(yu 6/2) n B(Vj, 8/2) = <̂ , for all i # j .

2. FcUj%,«).

Therefore, there exist a finite sequence, say {VQ}, of subsets such that Ya C Fa and

numbers J, rj €]0,e[ (depending on Fa's) such that

1. B(z, 6/2) n B{w, 6/2) = 0, for all z, w 6 Y := \Ja Ya, and z f- w.

2. S(a, R)\G C U -B(i/. <̂ ). w h e r e G is a measurable subset of B{a, R) such

that n(G) ^ 77.

3. /x(u B(z,6))
Vz€Vo

 7
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Then, we have

z, 6)) g(h(z, s)) ^CRJ2 »{B(z, 6/2)) g(h(z, s))

Y^»(B(z,6/2))g{h(z,S)))

\jB(z,6/2))mf*{g(h(z,8))}

a,e)) max{5(/i(z,S))},

where CR is a constant which depends on the (local) doubling constant of X (or bR).
Hence, for every e > 0, there exist a finite subset Y, a sequence {xa}, a measurable
subset G and numbers 6, r\ €]0, e[ (with the above properties) such that

(3.1) ^(B(z,S))g(h(z,a))^Mj2KB^c,£/2)) sup {g(x)},
z 6 y a xeB(xa,e)

where M is a constant which depends on bR. It is enough to show

(3.2) f g(h(y,t))dfM(y)^M f g(z)d»(z),
JB(a,R) JB{a,R+E)

for all 1/2 < t ^ 1 and e > 0*, where M is a constant which depends on bR. The proof of
above fact is similar to the proof of [21, Lemma 3.1]. But, for the sake of completeness we
provide the details of proof here. The complete proof of lemma is based on the following
statements:

(a) If (3.2) is valid for bounded measurable functions g, then it is valid for all
measurable functions g.

(b) If both functions g(-) and g(h(-,t)) are continuous, then (3.2) is valid for
such g.

(c) If (3.2) is valid for continuous functions g, then it is valid for measurable
functions g.

(d) (3.2) is valid for all continuous functions g.

PROOF OF (a): Suppose that (3.2) holds for all bounded functions. Apply (3.2) to
the bounded functions

gN(x) := g(x)
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where x denotes the characteristic function and iV is a positive integer. Letting N -» oo.
This implies that (3.2) holds for g. Prom now on, we assume that 0 ^ g(x) ^ K, for all
x and some number K. Q

PROOF OF (b): This is an immediate consequence of (3.1). Note that we have
assumed that all metric spaces are locally compact, therefore, every continuous function
on a closed (and bounded) ball is uniformly continuous. Also, it is easy to see that
a locally doubling space is complete if and only if every closed (and bounded) ball is
compact. D

PROOF OF (C): Suppose that (3.2) holds for all continuous functions. Let g be
a measurable function. Let 6 > 0. By the Luzin theorem (see [22, p. 55]) there is a
continuous function u such that

0 ^ u{x) ^ K, Vi,

6,

where A := {x 6 B(a, R) : u(x) / g(x)}. By assumptions, we have

€ B(a,R) : u(h(y,t)) / g(h(y,t))}) = ̂ {y € B(a,R) : h(y,t) € A})

where 1/2 ^ t ^ 1 is a fixed number. Then, since (3.2) holds for u, we have

r r
I u\Ji(y,t)) dfj,(y) ^ M I u(z)

JB(a,R) JB{a,R+e)

and
-2K(bR6) + [ g{h(y, t)) dfi(y) £M[ f g{:

JB(a,R) \JB{a,R+e)

Letting 6 -> 0. This implies g satisfies (3.2). D
PROOF OF (d): We prove (3.2) for continuous function g (and 0 ̂  g ^ K). By the

Luzin theorem, for every r €]0, e[, there is a continuous function v such that

0 ^ v(x) ̂  K, Vx,

H(UC) < r,

where U := ly 6 B(a, R) : v(y) = g(h(y, s)) \ and Uc := B(a, R)\U. Suppose that e, S,
T/, F, Y, G and {xa} are as before. We can choose the sequence {yp} (as before) with
the following extra conditions:

1. yiGfnl/, for all j .
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2.

