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Bioprosthetic heart valves create turbulent flow during early systole which might be
detrimental to their durability and performance. Complex mechanisms in the unsteady and
heterogeneous flow field complicate the isolation of specific instability mechanisms. We
use linear stability analysis and numerical simulations of the flow in a simplified model to
study mechanisms initiating the laminar—turbulent transition. The analysis of a modified
Orr—Sommerfeld equation, which includes a model for fluid—structure interaction (FSI),
indicates Kelvin—Helmholtz and FSI instabilities for a physiological Reynolds number
regime. Two-dimensional parametrized FSI simulations confirm the growth rates and
phase speeds of these instabilities. The eigenmodes associated with the observed leaflet
kinematics allow for decoupled leaflet oscillations. A detailed analysis of the temporal
evolution of the flow field shows that the starting vortex interacts with the aortic wall
leading to a secondary vortex which moves towards the shear layer in the wake of the
leaflets. This appears to be connected to the onset of the shear layer instabilities that
are followed by the onset of leaflet motion leading to large-scale vortex shedding and
eventually to a nonlinear breakdown of the flow. Numerical results further indicate that a
narrower aorta leads to an earlier onset of the shear layer instabilities. They also suggest
that the growing perturbations of the shear layer instability propagate upstream and may
initiate the FSI instabilities on the valve leaflets.
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1. Introduction

In aortic valve replacement therapy, moderate to severe aortic stenosis is treated by
replacing the diseased native aortic valve by a valve prosthesis which is manufactured
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either of man-made materials (mechanical heart valve, MHV) or of biological
tissue (bioprosthetic heart valve, BHV) (Yoganathan, He & Jones 2004; Head,
Celik & Kappetein 2017). Besides their superior durability, MHVs require life-long
anti-coagulation therapy for the patient due to flow-induced thrombogenicity which is
caused by excessive shear stresses in the flow field that cause platelet activation (Yun et al.
2014; Hedayat, Asgharzadeh & Borazjani 2017; Klusak & Quinlan 2019). A BHV creates a
more physiological flow field and exhibits lower thrombogenicity. Nevertheless, turbulent
flow during the systolic phase of the cardiac cycle is observed (Becsek, Pietrasanta &
Obrist 2020), possibly triggering leaflet calcification and eventually leading to structural
valve deterioration (Dvir et al. 2018; Gomel, Lee & Grande-Allen 2019; Li 2019; Tsolaki
et al. 2023) or causing bioprosthetic leaflet thrombosis (Egbe et al. 2015; Holmes & Mack
2017; Puri, Auffret & Rodés-Cabau 2017). Therefore, turbulent blood flow after BHVs is
detrimental to valve performance and may be a factor for their limited durability of less
than 20 years, which prevents their usability for younger patients (Kheradvar et al. 2015).
To understand the origin of turbulent flow after a BHYV, the identification of hydrodynamic
instabilities and the understanding of laminar—turbulent transition mechanisms in the
vicinity of the valve prosthesis is crucial.

Fluid-structure interaction (FSI) of blood flow and bioprosthetic aortic valves has been
described and investigated both experimentally (e.g. Saikrishnan ef al. 2012; Hasler &
Obrist 2018; Jahren et al. 2018; Oechtering et al. 2019; Lee et al. 2020) and numerically
(e.g. Borazjani 2013; Bavo et al. 2016; de Tullio & Pascazio 2016; Hedayat et al. 2017,
Chen & Luo 2018; Gilmanov, Stolarski & Sotiropoulos 2018; Becsek er al. 2020; Gallo,
Morbiducci & de Tullio 2022; Johnson et al. 2022; Asadi & Borazjani 2023).

Various complex flow phenomena are present during the opening of the valve. With
a central aortic jet emerging from a non-circular time-varying valve orifice area, a
highly unsteady downstream flow field is created including a shear layer separating the
forward flow towards the ascending aorta (AAo) and the retrograde flow towards three
cavities enclosing the valve, known as sinus of Valsalva. Immediately following valve
opening, a non-circular starting vortex ring of threefold symmetry is formed which breaks
down to smaller-scale vortices shortly thereafter. It marks the onset of turbulence during
systolic acceleration (see e.g. figure 5 in Becsek et al. (2020)). The identification of
hydrodynamic instabilities contributing to this laminar—turbulent transition is intricate due
to the existence of various spatial and temporal scales of the flow problem.

Instabilities initiating turbulent flow around MHVs were evaluated by simplification of
the problem with a bottom-up approach and a geometrical submodel (Zolfaghari & Obrist
2019; Zolfaghari et al. 2022). Highly-resolved two- and three-dimensional direct numerical
simulations (DNS) were performed for a rigid, fixed MHV in open systolic position.
The use of linear stability analysis (LSA) tools enabled the identification of a pocket of
absolute instability which caused nonlinear breakdown of the flow farther downstream.
This discovery provided cues for an optimized leaflet design which allowed the delay of
the laminar—turbulent transition such that unfavourable flow phenomena downstream of
the aortic valve in the AAo could be eliminated.

