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1. Introduction. A group is called subgroup separable if for every finitely generated
subgroup H ≤ G and g ∈ G \ H there exists a homomorphism ϕ : G → E to a finite group E
such that ϕ(H) = 1 and ϕ(g) �= 1. Subgroup separability was shown for polycyclic groups
by A. Mal’cev [16], for free groups by M. Hall [8], for surface groups by P. Scott [19], and
more recently for limit groups by H. Wilton [26].

Now one could wonder if it is possible to achieve H. Wilton’s result by passing to
a free quotient of the limit group and then use the result of M. Hall. This was indeed
phrased as a question on mathoverflow.com [17] by K. Bou-Rabee, namely whether or not
a limit group is freely subgroup separable. A group L is called freely subgroup separable
if for every finitely generated subgroup H ≤ L and every element g ∈ L \ H there exists a
homomorphism ϕ from L to a free group, such that ϕ(g) /∈ ϕ(H).

If limit groups would have this property, then as mentioned before, together with the
result of M. Hall, one could deduce the theorem of H. Wilton that limit groups are subgroup
separable.

First, I. Agol gives the following counterexample in the discussion on matheover-
flow.com: N. Dunfield and W. Thurston have shown that there are many representations
ϕ : π1(�2) → A5, where �2 is a closed surface of genus 2, which do not extend over a
genus 2 handlebody (see Example 6.3 in [6]). Let now h : π1(�2) → F2 be a surjection onto
a free group of rank 2. I. Agol notes that every such homomorphism comes from a map
to a handlebody, hence the homomorphism ϕ does not factor through a non-abelian free
quotient by the result of N. Dunfield and W. Thurston. Let H := ker ϕ and g ∈ π1(�2) \ H .
It then follows that g cannot be separated from H in any free quotient of π1(�2).

Hence, in order to have a chance of achieving a positive result, one has to assume that
the subgroup H is of infinite index in L. H. Wilton then conjectured that one can show that
limit groups are not freely subgroup separable by computing the Makanin–Razborov (MR)
diagram of a particular double of a free group. Roughly speaking, an MR diagram of a
finitely generated group G is a finite directed tree that encodes all homomorphisms from
G to a non-abelian free group F by yielding a parametrization of Hom(G, F). We give a
precise definition later on.

Doubles of free groups were some of the first examples of fully residually free groups
[1, 2], and it later turned out that the class of finitely generated fully residually free groups
coincides with the class of limit groups.
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We are following this approach and try to describe MR diagrams of doubles of a
free group in two generators. First classes of examples of MR diagrams of such doubles,
respectively the limit groups appearing in these diagrams were computed by N. Touikan in
[23]. We refer the reader to his paper for a broader background on the subject.

We compute the MR diagram of a particular double of a free group of rank two, not
covered by the work of N. Touikan and use this diagram to show that limit groups are
in general not freely subgroup separable (even if one assumes that the subgroup H is of
infinite index, as mentioned by I. Agol). After the first version of our paper this double and
its MR diagram were independently constructed and used by L. Louder and N. Touikan to
show that limit groups are also not freely conjugacy separable [15].

The first step in constructing an MR diagram of a given f.g. (one-ended) group L is
to understand all splittings of L along cyclic subgroups, that is, to find a splitting of L as a
graph of groups which encodes in some sense all of these splittings. Such a graph of groups
is called a JSJ decomposition of L. The notion of a JSJ decomposition of a finitely presented
group was originally developed by E. Rips and Z. Sela in [18], while the definition we will
give here is due to V. Guirardel and G. Levitt ([7]). To make this more precise, let Z be the
set of all infinite cyclic subgroups of L. Given two Z-trees T1 and T2, i.e., simplicial trees
on which L acts with edge stabilizers in Z , we say that T1 dominates T2 if any group which
is elliptic in T1 is also elliptic in T2. A Z-tree is universally elliptic if its edge stabilizers
are elliptic in every Z-tree.

DEFINITION 1.1 ([7]). Let L be a finitely generated group and T a Z-tree such that

(a) T is universally elliptic and
(b) T dominates any other universally elliptic Z-tree T ′.

We call T a JSJ tree and the quotient graph of groups A = T/L a cyclic JSJ decomposition
(or for short JSJ decomposition) of L.

For arbitrary finitely generated groups JSJ decompositions do not always exists, but
since in our case L is a one-ended limit group and therefore in particular finitely presented,
a JSJ decomposition of L does exist. The existence and much more about JSJ decompo-
sitions (not only along cyclic edge groups) can be found in [7]. A classification of JSJ
decompositions of certain limit groups of low rank can be found in [24].

