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Abstract

We develop techniques to compute the homology of Quillen's complex of elementary abelian p-subgroups
of a finite group in the case where the group has a normal subgroup of order divisible by p. The main
result is a long exact sequence relating the homologies of these complexes for the whole group, the normal
subgroup, and certain centralizer subgroups. The proof takes place at the level of partially-ordered sets.
Notions of suspension and wedge product are considered in this context, which are analogous to the
corresponding notions for topological spaces. We conclude with a formula for the generalized Steinberg
module of a group with a normal subgroup, and give some examples.

1991 Mathematics subject classification (Amer. Math. Soc): primary 20D30; secondary 05E25, 06A09,
20C20,51E25.

0. Introduction

Let G be a finite group and p a prime. Let £/p(G) be the Quillen complex of G at
the prime p. &/p (G) is the order complex of the poset (= partially ordered set) of all
non-trivial elementary abelian p-subgroups of G (see Section 1).

Let N be a normal subgroup of G. We denote by st/p(G)N the poset obtained by
adding to s?p{G) an additional element, say 0, so that 0 < A for all A e si'P(G) with
A f l l V ^ l . Our main result is the following.

MAIN THEOREM. Let G be a finite group and p a prime. Suppose that N is a
normal subgroup ofG such that p divides \N\. Further except in (I) assume that if A
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is an elementary abelian p-subgroup of G with A n N = 1 then A is cyclic, and let
JK = {A £ */P{G) \AHN = l}.

(1) There exists a long exact sequence of ZG-modules

where i* and AC, are induced by the obvious inclusion maps i and K.
(2) There is a G-homotopy equivalence

~G \ /

where \J denotes a wedge product and £ denotes suspension.
(3) Forn>0

\G
NG(A)

up to conjugacy

as ZG-modules.
(4) With respect to the first isomorphism of (3) the map s of (I) is given by

where (iA)t is the map on homology induced by the inclusion iA : stfp(CN(A))

We will prove the Main Theorem in the abstract setting of a poset P having a
subposet Q satisfying the two conditions that the elements of Q form an ideal in the
opposite poset Pop, and for each p e P there exists q e Q with q > p. In this
situation we will call P an extension of Q, and in the context of the Main Theorem
we will take P = sif

p{G) and Q = {A e srfp{G) \ AH N ^ I}. We give our
sharpest results when P — Q consists of minimal elements of P, and in this generality
Theorem 2.5 gives an inductive set-up for dealing with the homology of a poset.

After proving the Main Theorem in Section 3, we consider the generalized Steinberg
module Stp(G) in the situation that G has a normal subgroup iV of order divisible
by p. Because the computation of Stp(G) does not require such detailed information
as the homology of &/p(G), we are able to remove the condition that A e srfP(G),
A n N = 1 implies A is cyclic which was present in part of the Main Theorem, and
obtain a result in generality. This result is Theorem 4.2. We conclude in Section 5
with two worked examples.
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1. The Mayer-Vietoris sequence for an extension of posets

We first describe a poset construction which gives rise to a Mayer-Vietoris sequence.
Let P be a poset. The order complex of P is the simplicial complex AP whose
simplices are the finite chains of elements of P. We may occasionally omit the
symbol A, especially when considering the homology Hn(P), by which we mean
Hn(AP). Given a subposet Q < P and p e P we denote by Q>p the subposet of P
with elements {q e Q | q > p}. We define Q>p, Q<p etc. in a similar way. An ideal
of P is a subposet 0 ^ / < P such that if / e / and p < i then pel.

Let Q < P be a subposet. We say that P is an extension of Q if <2op is an ideal
of the opposite poset Pop, and for all p e P, Qip ^ 0. We will further say that P is
an extension of Q by minimal elements if P is an extension of Q and for all p e P,
either p e <2 or /? is a minimal element of P. If P is an extension of Q we denote
by P e the following poset. The elements of PQ are P together with one additional
element 0G. The order relation in PQ is the following. Given x, y € PQ, X < y if
and only if either x,y € P and x < y in P, or * = 0e and j e g . We denote by
<2e - î2 the similarly constructed poset with elements Q U {0e}. If P is a G-poset
and Q is G-invariant, then PG becomes a G-poset by letting G fix 0e .