In contrast to MHVs, bioprosthetic aortic valves include anisotropic, hyperelastic
leaflet behaviour which adds to the problem complexity due to FSI (Soares et al. 2016).
Strongly dependent on the valve design, a complex interplay of downstream turbulence,
recirculating flow within the sinus of Valsalva and structural anisotropy of the leaflets
may cause so-called fluttering describing a nonlinear oscillating leaflet motion (Lee et al.
2021). Previous studies of valve performance in the presence of fluttering have shown
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both increased thrombosis risk due to higher turbulent kinetic energy levels (Hatoum
et al. 2018) and also accelerated valve deterioration due to cyclic stresses (Johnson et al.
2020). Therefore, valve fluttering might contribute to the limited long-term durability of
BHVs. Experimental as well as computational results have shown the influence of valve
diameter and valve thickness on the fluttering frequency (Lee ef al. 2021). According to
results of Johnson et al. (2022), reduced flexural stiffness is considered a primary factor
for increased leaflet flutter resulting in additional vortex formation in the valve vicinity,
blood flow disturbance and an oscillatory pressure field. By varying the leaflet thickness,
Chen & Luo (2020) investigated the impact of bending rigidity identifying an optimal
range located between reduced rigidity resulting in flapping motion lowering the valve
performance index and increased rigidity leading to hampered opening and closing as
well as higher resistance. However, whether the origin of laminar—turbulent transition can
be linked to hydrodynamic instabilities developing in the downstream flow field or to the
active perturbation of the fluid by an oscillating structure remains unclear.

The identification of the mechanisms leading to laminar—turbulent transition past
bioprosthetic aortic valves is important to find ways to suppress or control turbulence in
the AAo and therefore to prevent unfavourable flow phenomena. Previous computational
studies focused on modelling the full kinematic and morphological complexity of a
BHYV. While this approach leads to comprehensive understanding of large-scale flow
phenomena, the interaction of multiple complex flow features like recirculation and shear
layers with the fluttering motion of hyperelastic structures complicates the isolation
of instabilities with such a top-down approach. Basic fundamental questions remain
unanswered such as the specific types of instabilities, their origin and their individual role
in the laminar—turbulent transition mechanisms. Thus, we propose a bottom-up approach
breaking down the complex flow problem into sub-problems targeting a more isolated and
focused study of instability mechanisms.

First, we derive extended Orr—Sommerfeld equations which include FSI to study basic
linear instability mechanisms in a simplified one-dimensional model. Second, we perform
numerical FSI simulations of simplified two-dimensional models of the aortic root with
different geometries (e.g. different aortic diameters) and with rigid or flexible leaflets. The
resulting flow fields feature various instabilities which interact in different ways with each
other. Finally, a comparison between the results obtained from linear stability analysis and
the flow patterns observed in numerical data provides deeper insight into the pathways
towards transition.

The remainder of this paper is structured as follows. Section 2 illustrates the developed
theoretical framework accounting for FSI in LSA (§2.1) and gives an overview of
the results of temporal LSA (§2.2). Section 3 introduces the governing equations and
numerical method of our numerical FSI simulations (§ 3.1) as well as the two-dimensional
parametrized aortic model (§ 3.2). Numerical results are described (§ 3.3), specifically
focusing on the influence of aortic wall geometry and the relevance of FSI on observed
flow phenomena. Section 4 relates results of LSA to the numerical FSI-DNS. Section 5
concludes the paper.

2. Linear stability analysis
2.1. Derivation of the modified Orr—Sommerfeld equations with FSI extension term

To first understand the basic instability mechanisms occurring during the interaction of
fluid and flexible leaflet tissue, we derive an approach incorporating FSI into the classic
Orr—Sommerfeld equations. We conduct temporal LSA for multiple base flows (figure 1)
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Figure 1. Streamwise velocity field in the aortic root with inserted BHV. Base flow profiles are extracted along
the green line (aortic jet) with boundary conditions representing a rigid wall (blue) and flexible wall (red) for
the (b1) wall-bounded case, (by) pure shear flow case and (b3) FSI case with flexible wall.

in a simplified one-dimensional model with and without a flexible wall representing the
valve leaflet.

We study three different configurations. Configuration b; represents the aortic jet
bounded by two fixed leaflets at y = 4-0.5. Configuration b, features the same aortic jet
after leaving the valve orifice. Two rigid walls represent the aortic walls at y = £1 and we
assume zero flow between the aortic jet and the rigid walls. In configuration b3 the aortic
jet is bounded by flexible leaflets at y = +0.5 which separate the jet from the zero-flow
region between the flexible leaflets and the rigid aortic walls at y = 1. The definition of
the base flow profile for the aortic jet is described in Appendix A. As the applied base
flows are slightly asymmetric, we cannot exploit symmetry to retrieve strictly sinous or
varicose modes, but need to consider the full domain.

The derivation of the eigenvalue problem starts with the non-dimensional
incompressible Navier—Stokes equations (non-dimensional quantities indicated with a

tilde) including a force density frg; which we introduce to account for the interaction
between fluid and flexible wall:

QU iy - Vitp =~V + —V2iiy +F
— ur - V)ur = —Vpr + —V-uy ,
P prluf f Pf Re' W FSI

V. iy =0. @.1)

The non-dimensionalized force density ]’FS, depends on a material-specific constant &
(derivation described in Appendix B) and the second derivative of the wall displacements

n—aty=y_ = —0.5and 774+ at y = y+ = 0.5 to model the effect of wall tension. It is
given as
7 N I
Sesi = 0,80 —y)6—— +80 - ys—= |- (2.2)
dx ax

This formulation with the Dirac delta function §(y) follows the immersed boundary
concept by Peskin (2002). A similar problem with a main focus on flexural stiffness of

985 A41-4


https://doi.org/10.1017/jfm.2024.309

https://doi.org/10.1017/jfm.2024.309 Published online by Cambridge University Press

Instability mechanisms past bioprosthetic aortic valves

the structure has been studied by Lebbal, Alizard & Pier (2022). Here, flexural stiffness
(associated with the fourth derivative of the wall displacement) is neglected because of the
thin membrane-like geometry of the leaflet.

A normal mode ansatz for the perturbation velocity components [«/, v'] and perturbation
displacements [#”_, n/_] is applied to the linearized extended Navier—Stokes equations:

[, v, 0", 0] = (@), 0G), A, f4]explie(F — cn)], (2.3)

with associated amplitudes [i(3), 0(9), —, N+ ], wavenumber « and complex phase speed
c=w/a.