Let now A be a cyclic JSJ decomposition of a finitely generated group L. A vertex
group Av of A is called rigid if it is elliptic in every splitting of L along a cyclic subgroup
and flexible otherwise. The description of flexible vertices of JSJ decompositions (along a
given class of groups) is one of the major difficulties in JSJ theory. In the case that L is a
one-ended limit group, the structure of flexible vertex groups of a cyclic JSJ decomposition
A is well understood, namely these are either free abelian or quadratically hanging (QH)
vertex groups. A vertex group Av of A is QH if Av is isomorphic to the fundamental group
of a compact surface � with boundary in such a way that any incident edge group can be
conjugated into a boundary subgroup of π1(�).

Now we are ready to state the formal definition of an MR diagram.

DEFINITION 1.2. Let F be a non-abelian free group and G be a finitely generated group.
A finite directed rooted tree T with root v0 is called a MR diagram for G if it satisfies the
following conditions:

(a) The vertex v0 is labeled by G.
(b) Any vertex v ∈ VT , v �= v0, is labeled by a limit group Gv.
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(c) Any edge e ∈ ET is labeled by an epimorphism πe : Gα(e) → Gω(e) such that for any
homomorphism ϕ : G → F there exists a directed path e1, . . . , ek from v0 to some
vertex ω(ek) such that

ϕ = � ◦ πek ◦ αk−1 ◦ πek−1 ◦ . . . ◦ α1 ◦ πe1 ,

where αi ∈ Mod Gω(ei) for 1 ≤ i ≤ k and � is injective.

The modular group Mod(L) of a one-ended limit group L is the subgroup of Aut(L) gener-
ated by Dehn twists along edges and extensions of automorphisms of flexible vertex groups
of the (canonical) cyclic JSJ decomposition of L. For more information on MR diagrams
and a formal definition of the modular group of a limit group, see chapter 5 of [20].

In the second section, we introduce particular words in free groups, the so-called C-test
words, and compute the MR diagram of a double of a free group of rank two along such a
C-test word. We then use this diagram to show that limit groups are in general not freely
subgroup separable. Unfortunately we were not able to give a description of all possible MR
diagrams of general doubles of free groups, but at least we are able to classify all possible
JSJ decompositions of these doubles in the third section. This is the first step towards the
construction of more examples of MR diagrams or even to the possible classification of all
MR diagrams of doubles of free groups of rank two in the future.

To compute the JSJ decompositions of a double of F2 along a given word w, it is
necessary to understand relative cyclic JSJ decompositions of the non-abelian free group
F2 relative to w. In [3], C. Cashen has shown that for an arbitrary non-abelian free group F
there exists a canonical cyclic JSJ decomposition relative to finitely many maximal cyclic
subgroups of F. Moreover, given finitely many such subgroups, C. Cashen and J. Manning
have written an algorithm that computes this relative JSJ decomposition ([4]).

The results of this article are part of my doctoral thesis, which I am currently writing
at the University of Kiel.

2. Makanin-Razborov diagrams of doubles of free groups. We first fix some nota-
tion. Let F2 = 〈x1, x2〉 be a non-abelian free group, and w ∈ F2 and Gw the double of F2

along Z given by the embedding ι : Z → F2, 1 �→ w. In the following we denote such a dou-
ble decomposition of Gw along w by Gw := A ∗C B, where A = F2(a1, a2), B = F2(b1, b2),
C = 〈c〉 ∼= Z with the embeddings ιA : C → A : c �→ wA, ιB : C → A : c �→ wB, where wA

(wB) is the image of w under the canonical isomorphisms from F(x1, x2) to A (B) given
by xi �→ ai (xi �→ bi), i ∈ {1, 2}.

We are now going to describe the MR diagram of Gw for a very specific word, a
so-called C-test word:

DEFINITION 2.1. ([9]). Let Fn be a non-abelian free group in n generators. A nontrivial
word w ∈ Fn is a C-test word in n letters if for any two n-tuples (A1, . . . , An), (B1, . . . , Bn)

of elements of a non-abelian free group F the equality

w(A1, . . . , An) = w(B1, . . . , Bn) �= 1

implies the existence of an element S ∈ F such that SAiS−1 = Bi for all i ∈ {1, . . . , n}.
REMARK 2.2. Let Fn be a free group of rank n ≥ 2.

1. The definition of a C-test word does not depend on the rank of the free group F.
This follows from the elementary equivalence of free groups ([21] and [13]), since
being a C-test word w in n letters can be expressed by the following first-order
sentence:
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∀a1, . . . , an∀b1, . . . , bn∃s : (w(a1, . . . , an) = w(b1, . . . , bn) �= 1)

⇒ (a1 = sb1s−1 ∧ . . . ∧ an = sbns−1).

2. [25] A C-test word w ∈ Fn is not contained in a proper retract of Fn.
3. [9] Every C-test word w ∈ Fn is contained in the commutator subgroup of Fn.
4. [9] If a C-test word w ∈ Fn is not a proper power, then the stabilizer of w in Aut(Fn)

is 〈cw〉, where cw denotes conjugation by w.

The following result is due to S. Ivanov.

THEOREM 2.3. ([9]). For arbitrary n ≥ 2, there exists a C-test word wn ∈ Fn. In
addition, wn is not a proper power.