Turning to our conventions for homology, we first mention that unless otherwise
specified all homology groups are taken with coefficients in T. Let K be a simplicial
complex. We denote by Cn(K) the simplicial chain group of K at dimension n
(with coefficients in T), n > 0. Cn(K) denotes the augmented simplicial chain
group of K at dimension n, n > —1. So Cn{K) = Cn(K) for all n > 0, and
C_! (K) — 1. By Zn (K) respectively Bn (K) respectively //„ (A") we denote the group
of n -cycles respectively n -boundaries respectively «-homology group. The notation
Z,(/O, H*(K), Zn(K), Hn(K), Ht(K) etc. is now clear. Given a cycle z e Zn{K)
we denote by [z] = z + Bn(K) the corresponding element in Hn(K).

PROPOSITION 1.1. Let P be an extension of Q. Then
(1) APQ = APUAQQandAPr\AQQ = AQ.
(2) There is a long exact Mayer-Vietoris reduced homology sequence

where it, K* are the maps on homology induced by the obvious inclusion maps i, K
and r is given as follows. If a e Cn(P) and fi € CK(QQ) are such that d(a + fi) = 0,
then r([a + /?]) = [3a], where 3 is the differential map of PQ. In case P is a G-poset
and Q is G-invariant, the Mayer-Vietoris sequence is a sequence of"IG-modules.

PROOF. The Mayer-Vietoris sequence needs no proof. We only mention that as QQ

is contractible, H*{QQ) = 0.
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2. The structure of PQ

The use of the Mayer-Vietoris sequence just described is considerably enhanced
by the fact that we are able to give an explicit description of the space A PQ in case P
is an extension of Q by minimal elements, showing that it is homotopic to a wedge
of suspensions of certain other posets. To define what we mean by this, we make
definitions at the level of posets which copy well-known topological constructions.

First let R be a poset. In this paper by the suspension of R we mean a poset

XR = RU{0R,0'R}

where OR and O'R are two new symbols, and where the order relation is as follows. For
x, y e Y,R we define x < y if and only if either x = 0R and y ^ 0'̂ , or x = 0'̂  and
y ^ 0R, or x, y € R and x < y in R. In case R is a G-poset then G acts on T,R by
fixing OR and 0^.

To describe also the action of G on the homology of R and of S R we introduce the
following notation. Given an (n — 1)-simplex s = (r0 < rx < • • • < rn_i) of R and
r e R with r < r0, we denote r * s = (r < r0 < rt < • • • < rn_i). Let n > 1. Given
a cycle z 6 Zn_i(/?), write z = ]T̂ "=i n>s'> w ' t n s> an (« — l)-simplex of R. We write
OR * z = £ X , M,(0R * st) € Cn(S(/?)) and similarly we define &R*z e Cn(S (/?)).
We write E(z) = OR * z - VR * z.

PROPOSITION 2.1. Suppose that R is a G-poset.
(1) There is a G-equivariant homeomorphism A(ZR) =c S A(/?).
(2) For n > 1, if z e Zn^(R) then d(0R * z) = 3(0^ * z) = z, and Zience

E(z) € Zn(E/?). Here d is the differential map ofE(R).
(3) The map Hn-\(R) -> Hn(Y,R) given by [z] —>• [S(z)] w a/i isomorphism of

ZG-modules.

PROOF. In part (1) the action of G on Y,A(R) fixes the suspension coordinate and
acts on A(R) in the given way. The homeomorphism is immediate, since each of
the subposets R U {OR} and R U {O'R} is a cone on R with vertex fixed by G. The
description in parts (2) and (3) is well-known.

Continuing in this vein, let {/?, t e ^} be a set of posets indexed by some set &'.
By a wedge of suspensions of the R, we mean a poset

= \J(R,

which we will denote by \f,€Sr ^Rt. We define a partial order on this set as follows.
For t e ST define

j , : fl, x {?} - • R,
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by jt(r,t) = r. If x, y e X we put x < y if and only if one of the following holds:
(i) there exists t e & such that x, y e R, x {/} and j,(x) < j,(y),
(ii) x = t e & and y 6 /?, x {/},
(iii) x = 0andy^S^\J {0}.

The point about using the set R, x {t} in the above construction is that it guarantees
that all these sets are disjoint as t ranges through J7\ However, when no confusion
may arise we identify R, with R, x {t} via j , . We do this in the next result.