The displacement amplitudes [7—, 774.] are substituted by the vertical velocity amplitude
U considering interface conditions at y = [y_, y [

Ulj—y_ = —iacn_, 2.4)
U=y, = —iaciy. (2.5)
The insertion of the base flow profile U = u(x1, y1,1)/Unax leads to a modified

Orr—Sommerfeld equation with FSI extension terms:

|:(U —o)(D*—aPe—U'c+ ;(Dz —a®?c
oRe

~ 85 - 5.0 ~ G ~T)E | 0 =0 6)
with D = d/dy and the Reynolds number defined as
UnaxLpr
Re = b 2.7)
Mt

with L as the spanwise orifice of fully open, stable valve leaflets. In this linearized form
the positions y+ are fixed at +0.5.
The resulting quadratic eigenvalue problem

(’A+cB+C)b =0 (2.8)

is transformed into a generalized eigenvalue problem (Tisseur 2000)

(F F)emell )

with ¢ = (¢0, 9)T and the boundary conditions d = 39/9y = 0 at y = 1.

2.2. Temporal LSA

First, base flow b1 with a flow profile between two rigid walls is analysed. It reflects the
inflow condition of the aortic jet between two fixed leaflets before entering the AAo. The
flow remains linearly stable up to Re = 5240.

Beforehand, we define a wavenumber region considered relevant in our later
investigation of a finite valve leaflet. Taking into account its one-sided fixation and the
finite leaflet length H, we define wavelengths A,,;;, = H and A;;,4x = 4H as ag = 5.55 and
ay/4 = 1.39, respectively. As indicated by the schematic drawings in figure 2 and 5 the
interval [Apin, Amax] defines a range of typical wavelengths observed in fluttering valve
leaflets (compare, for example, with figure 6 in Becsek et al. (2020)).
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Figure 2. Growth rate w; as a function of wavenumber « for Re = 3318 for base flow b; (blue) and base flow
b3 (green). Eigenfunctions and velocity fields are later given for wavenumbers I and I7 in figures 3 and 4.

The analysis is conducted for base flows by and b3 to quantify the effect of the
flexible wall on stability regions. Growth rates w; = Im(co) for a physiologically relevant
Reynolds number of Re = 3318 (see Appendix A) are shown in figure 2. The separation
of zero-flow and jet-flow regions by a flexible wall decreases the range of unstable
wavenumbers to o3z = [0, 12.7] for b3 compared with the pure shear flow case b, which
is unstable in ap = [0, 19.7]. Evaluating the corresponding range of unstable physical
wavelengths A, base flow b, shows a minimum unstable wavelength of 1, = 0.28H while
base flow b3 becomes unstable for a minimum wavelength of A3 = 0.44H. Also, the
maximum growth rate of b3 is smaller and located at a lower wavenumber (w; 3 nqx = 1.32
at a3 = 6.0 corresponding to A3 = 0.93H) compared with pure shear flow by (w; 2 max =
1.62 at ap = 8.2 corresponding to Ay = 0.68H).

Figure 3 for o and figure 4 for oy/4 give further insight into the unstable mode
pairs at Re = 3318 of base flows b, and b3. Real and imaginary parts of the normalized
eigenfunction v are shown together with the corresponding reconstructed two-dimensional
streamwise velocity fields z. The two-dimensional velocity field is reconstructed by

u(x,y) = U@®) + eRe(u(y) expliax]), (2.10)
v(X,y) = eRe(v(y) expliax]), (2.11)

with # = iDv/« based on the continuity equation. The wall displacement [77— (X), 774 (X)]
is reconstructed by applying the previously defined interface conditions (2.5):

n_(x) = €Re (Lﬂy_ exp[iow?]) , (2.12)
ca

N+(X) = €Re (il_f|&+ exp[iafc]) . (2.13)
ca

For « in figure 3, two unstable modes exist for each base flow of which one affects
the upper and the other the bottom shear layer (by) or flexible wall (b3). While the real
part of the eigenfunction peaks at the distinct vertical location of maximum shear (b,) or
flexible wall (b3), the location of the imaginary maximum of smaller amplitude is shifted
slightly towards the jet core. Considering the reconstructed two-dimensional flow fields,
base flow b, shows classical Kelvin—Helmholtz (KH) flow features within the shear layer.
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Figure 3. Normalized amplitude v and dimensionless streamwise velocity field & for e = 0.08 with streamlines
of (a) the most unstable mode of base flow b;, (b) the second most unstable mode of base flow b5, (¢) the most
unstable mode of base flow b3 and (d) the second most unstable mode of base flow b3 for wavenumber o at
Re = 3318 (corresponding to II in figure 2).

The addition of the flexible wall for base flow b3 leads to similar flow patterns in the
wall region at either y_ or y . For smaller wavenumbers such as a4 in figure 4, we can
observe an interaction between both shear layers (b;) or flexible walls (b3). While higher
wavenumbers show a one-sided eigenfunction destabilizing the flow at only one of the
vertical locations y_ or y, lower wavenumbers are associated with eigenfunctions which
couple the modes of both shear layers (b3) or flexible walls (b3).

When evaluating the neutral stability curves in figure 5, the critical Reynolds number
for KH modes corresponding to configuration by is higher (Regg = 299) than for FSI
modes corresponding to configuration b3 (Reps; = 184). An overlapping region of both
KH and FSI modes exists for a large Reynolds number and wavenumber range which
includes physiologically relevant Reynolds numbers and wavenumbers. Therefore, both
instabilities (KH and FSI) are suspected to be present simultaneously after valve opening.