D. Lee in [14] generalized this result to the following:

THEOREM 2.4. ([14]). For arbitrary n ≥ 2 there exists a word wn ∈ Fn that is a C-test
word in n letters such that wn is not a proper power, and with the additional property that
for elements A1, . . . , An in a free group F the following is equivalent:

(a) wn(A1, . . . , An) = 1.
(b) The subgroup 〈A1, . . . , An〉 of F is cyclic.

Hence we get the following corollary.

COROLLARY 2.5. ([14]). There exists an element w ∈ Fn such that if ϕ is an endomor-
phism of Fn, � is an endomorphism of Fn with noncyclic image, and ϕ(w) = �(w), then
ϕ = cS ◦ � for some S ∈ Fn such that 〈S, �(w)〉 ∼= Z. If n = 2, then S ∈ 〈�(w)〉.

DEFINITION 2.6. We call a C-test word which satisfies the assumptions of Theorem 2.4
and Corollary 2.5 an Ivanov word.

The following corollary follows immediately from the proof of the above theorem in [14].

COROLLARY 2.7. Let F2 = 〈x1, x2〉. Then

w =[x8
1, x8

2]100x1[x8
1, x8

2]200x1[x8
1, x8

2]300x−1
1 [x8

1, x8
2]400x−1

1

· [x8
1, x8

2]500x2[x8
1, x8

2]600x2[x8
1, x8

2]700x−1
2 [x8

1, x8
2]800x−1

2

is an Ivanov word.

Before we start the construction of an MR diagram of a double Gw along an Ivanov word
w, we make the following observation.

LEMMA 2.8. Let Fn be a non-abelian free group, and w ∈ Fn and Gw the double of Fn

along w. Gw is one-ended if and only if w is not contained in a free factor of Fn.

Proof. By Corollary 1.5 in [22] Gw is one-ended if and only if A is one-ended relative
to ιA(C), i.e., if and only if there does not exist a free splitting A1 ∗ A2 of A such that ιA(C)

is contained in A1.

The following theorem amounts to a computation of the MR diagram of a double of F2

along an Ivanov word.

THEOREM 2.9. Let w ∈ F2 be an Ivanov word and Gw = A ∗〈w〉 B be the double of F2

along w. Then after precomposition with a Dehn twist, every homomorphism from Gw to a
non-abelian free group factors through either the canonical retraction π : Gw → A or the
projection η : Gw → Z2 ∗ Z2.
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Figure 1. The MR diagram for Gw.

Proof. First note that by Remark 2.2 w is not contained in a proper retract of F2. In par-
ticular, w is not contained in a free factor of F2 and hence Gw is one-ended by Lemma 2.8.
Moreover, Gw is clearly a F2-limit group. This follows from the fact that w is not a proper
power and therefore we can embed Gw into the extension of centralizer along 〈w〉 (see
e.g. [1]).

Let now ϕ : Gw → F2 be a homomorphism. We distinguish two cases:

(1) Assume that w ∈ ker ϕ. Then ϕ(A) and ϕ(B) are cyclic and hence ϕ factors
through η.

(2) Assume now that w /∈ ker ϕ. Since by Remark 2.2 w is contained in [F2, F2], it
follows that ϕ(A) ∼= F2

∼= ϕ(B). Now Corollary 2.5 yields that there exists k ∈ N

such that ϕ|B = ϕ|A ◦ cwk
A
. Hence after precomposing with a Dehn-twist α along

〈w〉, ϕ ◦ α factors through π : A ∗〈w〉 B → A. To be more precise α : Gw → Gw is
given by α|A = id and α|B = cwk

B
, and we have then ϕ = ϕ|A ◦ π ◦ α.

Theorem 2.9 implies that the MR diagram of Gw is as in Figure 1.

COROLLARY 2.10. Let w ∈ F2 be an Ivanov word and Gw be the double of F2 along w.
Then Gw is not freely subgroup separable.

Proof. Let g = [b1, b2] ∈ Gw. Then clearly g /∈ A and we claim that g cannot be sepa-
rated from A in any free quotient. Indeed assume there exists a homomorphism ϕ : Gw → F,
where F is a non-abelian free group, such that ϕ(g) /∈ ϕ(A). By Theorem 2.9, after
possibly precomposing with a Dehn-twist along 〈w〉, ϕ factors through (at least) one
of the homomorphisms π or η. Since η(B) ∼= Z2 it follows that ϕ(g) = 1 ∈ ϕ(A) if ϕ

factors through η. Now assume that ϕ factors through π . But then there exists a Dehn-
twist α and a monomorphism � : A → F such that ϕ(g) = � ◦ π ◦ α(g) ∈ � ◦ π(B) =
� ◦ π(A) = ϕ(A).