PROPOSITION 2.2. Let {R, | t e ^ } beposets. Then
(1) AfV^E^SV
(2) /or n >\ the map

4-1 (*,)-•//„ (V s * ' )

defined by (*(%2le&[z,]) = ^2l€#[t * z, — 0 * z,] w aw isomorphism, where for all
t e3T,z, &Zn

PROOF. (1) is immediate from the definitions and (2) is well-known.

We will apply this construction in the situation where P is an extension of Q by
minimal elements. We take the indexing set & to be the set J( = P — Q, which
consists of minimal elements of P, and the posets R, are the P>m, m e jft. In this
situation, if P is a G-poset and Q is G-invariant we may define a group action on the

g(p, m) = (gp, gm), for (p, m) e P>m x {m},

gm = gm, m e Jl,

and now the homology groups of this poset become 2G-modules. There is also a
group action on the simplicial complex

\j EA(/>>m)

in which if x e T,A(P>m) and g e G then gx 6

PROPOSITION 2.3. Suppose that P is a G-poset which is an extension of Q by
minimal elements where Q is G-invariant. Put M = P — Q.

(1) There is a G-equivariant homeomorphism

A( \ / EP>M)=G V
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(2) For n > 1 the group © m € ^ Hn-\{P>m) acquires the structure of an induced
IG-module

where Gm is the stabilizer ofm in G. The mapping

Hn-l(P>m) -+ Hn(\/

of 22 is an isomorphism of ZG-modules.

PROOF. (1) is simply Proposition 2.2(1), with the observation that the homeomorph-
ism is G-equivariant.

In (2) the ZG-module structure of 0 m € ^ Hn-\(P>m) comes from the ZG-module
structure of 0 m € ^ Cn_,(/>>„,) in which g(p0 < px < • • • < pn_i) = (gp0 < gp\ <
••• < gpn-i) where (p0 < P\ < • • • < pn-\) is an (n — l )-simplex of P>m and

(gPo < gpi <••• < gPn-i) is an (n - l)-simplex of P>gm. Thus © m 6 ^ . Hn-i(P>m)

is the direct sum of subspaces permuted by G in which the stabilizer of each subspace
is Gm, and the orbits of G on these subspaces are in bijection with G\Jt. Thus with
this action 0 m e ^ Hn-i(P>m) is an induced module as claimed. It is evident from the
definition that /J, is a homomorphism of ZG-modules as claimed.

We now show the relevance of the wedge of suspensions construction in the situation
where P is an extension of Q by minimal elements. As before we put J( = P — Q.
Define

j : V S P > m - • PQ

as follows. Firstly 7(0) = 0 e , secondly j(m) = m for all m e M', and thirdly, for
x 6 P>m x {m}, we define j (x) = jm(x), where jm was defined before Proposition 2.2.

THEOREM 2.4. Suppose that P is a G-poset which is an extension of Q by minimal
elements where Q is G-invariant. Put jft = P — Q.

(1) j : Vme^r ^P>m ~* PQ is a G-homotopy equivalence.
(2) For n > 1 the map

in-l{P>m) "> Hn(PQ)

is a ZG-module isomorphism, where

( v^ \ v^

H 2 ^ [z">n = 2 ^ [ m *Zm ~ °e *
Herezm e Zn_{(P>m) for all m e ^ # .
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PROOF. First note that j is a G-equivariant map of posets. We show that for each
p e PQ, J~1((PQ)<P) is Gp-contractible. Then (1) follows from Theorem 1 in [6].

Case 1. There exists n o m e / with m < p.
In this case J~X{(PQ)<P) = {0} is evidently Gp-contractible.

Case 2. p e JK.
In this case J~1({PQ)<P) = [p] is also Gp-contractible.