Figure 6 shows the dependency of the eigenvalues on wavenumber « for base flows by
and b3. The growth rate w; = Im(ca) of the unstable eigenmode pair is displayed against
the phase speed ¢, = w,/a at Re = 3318. In general, the phase speed ¢, decreases with
increasing wavenumber for both base flow configurations. Growth rates w; of KH modes
(base flow by) peak at higher wavenumber compared with FSI-related modes (base flow
b3). The FSI-related modes generally grow slower than KH modes; however, phase speeds
are higher. For Re = 3318, the most unstable KH mode has a phase speed ¢, = w,/a of
cr2(a2) = 0.424 while the most unstable FSI-related mode is faster with a phase speed
of ¢, 3(a3) = 0.649. In conclusion, unstable KH modes seem to grow faster than unstable
FSI-related modes for their unstable wavenumber range. Also, we observe less dependency
of the phase speed of the KH modes on the wavenumber. In comparison, FSI-related
modes depend stronger on the wavenumber. While small wavelengths travel slowly, the
phase speed of higher wavelengths is higher and varies more related to the wavenumber.
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Figure 4. Normalized amplitude v and dimensionless streamwise velocity field & for € = 0.08 with streamlines
of (a) the most unstable mode of base flow b;, (b) the second most unstable mode of base flow by, (¢) the most
unstable mode of base flow b3 and (d) the second most unstable mode of base flow b3 for wavenumber a1 /4 at
Re = 3318 (corresponding to I in figure 2).
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Figure 5. Neutral stability curves for pure shear flow (base flow b», indicated in blue) and FSI case (base flow
b3, indicated in green).

3. Numerical FSI simulations
3.1. Governing equations and numerical method

After the investigation of instability mechanisms in a simplified one-dimensional
model, we now increase the modelling complexity by conducting highly-resolved
two-dimensional FSI simulations of a parametrized aortic geometry. Hereby, we aim to
obtain a deeper insight into more complex flow features as well as their temporal and
spatial evolution.
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Figure 6. Path of locus for the unstable eigenmode pairs of base flow b, (pure shear flow, blue) and base flow
b3 (flexible wall, green) for wavenumbers o at Reynolds number Re = 3318.

The interaction of valve and blood flow is implemented within an in-house high-fidelity
FSI solver developed for applications including blood flow and soft tissue on hybrid
high-performance computing platforms. The flow field is solved by a GPU-accelerated
high-order Navier—Stokes solver based on Henniger, Obrist & Kleiser (2010) and
Zolfaghari & Obrist (2021) on a structured, staggered grid using the incompressible
Navier—Stokes equations:

W 4 oy - V) Vor + i Aug +f
el ur - Vur — —Vpy Auy ,
Pr=gy TP f Pf + Kf AUy 3.1)
V.u =0,

with the fluid density pr, dynamic viscosity ur, pressure py, time ¢ and, in the present case,
two-dimensional fluid velocity field uy = [uy x, us,y]. The added force term f* accounts for

FSL
Temporal discretization is realized by a third-order Runge—Kutta time stepping while

the fluid is spatially discretized by a sixth-order finite difference scheme.
An unstructured grid is used for the discretization of the structural domain, which is
solved by a finite element solver using the full elastodynamic equations:

0%u,
'OSW —V-P=0, (3.2)

with the structural density ps, the displacement field u; and the Piola—Kirchhoff stress

tensor P.
The interaction of fluid and structure motion is realized by a modified immersed

boundary method based on variational transfer with the following interface conditions:

oug
o’ (3.3)
J'PF'n = osn,

ur =

including the Cauchy stress o and the deformation gradient F = Vu, + I with its
associated determinant J = detF.
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Figure 7. (a) Parametrized two-dimensional model of the aortic wall with inserted bioprosthetic valve.
Constant parameters (black) are referenced in table 1 and variable parameters (red) in table 2. (b) Systolic
acceleration defined as the inflow flow rate from the left ventricular outflow tract.

1!

Details of the FSI solver as well as its experimental and numerical validation can be
found in Nestola et al. (2019) and Becsek et al. (2020).

The two-dimensional, rectangular fluid domain is resolved with a structured grid of
2209 x 897 points on a domain of an extent of 11.18r4 x 4.55r4 with r4 as the annular
radius in order to resolve the onset of hydrodynamic instabilities. Grid stretching was
applied which reduces the minimal mesh width to around 35 pwm in the immediate vicinity
of the valve. The unstructured solid grid consists of approximately 11300 triangular
elements.

With a time step size of 1s, the computational time for the simulation of the
systolic acceleration (200 ms) amounts to around 1500 node hours on 8 nodes of a Cray
XC40/XC50 high-performance computer.

3.2. Two-dimensional parametrized aortic model

The problem set-up in figure 7(a) is a model of an aortic root with an inserted bioprosthetic
valve. The actual threefold symmetry of the three-dimensional aortic root with three sinus
bulbs and corresponding valve leaflets is simplified to a two-dimensional problem by
considering a mirrored longitudinal cut through the middle plane of a leaflet. Generally,
the structural domain is divided into aortic wall, valve stent and valve leaflet and separated
in the fluid regions as annulus (6524), sinus (652s) and AAo (8£2440). The aortic wall
geometry is based on data of Haj-Ali et al. (2012) and Reul ez al. (1990) and the curvature
of the valve leaflets on the bioprosthetic aortic valve Edwards Intuity Elite 21 (Edwards
Lifesciences, Irvine, CA, USA). Geometrical parameters are listed in table 1 which are
constant throughout each analysed case.