3. JSJ decompositions of doubles of a free group of rank 2. Unfortunately we
are not able to give a description of all possible MR diagrams of general doubles of free
groups, but at least we are able to classify all possible JSJ decompositions of these doubles.
This is the first step towards the construction of more examples of MR diagrams or even to
the possible classification of all MR diagrams of doubles of free groups of rank two in the
future.
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In this section we will give a description of the possible JSJ decompositions of (one-
ended) doubles of a free group in two generators (see Theorem 3.4).

Recall that Gw is the double of F2 = 〈x1, x2〉 along Z given by the embedding ι : Z =
〈t〉 → F2, t �→ w, for some w ∈ F2. By Lemma 2.8 Gw is one-ended if and only if w is not
contained in a free factor of F2. Therefore, if Gw is not one-ended, then Gw has a free
decomposition of the form

Gw
∼= 〈ŷ〉 ∗ 〈x̂〉 ∗〈x̂n=xn〉 〈x〉 ∗ 〈y〉

for some basis {x, y} of F2. Hence from now on we will only be interested in one-ended
doubles Gw such that in addition w is not a proper power (and therefore Gw is a limit group).

First we give some necessary and sufficient conditions on w such that a JSJ
decomposition of Gw is as simple as possible, i.e., it is just the double decomposition
A ∗C B.

Later we describe JSJ decompositions of Gw in the case that at least one of these
conditions is violated. In the following Proposition, we collect some results which will be
of use later.

PROPOSITION 3.1. Let G ∼= F2 be a non-abelian free group on two generators.

(1) [12] G does not split as a proper amalgamated product along a nontrivial
malnormal subgroup C.

(2) [10] (Proposition 3.7) Suppose G splits as a nontrivial amalgamated product A ∗C B
along C ∼= Z. Then there exist x, y ∈ G and n > 1, such that G = 〈x, y〉, A = 〈x〉 ∼= Z,
B = 〈xn, y〉 ∼= F2 and A ∗C B = 〈x〉 ∗〈xn〉 〈xn, y〉. In particular C is malnormal
in B.

(3) [10] (Lemma 3.6, Proposition 3.8) Suppose G splits as an HNN-extension H∗C

where C ∼= Z. Then G = 〈H, t | tant−1 = b〉 for some n ≥ 1 and elements a, b ∈ G
with no roots. Moreover, 〈a〉 and 〈b〉 are malnormal in H and there exist h ∈ H such
that G = 〈ht, a〉 and H = 〈a, hbh−1〉 = 〈a, (ht)an(ht)−1〉.

We say that a group G is obtained by adjoining a root to x (or pulling out a root of x) if G
has a decomposition as a graph of groups of the form G = 〈x〉 ∗〈xn〉 H .

PROPOSITION 3.2. Let F2 = 〈x1, x2〉 be a free group, w ∈ F2 an element which is not a
proper power, and Gw the double of F2 along w. Then the graph of groups given by this
decomposition is a JSJ decomposition of G if none of the following holds:

(1) w is contained in a subgroup generated by {xyx−1, y} for some basis {x, y} of F2.
(2) w is contained in a subgroup generated by {xn, y} for some basis {x, y} of F2 and

some n ≥ 2.

Proof. Assume that w does neither satisfy property (1) nor property (2). Property (2)
implies in particular that w is not a power of a basis element in F2. Hence it follows from
Lemma 2.8 that Gw is one-ended.

Theorem 7.1 in [18] implies that either 〈w〉 is elliptic in any other splitting of Gw

along Z or it is hyperbolic in some other Z-splitting and therefore corresponds to a simple
closed curve on a QH vertex group of a JSJ decomposition of Gw. Hence in the first case
either A ∗〈w〉 B is a JSJ decomposition of Gw or there exists a Z-splitting of A (respectively
B) relative to w. In the second case there always exists a Z-splitting of A (respectively B)
relative to w. Therefore, it suffices to show that A and B do not admit any further splittings
along Z relative to 〈w〉.
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First suppose that A = R1 ∗D R2 is a nontrivial relative splitting, where D ∼= Z. From
Proposition 3.1 (2) follows the existence of r, h ∈ A and n > 1, such that

F2
∼= A = R1 ∗D R2 = 〈r〉 ∗{rn=b} 〈b, h〉 = 〈r〉 ∗{rn=rn} 〈rn, h〉,

in particular A = 〈r, h〉.
Since w is not contained in any subgroup generated by {xn, y} for some basis {x, y} of

A and some n > 1, this implies that w /∈ R1, R2, a contradiction.
Now suppose that A splits as an HNN-extension R∗Z relative to w. From

Proposition 3.1 (3) follows that A = 〈R, t | tant−1 = b〉 for some n ≥ 1 and elements
a, b ∈ A. Moreover, there exist h ∈ R such that A = 〈ht, a〉 and R = 〈a, (ht)an(ht)−1〉. Since
by assumption w /∈ 〈x, yxy−1〉 for every basis {x, y} of A, this implies that w /∈ R.

We now consider the case that Gw is a surface group, in which case the JSJ decomposition
of Gw consists of a single vertex with QH vertex group Gw.