Case 3. p # M and there exists m e M such that m < p.
Let Mp = {m e M \ m < p] and X = Vmc^r^^" ' Notice now that
J~\(PQ)<P) — Ume^r X<(.p,m) is a union of posets, each of which has a unique
maximal member (p, m) and which pairwise intersect in {0}. Such a poset is evid-
ently contractible. For convenience, let Y = J~X((PQ)SP)

 a n^ 2 = {(p, m) | m e
^P) U {0} c Z. Then the two maps

x/r :Y - • Z
</> :Z -> {0}

defined by ^(0) = Oand f(y) = (p, m) if 0 ^ v e X<(p,m) and</>(p, w) = 0(0) = 0
are Gp-equivariant and satisfy v < i/s(y), z > 0(z) always. Therefore by [6, 1.2] \fr
and 4> are Gp-homotopy equivalences which show that Y is Gp -contractible.

Part (2) follows from (1) and Proposition 2.3.

We summarize the situation so far by combining Proposition 1.1 with Theorem 2.4
and a little bit more.

THEOREM 2.5. Suppose that P is a G-poset which is an extension of Q where Q is
G-invariant. Put jft — P — Q, and in (2) - (4) assume that M consists of minimal
elements.

(1) There is a long exact sequence of ZG-modules

where t , , K* are the maps on homology induced by the obvious inclusion maps I,K.
(2) PQ~G\Jm^
(3) For alln>0

as ZG -modules.
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(4) With respect to the first isomorphism o/(3) the map r of(1) is given by

where im : P>m —> Q is the inclusion map.

PROOF. Part (1) is Proposition 1.1 and parts (2) and (3) come from Proposition 2.3
and Theorem 2.4. We now prove part (4). We must show that in the long exact
sequence

the map r/x is given by

where [i is the map of Theorem 2.4(2).
Let ^ = E » , ^ k ] e 0 m e ^ Hn-dP>m). Then by Theorem 2.4(2), /i(h) =

Ylm^[m *zm~0Q* zm]. Notice now that m*zm e P and 0Q*zm e QQ. Hence by
Proposition 1.1(2) and Proposition 2.1(2), rfi(h) = Y2me^# r(\.m * zm — 0Q * zm]) =

We conclude this section with a discussion of the multiple connectivity of the
complexes P and PQ. For each simplicial complex A we denote by A(n) the n-
skeletonof A.

LEMMA 2.6. Let P be an extension of Q. If Q is n-connected then the inclusion
map i : APM —> APg"' is a homotopy equivalence, and P is n-connected if and only
if PQ is n-connected.

PROOF. For p € P, r '((/ 'G)>p) = P>p is contractible, while r1((/>g)>oe) = Q is
n-connected. Hence Lemma 4.3 in [2] completes the proof.

COROLLARY 2.7. Let P be an extension of Q by minimal elements and put J( =
P — Q. Assume that for all m G JM', P>m is n-connected. Then

(1) PQ is (n + l)-connected.
(2) If Q is k-connected,for k < n + 1, then P is k-connected.

PROOF. Since PQ ~ Vm€^r^^>m» and since the latter complex is (« + 1)-
connected, so is PQ. Then (2) follows from Lemma 2.6.
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3. The proof of the Main Theorem

We again work in the abstract setting of a poset P which is an extension of Q, and
suppose further that we are given a subset / c Q such that I is an ideal in P . We
will say that / has the join property with respect to Q (written in short JQ-property)
if for each q e Q the set I<q is non-empty and has a join in / . Thus for each q e Q
there is a unique largest member of / less than or equal to q. We will say that / has
the strong join property with respect to Q (written in short SJQ-property) if / has the
/ Q-property and for all m e Ji = P — Q and i e I, whenever m and i have an upper
bound in P (and hence in Q) they have a join in P. In this case for each m e J# we
denote /<>m = [i e / | [m, i} has an upper bound} regarded as a subposet of / . Note
that in this definition and in Lemma 3.1 we do not require that the set J( (defined to
be P — Q) consist only of minimal elements.

Our application of these notions will be in the situation where N <G with p | \N\.
We take P = afp{G), Q = {A e s/p{G) \ A n N # 1}. Then / = */p(N) has the
SJ Q -property.

LEMMA 3.1. Suppose that P is a G-poset with G-invariant subsets I c Q c p
such that P is an extension of Q and I is an ideal in P. Put M = P — Q.

(1) / / / has the JQ-property then the map </> : Q -> I defined by <j>{q) =
join of I<q is a G-homotopy equivalence with G-homotopy inverse the inclusion map
i-.I^Q.