We additionally introduce the parameters sinus height (hs7y) and AAo radius (ra40)
in order to evaluate the influence of aortic wall geometry on instabilities in the aortic
root. Parametrization values (table 2) were chosen according to realistic anatomical ranges
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Parameters Notation Value
Annular radius rA 0.011m
Sinus radius rs 1.55r4
Lower sinus height hy 0.8r4
Upper sinus height ho 0.7r4
Leaflet thickness L 0.045r4
Location of the sinotubular junction (STJ) VSTT y=h

Table 1. Constant parameters of the parametrized aortic model relative to the annular radius r4.

Parameter Initial configuration (A) Increased sinus height (B) Decreased AAo radius (C)
hsty 1.5r4 1.9r4 1.5r4
TAdo 2.5r4 2.5ra 2.0ry

Table 2. Variable parameters of the parametrized aortic model relative to the annular radius rq4 with
the parameters sinus height hgs7; and AAo radius rg4,. Evaluated configurations are indicated as initial
configuration (A), increased sinus height (B) and decreased AAo radius (C).

extracted from various studies on aortic root morphology by Bahlmann et al. (2011),
Buellesfeld et al. (2013), Mirea et al. (2013), Vriz et al. (2014) and Boraita et al. (2016). As
a result, we define three cases: initial configuration (indicated as case A), increased sinus
height (indicated as case B) and decreased AAo radius (indicated as case C).

The opening phase of bioprosthetic aortic valves is completed after a duration of around
20 ms. Thereafter, the valve remains in the open position before the asynchronous closing
starts at a third of the full cardiac cycle corresponding to a physical time of about 0.3 s
(Vennemann et al. 2018). As we aim to investigate hydrodynamic instabilities initiating
laminar—turbulent transition leading to turbulent flow during early systole as shown in
Becsek et al. (2020), we limit our study to the systolic acceleration phase of a duration of
about 0.2 s as defined in figure 7(b).

Inflow conditions are enforced by the fringe region technique described in Nordstrom,
Nordin & Henningson (1999) for a periodic fluid domain. A penalization term f'f;,4, (x) i8
added to the right-hand side of the Navier—Stokes equations within a fringe region located
at the left ventricular outflow tract as described in Becsek et al. (2020). A physiological
inflow profile at a defined cardiac output is ensured by tuning of the fringe function. By
suppressing lateral velocity components within the fringe region, entering fluctuations
due to the periodic fluid domain are damped. Here, we impose a pressure difference
of 8 mmHg across the fringe region corresponding to the average systolic transvalvular
pressure gradient.

The fluid is modelled as incompressible and Newtonian with material properties similar
to those of blood (uf = 0.004 Pas, pr = 1050kg m~?). The aortic wall and the valve stent
are assumed to be rigid while we apply a hyperelastic, nonlinear neo-Hookean material
model with a shear modulus of g = 5.0 x 103 Pa to the flexible valve leaflets. The shear
modulus was tuned in order to match leaflet oscillation amplitudes extracted from a
less resolved three-dimensional case of a bioprosthetic valve with leaflets modelled by
a fibre-reinforced Holzapfel-Gasser—Ogden model (Holzapfel, Gasser & Ogden 2000).
Figure 8 shows the temporal evolution of the leaflet tip displacement for four shear moduli
previously applied in studies of Hiromi Spiihler & Hoffman (2020) (us = 3.3 x 10* Pa),
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Figure 8. Temporal evolution of leaflet tip displacements perpendicular to the longitudinal aortic axis for four
shear moduli according to two-dimensional studies for a neo-Hookean model of (a) Hiromi Spiihler & Hoffman
(2020), (b) Chandra, Rajamannan & Sucosky (2012), (¢) Bavo et al. (2016) and (d) De Hart et al. (2000) in
comparison with a less resolved three-dimensional reference study using a Holzapfel-Gasser—Ogden (HGO)
model.

0 0.05

Chandra et al. (2012) (s = 1.2 x 107 Pa), Bavo ef al. (2016) (us = 3.4 x 10° Pa) and
De Hart et al. (2000) (us = 5.0 x 105 Pa) in comparison with the three-dimensional
simulation.

3.3. Numerical results

3.3.1. The influence of FSI: rigid versus flexible leaflet

To assess the effect of FSI on laminar—turbulent transition, we compare the base
configuration starting with closed leaflets (case A) from figure 7 with a rigid leaflet case
fixed in open position (indicated as AR). The rigid leaflet shape of case AR is extracted
from the flexible case A immediately after full valve opening. In particular, we pick the
deformed leaflet shape prior to the onset of (a) leaflet motion and (b) non-zero transversal
velocities within the shear layer created in the wake of the leaflet (hereafter referred to as
‘leaflet shear layer’).

Figure 9 shows the instantaneous viscous shear stress magnitude |t| at five time
instances for the rigid leaflet case AR (top row) and the flexible leaflet case A (bottom
row). Three main flow phenomena seem to occur sequentially for both rigid and flexible
cases:

(i) Starting vortex (figure 9a). Early during systolic acceleration, a distinct starting
vortex is formed which is advected downstream.
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Figure 9. Instantaneous viscous shear stress magnitude || for (AR) rigid leaflet case and (A) flexible leaflet
case for aortic wall configuration A at (a) t = 0.10s, (b) t = 0.1175, (¢) t = 0.1355s, (d) t = 0.1525 s and (e)
t = 0.17 s. Secondary vortical structures forming after the impingement of the starting (primary) vortex on the
aortic wall are shown by the red arrows.
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(i1) Vortex—wall interaction (figure 95—d). The starting vortex is advected and elongates
in the streamwise direction. Due to the transversal confinement by the aortic wall and
the associated no-slip boundary condition at the wall, a secondary vortex is created
upstream of the starting vortex. This smaller vortex rebounds from the aortic wall
and moves towards the leaflet shear layer. The ejection of a secondary vortex when
a sufficiently strong primary vortex (here the starting vortex) impinges at a wall is
well documented (Walker et al. 1987; Orlandi & Verzicco 1993).