PROPOSITION 3.3. Let Gw be the double of F2 = 〈x1, x2〉 along w. Then Gw is a surface
group if and only if one of the following holds:

(1) w is conjugate to [x1, x2]±1 in which case Gw is the fundamental group of an
orientable surface of genus 2.

(2) w is either conjugate to x2ε1
1 x2ε2

2 , where ε1, ε2 ∈ {±1}, to (x1x2x−1
1 x2)

±1, or to
(x1x2x1x−1

2 )±1 in which case Gw is the fundamental group of a non-orientable
surface of genus 4.

Proof. If Gw is the fundamental group of a closed surface �, then either � is orientable
of genus 2 or non-orientable of genus 4. In both cases, there exists a basis of F2 such that
the curve corresponding to w is conjugate to one of the specified words. The claim now
follows immediately from the fact that the sets

{[x1, x2]±1}
and

{x2ε1
1 x2ε2

2 , (x1x2x−1
1 x2)

±1, (x1x2x1x−1
2 )±1 | ε1, ε2 ∈ {±1}}

are up to conjugation invariant under Nielsen transformations of F2.

It remains to consider the case that Gw is neither a surface group nor that the double
decomposition of Gw is already a JSJ decomposition.

THEOREM 3.4. Let Gw be the double of F2 = 〈x1, x2〉 along w and assume that w is not
a proper power and not contained in a free factor of F2. Suppose moreover that Gw is not
a surface group.

(1) If w satisfies property (2) from Proposition 3.2, but not property (1), then a JSJ
decomposition A of Gw has one of the following forms:

(a) A is as in Figure 4.
(b) A is as in Figure 4 but the vertices stabilized by 〈x〉 together with their adjacent

edges are replaced by Möbius strips which are glued along their boundaries to
the 4-punctured sphere. Moreover m > 2.

(c) A has only rigid vertices and is one of the graphs of groups, which we get by
refining the vertices A and B in A ∗C B by one of the following two graphs of
groups:

– 〈xn, y〉 ∗〈xn〉 〈x〉
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– 〈y〉 ∗〈ym〉 〈xn, ym〉 ∗〈xn〉 〈x〉.
(2) If w satisfies property (1) from Proposition 3.2, but not property (2), then a JSJ

decomposition of Gw is the graph of groups which we get by substituting either
〈xyx−1, y〉∗〈y〉 or one of the three graphs of groups in Figure 5 for A and B, or the
graph of groups in Figure 7.

(3) If w satisfies (1) and (2) from Proposition 3.2, then a JSJ decomposition of Gw is
one of the graphs of groups which we get by refining the vertices A and B in A ∗C B
by one of the graphs of groups in Figure 9, or the graph of groups in Figure 7 with
gcd(m, n) > 1, or the graph of groups in Figure 10.

We split the proof of the theorem in several lemmas. From now on we assume that w is not
a proper power and not contained in a free factor of F2. In particular Gw is one-ended by
Lemma 2.8. Moreover, we assume that Gw is not isomorphic to the fundamental group of
a closed surface.

LEMMA 3.5 (Theorem 3.4(1)). If w ∈ 〈xn, y〉 for some n > 1 and some basis {x, y} of F2

and w /∈ 〈bab−1, a〉 for any basis {a, b} of F2, then a JSJ decomposition A of Gw has one
of the following forms:

(a) A is as in Figure 4.
(b) A is as in Figure 4 but the vertices stabilized by 〈x〉 together with their adjacent

edges are replaced by Möbius strips which are glued along their boundaries to the
4-punctured sphere. Moreover m > 2.

(c) A has only rigid vertices and is one of the graphs of groups which we get by refining
the vertices A and B in A ∗C B by one of the following two graphs of groups:

– 〈xn, y〉 ∗〈xn〉 〈x〉
– 〈y〉 ∗〈ym〉 〈xn, ym〉 ∗〈xn〉 〈x〉.

Proof. As in the proof of Proposition 3.2, we conclude that there exists no splitting
of F2 as an HNN-extension relative to w, but there exists (at least) one splitting of F2

as an amalgamated product relative to w. We assume without loss of generality that w is
cyclically reduced.

Let n > 1 be maximal such that 〈xn, y〉 ∗〈xn〉 〈x〉 is such a splitting of F2 relative to w
which does not correspond to a splitting along a non-boundary parallel, closed curve on a
QH subgroup of Gw (such a splitting exists since by assumption Gw is not a surface group).

Case 1: Assume that w /∈ 〈xn, zm〉 for any m > 1 and any z ∈ F2 such that {x, z} is a basis
of F2. Suppose that there exists a splitting as an amalgamated product of 〈xn, y〉 relative to
w and 〈xn〉. Hence by using Proposition 3.1 (2) we can refine 〈xn, y〉 ∗〈xn〉 〈x〉 to say

〈e〉 ∗〈ek〉 H ∗〈xn〉 〈x〉

for some H ∼= F2 and k > 1. We denote this graph of groups by A and the corresponding
Bass–Serre tree by TA. We moreover identify F(x, y) with π1(A).