(2) If I has the SJQ-property then for all m e M the map 4>m : Q>m -» /<>m

defined by <j)m(q) = (f>{q) is a Gm-homotopy equivalence with Gm-homotopy inverse
fm • !<>m -> Q>m defined by irm(i) = join of{m,i}.

PROOF. All of the maps mentioned are equivariant maps of posets, and they satisfy

4>i = id,,

i<P(q) < q for all q e Q,

irm(t>m(q) < q for all q e Q>m,

<t>mfm{i) > i for all / 6 /<>m.

Hence by [6, 1.1] i, <p and i/rm, <pm are pairs of mutually inverse equivariant homotopy
equivalences.

We will apply Lemma 3.1 in the situation where P is an extension of Q by minimal
elements, in which case P>m = Q>m.

THEOREM 3.2. Suppose that P is a G-poset which is an extension of Q where Q is
G-invariant. Put J( = P — Q, and in (2) - (4) assume that Jt consists of minimal
elements. Suppose that I c Q is a G-invariant ideal of P with the SJQ-property.
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(1) There is a long exact sequence ofZG-modules

where it, Kt are the maps on homology induced by the obvious inclusion maps i, K.

(2) PQ ~ G Vme-* ^/<>m.
(3) Foralln>0

ti.

as IG-modules.
(4) W/7/i respect to the first isomorphism o/(3) ?/ie map s of (I) is given by

im)*

where im : /<>m —> / /'s the inclusion map.

PROOF. (1) We identify the terms in the long exact sequence of Theorem 2.5 using
the homology isomorphisms which we deduce from Lemma 3.1. It may help to
consider the following diagram in which the top row is the sequence of Theorem 2.5
and all vertical arrows are isomorphsms, /x having been denned in Theorem 2.4.

Hn{Q) - ^ Hn{P) ^ > HB(PQ) — • Hn

/T HI1*

The sequence presented here thus has s = far.

(2) The homotopy equivalences tym yield a G-homotopy equivalence

vEVm : V E/s*» -" V E/>>»"

noting here that P>m = Q>m. Combining this with Theorem 2.5(2) gives the result.

(3) The first isomorphism is the composite

Hn-\{l<>m) • H { P ) > H
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where in Theorem 2.4 we saw that /x is an isomorphism. The argument that this is an
induced module was given in Proposition 2.3(2).

(4) On considering the diagram presented in the proof of (1) we see that we have
to show 4>*rfi\/rmt = im* where im : I<>m -*• I. We saw in Theorem 2.5(4) that
rfi = ©£„,„, where in that case im : P>m —> Q. Since <t>m is the restriction of <j> to P>m

w e have im<f>m = (f>im and so

as required, since (f>m and ifrm are mutually inverse homotopy equivalences.

We now translate Theorem 3.2 into the group theoretic situation of the Main
Theorem. We first verify separately one of the identifications that will be needed for
this.

LEMMA 3.3. Let G be a finite group, p a prime and N <G. Then

PROOF. We have

&/p(N)<>A = {K e s/p{N) | A and K have an upper bound}.

Now A and K have an upper bound precisely if they are subgroups of some elementary
abelian subgroup, which happens precisely if A and K centralize each other, that
is A" <CN(A).

PROOF OF THE MAIN THEOREM. Let G, p and N be as in the main theorem. Let
P = sfpiG), I = */p{N) and Q = {A € P | A n N # 1}. Notice that PQ =
&fP(G)N. It is almost immediate that P, Q and / satisfy all the hypotheses of
Theorem 3.2, and of course P is a G-poset under conjugation and Q, I are G-
invariant. The Main Theorem is the statement of Theorem 3.2 in this particular
case.

We check two things in particular. If A e P — Q then A is an elementary abelian
p-group with A n N = 1, so by hypothesis A has order p. Thus P is an extension
of Q by minimal elements and P — Q = Jl as defined in the statement of the Main
Theorem. Secondly, for A G ^K we have I<>A = £/p(CN(A)) by Lemma 3.3.
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4. The Lefschetz invariant and the generalized Steinberg module

As far as computing the homology of s/p (G) is concerned, we were able in our Main
Theorem to give a sharp description of s/p{G)N only in the case when all elementary
abelian p-subgroups A < G satisfying A n N = 1 are cyclic. If we weaken the type
of information we try to compute and do not ask for the full homology, we may give
further results without the strong hypothesis on N.