(iii) Shear layer instability (figure 9¢). When the secondary vortex reaches the outer side
of the shear layer, we observe growing shear layer instabilities.

Both cases show growing vortical structures within the shear layer at a similar time
which suggests that the general mechanisms do not seem to be influenced by the open
or closed starting position of the rigid or flexible leaflet, respectively. Moreover, the
occurrence of shear layer instabilities seems to be independent of mechanisms related to
FSI. This is further supported by the observation that the flexible leaflets of case A remain
stable during the initial onset of vortical structures reminiscent of KH-like vortex roll-up
within the shear layer. This is in agreement with the LSA predicting KH modes for this
flow regime.

The impact of FSI on the downstream flow field starts to become relevant during
the growth phase of the shear layer instability. Figure 10 shows instantaneous shear
stress magnitudes for the flexible leaflet case at time instances after those displayed in
figure 9. As predicted by LSA, we observe an FSI-related instability of the flexible leaflets.
While figure 10(a) shows the onset of leaflet motion, we observe a stronger influence of
leaflet motion on the downstream flow field by vortex shedding from the leaflet tips in
figure 10(b). This is consistent with the repeated formation of vortex rings at the valve
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Figure 10. Instantaneous viscous shear stress magnitude |7| for aortic wall configuration A at
(@)t =0.1875s, (b) t = 0.1945s and (c) t = 0.2s.

orifice associated with oscillatory leaflet motion shown for the three-dimensional model by
Becsek et al. (2020). Eventually, figure 10(c) possibly indicates another instability leading
to small-scale vortices within the larger vortex downstream of the leaflets.

3.3.2. Effect of aortic root geometry

To assess the influence of morphological features on instability mechanisms, we simulate
the cases A (base configuration), B (increased sinus height) and C (decreased AAo radius)
as defined in table 2. Instantaneous viscous shear stress magnitudes at multiple time
instances throughout systolic acceleration are shown in figure 11. Cases A and B display
similar temporal and spatial evolution of the starting vortex. In contrast, case C exhibits
an early elongation of the starting vortex caused by the earlier vortex—wall interaction due
to the narrower AAo. As described before, confinement of the downstream flow region
causes the formation of a second smaller vortex approaching the leaflet shear layer (red
arrows in figure 11) which is followed by instability in the leaflet shear layers. In case C,
this shear layer instability appears earlier than in cases A and B (see figure 115). Likewise,
the second shear-related instability leading to smaller shear-layer vortices (green arrows)
occurs also earlier for case C than for cases A and B.

Figure 12 shows the evolution of the transversal velocity at six leaflet thicknesses, x =
617, downstream of the instantaneous leaflet position as well as the transversal leaflet tip
velocity. First, we observe the initial opening of the leaflet (completed at ¢t ~ 0.08 s) which
is almost identical for all three aortic configurations. After the opening phase, the leaflet
remains in a stable position until the onset of transversal leaflet and fluid motion. For cases
A and B, this occurs at t ~ 0.13 s, while we observe an earlier onset of leaflet and fluid
motion for case C (¢ =~ 0.11 s). After this onset, we find growing oscillations of leaflet
tip and fluid at a frequency of approximately 55 Hz. These oscillations are reminiscent of
leaflet fluttering observed in BHVs in experimental studies (Vennemann et al. 2018).

Although the same qualitative sequence of flow phenomena shows for every aortic
wall configuration, there are major differences in the timing and onset of the different
mechanisms. In particular, a shorter distance between leaflet tip and aortic wall appears to
lead to earlier shear layer perturbations.

4. Comparison of numerical results and LSA

Finally, we compare the results from LSA (§ 2) with flow patterns observed in numerical
simulations (§ 3). Previously, we already confirmed in both approaches the consistent
presence of KH and FSI instabilities for the investigated flow regime at Re = 3318.
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Figure 11. Instantaneous viscous shear stress magnitude |t| for aortic wall configurations (A) initial
configuration, (B) increased sinus height and (C) decreased AAo radius at (a) t =0.125s, (b) t =0.15s5,
(c) t =0.175s and (d) t = 0.20s. Secondary vortical structures forming after the impingement of the starting
(primary) vortex on the aortic wall are shown by the red arrows.

Figure 13(a) displays the temporal evolution of transversal velocity profiles that were
obtained along the leaflet shear layer downstream of the valve for case AR (rigid leaflet). In
this figure, we can identify the onset and propagation of the KH instability as ‘ridges’. The
red line in figure 13(a) indicates the phase speed c, 2(a2) of KH instabilities according to
the LSA for the configuration b, (free jet). There is a reasonably good agreement between
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Figure 12. Temporal evolution of transversal fluid velocities extracted at x = 6f; downstream of the
instantaneous leaflet tip position (blue) and transversal leaflet tip velocity (black) for aortic wall configurations
(a) initial configuration (case A), (b) increased sinus height (case B) and (c) decreased AAo radius (case C)
with the onset of transversal oscillations indicated by the red arrow.

the propagation speed of the ridges and the phase speed c;, 2 especially before t ~ 0.17 s
when the amplitude of the instability is still small.

Figure 13(b) shows the transversal velocity profiles in the leaflet shear layer of case A
(flexible leaflet) and the deformation of the leaflet beneath. The phase speeds c, 2 (a2) (free
jet) and ¢, 3(e3) (jet with flexible wall) are added as red lines. At the onset of the shear
layer instabilities, the perturbations seem to propagate with a phase speed comparable
to ¢, 2(a2). However, after the onset of leaflet motions, which appear to propagate with
phase speed ¢, 3(«3), the shear layer perturbations appear to accelerate somewhat towards
the phase speed ¢, 3(a3).