By (the proof of) Theorem 1A in [11], {x, y} is Nielsen equivalent to {x, ȳ} such that
either

(a) Tx ∩ Tȳ �= ∅ and x and ȳ act elliptically on TA or
(b) Tx ∩ ȳTx �= ∅ and ȳ acts hyperbolically and x acts elliptically on TA,

where Tx := {v ∈ TA | xzv = v for some z ∈ Z \ {0}} is the subtree of TA consisting of all
points fixed by a nontrivial power of x.
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Figure 2. Tx ∪ ȳTx.

Figure 3. Gw cannot be of this form.

Suppose we are in case (b), i.e., ȳ acts hyperbolically and x acts elliptically on TA

and 〈xn〉 is by Proposition 3.1 (2) malnormal in H . Moreover, 〈xn〉 is conjugacy separated
from 〈ek〉, i.e., g〈ek〉g−1 ∩ 〈xn〉 = 1 for all g ∈ F(x, y). Therefore, Tx is the star of the vertex
stabilized by 〈x〉, and all other vertices of Tx are stabilized by conjugates of H , while the
edges are stabilized by 〈xn〉. Clearly ȳTx is of the same form. Since we are in case (b),
we have that Tx ∩ ȳTx �= ∅ (see Figure 2). But then T := 〈x, ȳ〉Tx � TA is a proper F(x, y)-
invariant subtree, since T has only two vertex orbits while TA has three, a contradiction to
the minimality of A. Therefore, ȳ cannot act hyperbolically on TA and we are in case (a),
i.e., Tx ∩ Tȳ �= ∅ and ȳ acts elliptically on TA.

Hence either ȳ is conjugate into 〈e〉 or into H (since ȳ is not conjugate into 〈x〉). So
suppose that ȳ is conjugate to an element of H . But then mapping H , 〈x〉 to 0 and e to 1
defines a nontrivial homomorphism ϕ : F(x, y) → Zk , such that F(x, y) = 〈x, ȳ〉 ⊂ ker ϕ, a
contradiction.

Therefore, ȳ is conjugate to an element of 〈e〉. Because since ȳ is a basis element, it fol-
lows that ȳ = geg−1 for some g ∈ F(x, y). Since Tȳ ∩ Tx �= ∅, there exists an isomorphism
of graphs of groups from

〈ȳ〉 ∗〈ȳk〉 〈xn, ȳk〉 ∗〈xn〉 〈x〉 to 〈e〉 ∗〈ek〉 H ∗〈xn〉 〈x〉.

In particular there exists an automorphism α ∈ Aut(F2) mapping 〈ȳk, xn〉 onto H . But since
the images of e and ȳ = geg−1 in the abelianization Fab ∼= Z2 of F(x, y) are equal and
Out(F2) ∼= Gl2(Z), this implies that α is an inner automorphism and hence since it fixes x
we conclude that g = xm for some m ∈ N. Therefore, H = 〈ȳk, xn〉 and 〈ȳ〉 ∗〈ȳk〉 〈xn, ȳk〉 ∗〈xn〉
〈x〉 is a splitting of F(x, y) relative to w, a contradiction to the assumption that w /∈ 〈xn, ȳm〉
for any m > 1.

Therefore, a JSJ decomposition of Gw is a graph of groups which we get by refin-
ing both A and B in A ∗C B by 〈xn, y〉 ∗〈xn〉 〈x〉 and all vertex groups are rigid. This is
true since the double 〈x̂n, ŷ〉 ∗〈w〉 〈xn, y〉 cannot be a QH subgroup, because then cutting
the underlying surface along the curve corresponding to w would yield a surface S with
2 boundary components and fundamental group F2. Hence by the classification of sur-
faces S is a punctured Möbius strip (respectively a twice punctured projective plane,
see Figure 3). However, this implies that w ∈ 〈xn, y2〉 for some n > 1, which has been
excluded by assumption. Therefore, all vertices in the JSJ decomposition are indeed
rigid.
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Figure 4. The JSJ decomposition of Gw if w is conjugate to (xnym)±1.

Case 2: Now we assume that there exists some (maximal) m > 1 such that w ∈ 〈xn, ym〉.
Then clearly

〈y〉 ∗〈ym〉 〈xn, ym〉 ∗〈xn〉 〈x〉
is a splitting of F(x, y) relative to w, and we cannot refine 〈xn, ym〉 further as an
amalgamated product relative to 〈xn〉, 〈ym〉, and w.

Now assume that w is conjugate to (xnε1 ymε2)±1 in 〈xn, ym〉, where ε1, ε2 ∈ {±1}. We
further distinguish between the following cases depending on n and m.