Following [5], if A is a G-simplicial complex we shall use the notation

dim A

A(A) = y ; (-ly A,-,

dim A

L(A) =

respectively for the reduced Lefschetz invariant of A in the Burnside ring of G, and
the reduced Lefschetz module of A in the Green ring of RG-modules. Here A, is the
G-set of i-simplices of A, and C,(A) is the /-dimensional chain group of A, taken
over a commutative coefficient ring R. In order to make sense of the Green ring of
finitely generated RG -modules we will suppose that R is either a field or a complete
discrete valuation ring. We take A_i to be a single point with trivial G-action, and
C_!(A) = R the trivial module. As usual, in case A = A(P) arises from a poset P,
we will write simply A(P) and L(P).

The generalized Steinberg module of the finite group G at the prime p is defined
to be

Stp(G) = L{rfp{G))

as an element of the Green ring of tf G-modules. A survey of some of its properties
can be found in [7]. There is a homomorphism from the Burnside ring to the Green
ring which takes every G-set to the corresponding permutation module, and evidently
Stp{G) is the image of k(srfp{G)) under this homomorphism. We will prove our
identities for Stp(G) by first establishing the corresponding identities for K{sfp{G))
and then applying this homomorphism.

We are about to invoke a theorem of Thevenaz which applies to posets of the form
A +c B where A and B are posets and C is an ideal in the poset A x B. The poset
A +c B is defined to be the poset whose underlying set is the disjoint union of A and
B, and whose ordering is defined by the ordering of A, the opposite ordering of B and
the extra condition:

if a e A, b e B and (a, b) e C then a < b.

If A and B are G-posets and if C is a G-invariant ideal then A +c B is again a G-poset.
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In such a poset, A is an ideal of A +c B, and B is an ideal of the opposite
poset. Conversely, in every poset P with a subset B which is an ideal in P°p,
the complementary set A = P — B is an ideal in P, and P = A +c Bop where
C = {(x, v) | x € A, y e B, x < v}. Thus Thevenaz's theorem applies to our
situation where P is an extension of Q and J( = P — Q, so that P = M + c gop.

THEOREM 4.1. Suppose that P is a G-poset which is an extension of Q where Q is
G-invariant. Put J( = P - Q.

(1)
HP) = MQ) +

(2) Suppose further that I is a G-invariant ideal of P with I c Q, and that I has
the SJQ-property. Then

PROOF. Part (1) is a restatement of the first formula of [5,3.3] in the present context.
Part (2) follows from part (1) and Lemma 3.1, since A is constant on G-homotopy
equivalent complexes [5, 1.3].

THEOREM 4.2. Suppose that G is a finite group with a normal subgroup N such
that p \\N\. Then

P ) , ADN=l
up to conjugacy

in the Burnside ring, and so

Stp(G) = Stp(N) + V (Stp(GL(A)) ® Stp(CN(A))) t£oM)

up to conjugacy

in the Green ring.

PROOF. AS in the proof of the Main Theorem in Section 3 we take P = s/p{G),
I = sfp{N), Q = {A e P | A n N ^ 1} and Jl = {A e P \ A n V̂ = 1}. We
have seen in Lemma 3.3 that /<>A = s/p(CN(A)) in this situation, and it is clear that
M\\ is the poset of proper subspaces of A. This is in fact the poset which defines
the building of GL(A), and so we write Stp(GL(A)) for its Lefschetz module in the
final equation.
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The most straightforward (non-trivial) situation in which we may apply the formula
for the Steinberg module in Theorem 4.2 occurs when G satisfies the condition that
A n N = 1, A an elementary abelian subgroup of G implies A is cyclic. In this case,
if A = Cp then A has no proper subspaces and so Stp(GL(A)) = —R. Thus

Stp(G) = Stp(N) -
A

up to conjugacy

This formula may also be deduced by taking the alternating sum of the terms in the
long exact sequence of the Main Theorem. It seems that this formula is known to
Bouc [3] who uses it to relate St2(Sn) and St2(An).

5. Examples

We present two examples to illustrate the theory we have developed. In the first
we consider the situation An < Sn, and only state the result when n > 6 to avoid the
exceptional small cases which may easily be worked by these and other methods.