Furthermore, figure 13(a,b) reveals that the shear layer instability also grows in the
upstream direction (indicated by thin black lines). This is reminiscent of an absolute
instability (Huerre & Monkewitz 1990; Schmid & Henningson 2001) which may be
facilitated by the lower streamwise velocities in the wake of the leaflet (figure 13c¢).
Furthermore, this could suggest that the shear layer instability, which starts downstream
of the leaflets, is triggering the FSI instability when it reaches the leaflets.

The growth rates of FSI-DNS and LSA results are compared in figure 13(d). Solid lines
show the envelope of transversal velocity oscillations over time within the leaflet shear
layer for case AR (Gagrlx=6;,) and case A (Galx=6;,) and for the leaflet tip of case A
(G4lx=0). For comparison with growth rates obtained by LSA, we display the maximum
temporal growth of KH instabilities of base flow b, (exp(w; 2,maxt)) and of FSI instabilities
of base flow b3 (exp(w; 3,maxt)). The initial growth of the shear layer instabilities in the
FSI-DNS is in very good agreement with the predicted growth rate of configuration b
(free jet). Likewise, the growth of the leaflet instabilities agrees well with the growth rate
from configuration b3 (jet bounded by flexible wall). For better comparison, the different
onsets of instability growth are marked by circles in figure 13(a,b), although the small
initial amplitudes are not evident in this figure.

Finally, we study the leaflet shape in figure 13(b) in comparison with wavelengths
determined by LSA. In the numerical simulations, the leaflet mostly exhibits an S-shaped
travelling wave pattern. In LSA, this leaflet form corresponds approximately to the
wavenumber o9 = 5.55 resulting in one full wave per leaflet length. As illustrated in
figure 3, the eigenmodes at this wavenumber show a decoupled behaviour where only
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Figure 13. (a) Case AR: transversal velocity profiles over time along the leaflet shear layer. Red line: phase
speed ¢, 2(a2) for base flow by (pure shear flow). (b) Case A: transversal velocity profiles over time along
the leaflet shear layer (top row) and leaflet shape over time (bottom row). Red line: phase speed ¢, 3(c3) for
base flow b3 (flexible wall). Black lines indicate the upstream propagation of velocity ‘ridges’. (c¢) Streamwise
velocity field in the leaflet wake at r = 0.14 s. (d) Envelope G(¢) of transversal velocity at x = 677, for case AR
(GaRrlx=6r, ) and case A (Galx=6, ) and of the leaflet tip for case A (Galx=0). Dashed lines show exp(w; 2 max?)
of base flow by (shear flow) and exp(w; 3, maxt) of base flow b3 (flexible wall).
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one shear layer (or flexible wall) is affected by the instability, whereas the other shear
layer (flexible wall) is not affected. This suggests individual, decoupled dynamics for each
leaflet, which agrees well with experimental studies of leaflet kinematics which indicate
asynchronous motion of the leaflets (Vennemann et al. 2018).

5. Conclusions

In this study, we investigated instability mechanisms which may contribute to
laminar—turbulent transition downstream of a BHV. We used two conceptionally different
approaches: LSA and numerical FSI simulations.

In the first part of this study (LSA) we derived modified Orr—Sommerfeld equations
with an FSI extension term. We constructed a simplified one-dimensional model with
a central jet and a zero-flow region surrounding the jet. The jet was confined either by a
rigid wall (modelling the flow through a valve with fixed leaflets) or by a flexible wall (flow
through a valve with flexible leaflets). In a third configuration, there was no wall between
the jet and the zero-flow region (modelling the free aortic jet flowing into the AAo). The
confined jet (fixed leaflets) was linearly stable for a physiological Reynolds number of
Re = 3318. The configuration with a flexible wall exhibited FSI instabilities beyond a
critical Reynolds number of Rersy = 184. For the configuration without separating wall,
we found KH instabilities for a somewhat wider range of wavenumbers and a slightly
higher critical Reynolds number (Rexy = 299). At Re = 3318, the KH instabilities had
a higher maximum growth rate and slower phase speeds than the FSI instabilities. For
low wavenumbers, the unstable modes had either sinous or varicose character such that
the associated displacements of the flexible walls were either in phase or out of phase,
respectively. For higher wavenumbers, however, the unstable modes were decoupled such
that the two flexible walls could move independently from each other.

Second, we conducted FSI simulations for a two-dimensional symmetric model of the
aortic root comprising valve leaflets, a valve stent and a parametrized aortic wall model
immersed in a fluid domain. To study the influence of FSI on the onset of instabilities,
we ran simulations for rigid as well as flexible leaflets. Both models showed qualitatively
similar flow phenomena. First, a starting vortex is formed which is advected and elongated
in the downstream direction. The interaction of this starting vortex with the aortic wall
leads to a secondary vortex. This vortex moves towards the leaflet shear layer and perturbs
it. We suspect that this triggers the KH shear layer instability. This sequence is observed
in the shear layers behind rigid and flexible leaflets which indicates that this part of the
instability mechanism is independent of FSI. Only after the onset of KH instabilities do the
flexible leaflets start moving with growing amplitude which results in repeated shedding
of vortices from the leaflet tips. These vortices eventually break down and contribute to the
chaotic nature of the fully developed flow field downstream of the valve. Simulations in a
model with a narrower AAo exhibited an earlier onset of the KH instabilities. This supports
the interpretation that the onset of the KH instability is triggered by the secondary vortex,
because this vortex has to travel a shorter distance (in the narrow aorta case) before it
reaches the shear layer. Furthermore, this indicates that the spanwise distance between
aortic wall and leaflet shear layer is an important parameter for the temporal evolution of
the instabilities.