First assume that n, m > 2. Then 〈x̂n, ŷm〉 ∗〈w〉 〈xn, ym〉 is the fundamental group of a
surface with genus 0 and 4 boundary components, two corresponding to 〈xn〉 and two
corresponding to 〈ym〉. And since elements corresponding to essential simple closed curves
on surfaces have power at most 2 in the fundamental group of the surface, the edges in
〈y〉 ∗〈ym〉 〈xn, ym〉 ∗〈xn〉 〈x〉 do not correspond to simple closed curves on a QH subgroup.
Hence the JSJ decomposition of Gw is a graph of groups with one QH vertex group, which
is the fundamental group of the 4-punctured sphere, and four rigid vertices with vertex
group isomorphic to Z connected to the four boundary components (see Figure 4). This is
an example of the so-called orbisockets (see Definition 4.15 in [5]) which play a prominent
role in the solution of the isomorphism problem for all hyperbolic groups (probably with
torsion) by F. Dahmani and V. Guirardel.

Now assume that n > 2 and m = 2. In this case we can replace the vertices stabilized by
〈y〉 (respectively 〈ŷ〉) together with their adjacent edges in Figure 4 by Möbius strips which
are glued along their boundaries to the 4-punctured sphere. Hence a JSJ decomposition
of Gw is a graph of groups with one QH vertex group, which is the fundamental group
of a twice-punctured Klein bottle �, and two rigid vertices with vertex group isomorphic
to Z connected to the two boundary components of �. The same arguments hold if n = 2
and m > 2.

So for the last case assume that n = 2 = m. Then we can replace all four vertices with
cyclic vertex groups (and their adjacent edges) in Figure 4 by Möbius strips which are glued
along their boundaries to the boundary components of the 4-punctured sphere. However, in
this case clearly Gw is the fundamental group of a non-orientable surface of genus 4, and
this was excluded by the assumption of the theorem.

Now assume that w is not conjugate to (xnε1 ymε2)±1, ε1, ε2 ∈ {±1}. Then refining A
and B by

〈y〉 ∗〈ym〉 〈xn, ym〉 ∗〈xn〉 〈x〉
yields a JSJ decomposition of Gw. In particular all vertex groups are rigid. This holds
since contrary to the case above, 〈x̂n, ŷm〉 ∗〈w〉 〈xn, ym〉 cannot be a QH subgroup, because
otherwise cutting the underlying surface � along the curve corresponding to w would yield
two copies of a surface S with 3 boundary components, and as π1(S) is generated by the
elements xn and ym corresponding to the boundary components of �, S has genus 0 (see
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Figure 5. The possible relative JSJ decompositions of F2 in the HNN-splitting case
(w is always contained in the noncyclic vertex group).

Figure 4), and the third boundary component is generated by a conjugate of (xnε1 ymε2)±1

and therefore w is conjugate to (xnε1 ymε2)±1, a contradiction.

LEMMA 3.6 (Theorem 3.4(2)). If w ∈ 〈xyx−1, y〉 for some basis {x, y} of F2 and w /∈
〈an, b〉 for any basis {a, b} of F2 and any n > 1, then a JSJ decomposition of Gw has either
only rigid vertices and is one of the graphs of groups which we get by substituting either
〈xyx−1, y〉∗〈y〉 or one of the three graphs of groups in Figure 5 for A and B, or has one QH
vertex and is the graph of groups in Figure 7.

Proof. As in the proof of Proposition 3.2, we conclude that there exists no splitting of
F2 as an amalgamated product relative to w. However, since w ∈ 〈xyx−1, y〉 for some basis
{x, y} of F2, there exists (at least) one relative splitting of F2 as an HNN-extension of the
form 〈xyx−1, y〉∗〈y〉 with the embeddings y �→ xyx−1 and y �→ y, which does moreover not
correspond to a non-boundary parallel closed curve on a surface corresponding to a QH
subgroup of Gw. The moreover part holds, since by assumption Gw is not a surface group.

Since F2 projects onto the fundamental group of the underlying graph of any refine-
ment of A, it follows that the first Betti number of any refinement of A is at most one.
Hence a (relative) refinement of 〈xyx−1, y〉 has to be an amalgamated product, say X ∗E Y .
By Proposition 3.1 we can assume that X ∼= Z. Since by assumption there does not exist a
splitting of F(x, y) as an amalgamated product relative to w, we conclude that the refined
graph of groups has no separating edge, and hence we can assume that either X = 〈y〉 or
X = 〈xyx−1〉 (see Figure 6).

Moreover, we conclude that either E = 〈ym〉 or E = 〈xymx−1〉 for some m > 1. Hence
the resulting graph of groups (after plugging in X ∗E Y for 〈xyx−1, y〉) is not reduced and
after collapsing the original edge, we get one of the following graphs of groups:

〈xyx−1, ym〉 ∗〈ym〉 or 〈xymx−1, y〉∗〈xymx−1〉,

and therefore this new graph of groups is just an unfolding of the original one (see
Figure 6).