PROPOSITION 5.1. For each n > 6 there is a long exact sequence

—> 0.

PROOF. We apply the Main Theorem, in which the conjugacy classes of the set
M are represented by the groups ((1, 2)), <(1, 2)(3,4)(5, 6)), {(1, 2)(3,4)(5, 6)
(7, 8)(9, 10)),... Let us write tr = (1, 2)(3, 4) • • • (4r + 1, Ar + 2) € Sn. Then
CAn (tr) contains the subgroup of index 2 in ((1, 2), (3 ,4) , . . . , (4r + 1 , 4r + 2)) which
consists of even permutations, and this is a normal 2-subgroup of CAn(tr). Thus
^2(CAn(tr)) is contractible, except when r — 0, in which case CAn{\, 2) = 5n_2.
This gives the general terms of the long exact sequence, and it terminates as indicated
because all of the spaces sf2(CAn (tr)) are connected.

For our second example we consider a Frobenius group QXC P where p is prime
with p | q - 1, and form the wreath product G = (CqXCp) lCp. The base group
N = (Q XCP)P is a normal subgroup of index p. This example is of interest because
of counterexamples provided by Alperin to an incorrect conjecture made earlier by one
of us [7,3.2]. The conjecture was that Hn (£/p(G)) <g> Zp should always be a projective
ZpG-module, where 1P denotes the p-adic integers, but in [1] Alperin shows that the
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top non-vanishing homology group of £/p(Sp2) with p > 5, is not projective. He has
also observed that the wreath product group G provides a counterexample if p > 3,
using a similar argument to the one of Spi. We will now compute the homology of

PROPOSITION 5.2. Let G = (Cq>iCp) i Cp where Cq*ACp is a Frobenius group, p
a prime, and let N = (C<?XCP)P be the base group. Put V = H0(&/p(Cq>lCp)), the
coordinate-sum zero submodule of rank q — 1 in the permutation module on the q
Sylow p-subgroups ofCq~ACp. If p ^2 then

0 otherwise.

If p = 2 then Hn(stfP(G)) = 0 unless n = 1, in which case there is a short exact
sequence

0 -* V fSG-»- HiWpiG)) -* V tjG
(C x c )xC -* 0.

To explain the notation, we may regard V as a module for N = (Cq>lCp)
p via

projection onto the first Cq*\Cp factor. Then V f®G denotes the tensor induction. We
consider also the diagonal subgroup 8(Cq>$Cp) c JV, and regard V as a module for
8(Cq>iCp) x Cp, where the Cp factor performs the wreath action, via projection onto
8(CqXCp) = CqXCp.

PROOF. One sees easily that all complements to N in G are conjugate, since any
two are conjugate to complements for the base group in CplCp = ¥pCp>iCp and here
complements are conjugate since Hl(Cp, fpCp) = 0. The centralizer in N of such a
complement is 8(CqXCp) and so the long exact sequence of the Main Theorem takes
the form

Now st/piCq^Cp) is the set of q Sylow p-subgroups of Cq~ACp and so its homology
is zero except in dimension zero, where it is V. As for si/p(N), this is homotopy
equivalent to the join srfp(Cq XCP) * • • • *£/p(Cq XCP) with p factors by [4], and using
the methods of [6] it is easy to see that Quillen's homotopy equivalence is equivariant
for the action of G with Cp permuting the factors. Since srfp(Cq~ACp) is just a set
of q points, or in other words a wedge of (q — 1) 0-spheres, the join of p copies of
this space is a wedge of p(q — 1) (p — 1)-spheres, in which each CqX\Cp factor of N
permutes the corresponding set of (q — 1) of these spheres. Thus we have
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In the action on this homology the wreathing Cp permutes the factors V in the tensor
product and so

= V t r •
Substituting these identifications into the long exact sequence completes the proof of
this result.

COROLLARY 5.3. (Alperin). Let G be the group specified in Proposition 5.2.
When p > 3, Hp_x(s2'P{G)) <g> 1P is not a protective 1pG-module.

PROOF. AS a module for the wreathing Cp, the tensor induced module V f®G is a
permutation module on tensors v,-, ® • • • ® vip, where i>i,..., vq_x is some basis of V.
It has as a direct summand the trivial module, spanned by V\ <g> • • • ® V\, which is not
projective.
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