The study is concluded by a combined analysis of the numerical data and the results
from LSA. The results of both approaches are in good agreement. The combined analysis
supports the higher growth rate of the KH instabilities in the shear layer and the higher
phase speeds of FSI instabilities on the leaflets. The wavelength of the leaflet oscillations
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corresponds to a modal wavenumber for which the LSA indicates decoupled eigenmodes.
This could offer an explanation for the experimental observation that valve leaflets tend to
move independently from each other. Additionally, the investigation of the spatio-temporal
evolution of the KH instability suggests that it has the character of an absolute instability.
This could mean that the onset of the leaflet oscillation (FSI instability) is triggered by
the KH instability which initiates somewhat downstream of the leaflets and propagates
upstream towards the leaflet.

By investigating the fundamental instability mechanisms in the flow field downstream
of a BHV, our results could be useful for valve design optimization. We have shown that
both KH and FSI instabilities are present at a physiologically realistic Reynolds number of
Re = 3318. The critical Reynolds numbers for both instabilities are significantly smaller
than physiological Reynolds numbers. Therefore, it is likely that transition to turbulence
will occur in any aortic valve regardless of its specific design. At the same time, this
means that complete suppression of transition is probably not possible. However, a better
understanding of the transition mechanisms may help to find ways to modify the transition
process which could contribute to improving hydraulic valve performance, increasing
valve durability or reducing blood trauma. Additionally, we showed the relevance of
aortic wall geometry (e.g. spanwise distance between leaflet shear layer and aortic wall)
for the onset of instabilities. Therefore, patient-specific assessment of this geometrical
parameter may allow for a more favourable positioning of the valve with respect to the
aortic wall which could result in a delayed KH instability. This could even help to mitigate
unfavourable haemodynamic mechanisms such as shear-induced thrombosis. Furthermore,
optimized leaflet rigidity might dampen the FSI instability and contribute to reduced leaflet
fluttering. Thereby, not only could the cyclic stresses contributing to leaflet fatigue be
lowered, but also vortex shedding after the onset of oscillatory leaflet motion could be
reduced which further mitigates adverse haemodynamic effects.

It is very likely that a full three-dimensional configuration of a real heart valve prosthesis
features many more instability phenomena, e.g. azimuthal modes of vortex ring breakdown
as present in figure 5 of Becsek et al. (2020). Regarding the structural side of the FSI
problem, the influence of radial tension within the actual three-dimensional, curved leaflet
shape might influence the leaflet motion as well as its impact on downstream flow features.
Therefore, the proposed instability mechanism (starting vortex — secondary vortex at the
aortic wall — KH instability in the shear layer — FSI instability on the leaflets) is only a
first hypothesis and requires further investigation and confirmation.
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Appendix A. Definition of base flows

Base flow profiles are extracted from numerical results as presented in § 3. After the initial
outward leaflet deflection (opening of the valve), the leaflets remain stable for a certain
time period. We define the time instance just prior to the onset of leaflet oscillations as a
quasi-steady base flow solution and assume locally parallel flow. The flow profile is then
extracted between the leaflet tips in the spanwise direction as shown in figure 1 (green line).
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Figure 14. (a) Imposition of fixed value displacement amplitude 7 at varying distances A. (b) Determination of
material-specific spring constant & (blue line) by evaluating the horizontal restoring force f,/ fie? for different
wavenumbers o = 21/A.

With inflow conditions tuned to achieve a physiological cardiac output at rest, dimensional
analysis of the base flow at the orifice yields a Reynolds number of Re = 3318.

Appendix B. Derivation of the material constant &

To determine the material constant £ in the formulation of the force density f g, we
assume proportionality of the restoring force density of the structure to the squared
wavenumber o2 (Lebbal e al. 2022). In order to ensure the transferability of FSI-DNS
and LSA results, we conduct purely structural finite-element simulations for a single
leaflet considering its thickness and neo-Hookean material model applied in numerical
simulations. As shown in figure 14, a defined displacement amplitude 7 at varying
wavelengths A is imposed from alternating sides to map the restoring force resulting in
a non-dimensionalized material-specific constant of £ =2 x 107",

Appendix C. Sensitivity analysis

Figure 15 summarizes the sensitivity of the LSA and the numerical FSI simulations to
variations in element size. Maximum growth rates w; 4, converge at 400 grid points for
both b, and b3 base flows. Sensitivity analysis regarding the fluid mesh width of the FSI
simulations was conducted for minimal mesh widths of 35, 70 and 140 pm. Results were
compared at the STJ and within the leaflet shear layer at a critical time = 0.13 s which
marks the onset of transversal fluid oscillations. Also, the temporal evolution of leaflet tip
displacements was assessed to investigate the sensitivity of structural motion to fluid mesh
widths. In general, a fluid mesh width of 70 wm is found to be sufficient for converged
results. However, better numerical performance (i.e. fewer spurious oscillations at the
FSI, more stable numerical convergence) is reached for smaller mesh widths. Therefore, a
minimum mesh width of 35 um was used for this study. For this mesh width, a maximum
time step of 1 |us is necessary to achieve numerical stability.
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Figure 15. Sensitivity analysis of LSA: (a) maximum growth rate w; nqx for base flows b, (shear flow, blue)
and b3 (flexible wall, green). A number of grid points of 400 (indicated by the red line) was chosen for this
study. Sensitivity analysis of numerical FSI simulations: (b) transversal (uy,y) and streamwise (ur,x) velocity
profiles at the STJ (left) and within the leaflet shear layer (right) for minimal fluid mesh widths 35, 70 and
140 wm at time instant ¢ = 0.13's; (c) temporal evolution of the leaflet tip displacement u;,y for minimal fluid
mesh widths 35, 70 and 140 pm.
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