3. t

Note that sequences {xa} and {yp} satisfy (3.1). We have

FnU

Y\n{B{z,5J) sup v.

Then, we obtain

inf

/ 9{z)dix{z)
B(xo,e/2)

Because v is uniformly continuous on closed (and bounded) balls, we have

M) sup v < $ X B ( * , < 5 ) ) [V(Z) + X]

where A ^ 0 depends on e, g, v, B(a, R) and bn. Moreover, A —¥ 0 as e —>• 0. Therefore,

we have (and using (3.1))

f v(y)dn(y) ^ A + '£p(B(z,8)) g(h(z,s))
JFnu 2 g y

sup
B(xa,e)

inf
B(iQ,e)

inf o

f g(y)dn(y).
JB(a.R+e)
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This implies t ha t

[ g{h(y,s))dft(y)= f g{h(y,s))dn(y)+ [ g{h(y,
JB(a,R) J B(a,R)\(FnU) J FMJ

[ g(h(y,s))dlj.{y)+ [ v{y)dfj.(y)
B(a,R)\(FnU) JFHU

K»[B(a, R)\(F D U)} + f v
JFnu

f v(y)dn(y)
JFnu

g{z)d[i{z).[
B{a,R+2e)

Letting e —> 0 (note that <5,77, r €]0, e[), then we obtain

g (h{y, s)) dn{y) ^M f g(z) dn{z),
JB(a,R)

/
B(a,R)

for all 1/2 ̂  s < 1. This completes the proof of theorem. D

4. POINCARE INEQUALITY

In this section, we prove the following weak (1,1)-Poincare type inequality. The
proof is based on the generalised change of variables formula, Theorem 3.2.

THEOREM 4 . 1 . (Weak Poincare inequality) Let (X, d, /J.) be a locally strongly
doubling metric-measure space. Let g be an (extended) upper gradient for a measurable
function u on X. Then, we have

I I \u{x) - u(y)\ dfi(x) dfi(y) ^ MR I g(z) dfi(z),
J B{a,R)J B(a,R) J B(a,3R)

where a € X, R > 0, and M is a constant which depends on b3R (as in Definition 2.4).

PROOF: See the proof of [21, Theorem 3.3]. D

REMARK 4.2. Let notations and assumptions be as in Theorem 4.1. If the ball B(a, R)
is convex, then we have (see [21, Remark 3.5])

/ \u(x)-u(y)\dfi(x)dfi(y)^MRf g(z)dfi{z).
B(a,R)J B(a,R) J B(a,R)

Also, If we impose a mild condition on X, we are able to obtain a strong (p, p)-Poincare
inequality, see [10].

Now, we provide some examples of spaces which satisfy the assumptions of Theo-
rem 4.1.
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PROPOSITION 4 . 3 . Let (X, d, n) denote the Euclidean space R n with the usual
Euclidean metric d, and arbitrary doubling (Borel) measure fi. Then, the following
conditions are equivalent:

(i) T i e space (X, d, fj.) is (locally) strongly doubling.

(ii) The space (X, d, /z) is (locally) uniformly doubling.

(iii) The space (X, d, fi) is (locally) Ahlfors regular of dimension n.

PROOF: It is an immediate consequence of [21, Proposition 2.5]. D

PROPOSITION 4 . 4 . Let (Mn,g) be a complete n-dimensional Riemannian
manifold such that

Riĉ s -(n-l)A,
M

for some A ̂  0. Then

(i) M is a locally strongly doubling metric-measure space. In fact, we can
choose

(ii) ([3] and [4, p. 288]. Let S be a smooth hypersurface in B(x,R). Suppose

that S divides B(x,R) into two parts, denoted by D\ and D2. Then, we

have

min{Vol(Di), Vol(£>2)} ^ C Area(S),

where C is a constant which depends on n, X and R.

P R O O F :

(i) The proof follows by inspection in the proof of Bishop-Gromov volume
comparison theorem (for example see [19, Corollary 2.3]). See also [14,
Theorem 1.4.1] and [23].

(ii) The proof is a straightforward consequence of the equivalence of Sobolev
and isoperimetric inequalities (see [19, Theorem 9.2]). Q
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