So if we choose m, n ≥ 1 maximal such that w ∈ 〈ym, xynx−1〉 and w is not conjugate to
(y±mxy±nx−1)±1, it follows that (depending on w) the only possible relative JSJ decompo-
sitions of F2 relative to w (up to folding) are the three decompositions shown in Figure 5.
Note that the top two graphs of groups are in fact isomorphic, since both are graphs of
groups of the form

F(a, b)∗Z,
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Figure 6. Unfolding the graph of groups in the HNN case.

Figure 7. The JSJ decomposition of Gw if w is conjugate to (y±mxy±nx−1)±1.

with the embeddings α : Z → 〈am〉 and ω : Z → 〈bm〉, and w ∈ F(a, b). It follows as in the
amalgamated product case that all vertex groups are rigid.

Note that in the case that m, n > 1 (and hence the splitting is the bottom graph of
groups of Figure 5), we have that k := gcd(m, n) = 1 since otherwise we could pull out a
root of y, i.e., refine the graph of groups by replacing the vertex with vertex group 〈y〉 by
the graph of groups

〈y〉 ∗〈yk〉 〈yk〉
and get a nontrivial amalgamated product, a contradiction.

So assume now that m �= n ≥ 1 are maximal such that w is conjugate to
(y±mxy±nx−1)±1. Note that again gcd(m, n) = 1. Then by the same argument as in the
lemma before, 〈ŷm, x̂ŷnx̂−1〉 ∗〈w〉 〈ym, xynx−1〉 is the fundamental group of the 4-punctured
sphere, i.e., the surface with genus 0 and 4 boundary components, two corresponding to
〈ym〉 (respectively 〈ŷm〉) and two corresponding to 〈xynx−1〉 (respectively 〈x̂ŷnx̂−1〉), and
hence a JSJ decomposition of Gw is a graph of groups with one QH subgroup, which is
the fundamental group of the 4-punctured sphere, and two rigid vertices with vertex group
isomorphic to Z each connected to two boundary components (see Figure 7).

LEMMA 3.7 (Theorem 3.4(3)). If w ∈ 〈an, b〉 for some n > 1 and some basis {a, b} of
F2 and moreover w ∈ 〈xyx−1, y〉 for some basis {x, y} of F2, then a JSJ decomposition of
Gw is one of the graph of groups which we get by refining the vertices A and B in A ∗C B by
one of the graphs of groups in Figure 9 (in which case all vertices are rigid), the graph of
groups in Figure 7 with gcd(m, n) > 1, or the graph of groups in Figure 10.

Proof. Again it suffices to consider a JSJ decomposition of F2 relative to w. Since
w ∈ 〈xyx−1, y〉 for some basis {x, y} of F2, F2 admits in particular a relative splitting which
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is of one of the three types in Figure 5 with neither the restriction that gcd(m, n) = 1 as in
Lemma 3.6 nor that necessarily m > 1 or n > 1.

Case 1: Assume that F2 admits the third type of splitting (the one with two edges).
Since the vertex group 〈ym, xynx−1〉 does not admit any further refinement as an amalga-
mated product relative to 〈ym〉, 〈xynx−1〉, and 〈w〉, it follows that we can pull a root of order
k := gcd(m, n) > 1 out of the vertex group 〈y〉 to refine the graph of groups. The refined
graph of groups is the bottom one in Figure 9 and since there exists no further refinement,
this is a JSJ decomposition of F2 relative to w.

Case 2: So now assume that F2 admits a splitting relative to w of the form:

〈yn, xyx−1〉∗{tynt−1=xynx−1}

or

〈y, xymx−1〉∗{tymt−1=xymx−1}

for some maximal m, n ≥ 1, i.e., we are in one of the two top cases of Figure 5. By assump-
tion of the lemma there exists a further refinement of the vertex group as an amalgamated
product. So let k > 1 maximal such that 〈e〉 ∗〈ek〉 H is a splitting of 〈y, xymx−1〉 as an amal-
gamated product relative to 〈ym〉 and 〈xymx−1〉 (we only consider the second case, the first
one is similar). We want to show that e = y, so let A be the graph of groups which we get
by refining the vertex group in

〈y, xymx−1〉∗{tymt−1=xymx−1}

by 〈e〉 ∗〈ek〉 H and denote by TA the corresponding Bass–Serre tree. First we note that x acts
hyperbolically on TA, since otherwise

x ∈ 〈e〉 ∗〈ek〉 H = 〈y, xymx−1〉,
and hence 〈y, xymx−1〉 = F(x, y), a contradiction. Moreover, y acts elliptically on TA, as ym

does. As in the proof of Lemma 3.5 we can deduce from (the proof of) Theorem 1A in [11]
that {x, y} is Nielsen equivalent to {x̄, y} such that either

(a) Tx̄ ∩ Ty �= ∅ and x̄, y act elliptically on TA or
(b) Ty ∩ x̄Ty �= ∅ and x̄ acts hyperbolically and y elliptically on TA.

If x̄ acts elliptically on TA, this yields a contradiction to the minimality of A, since the graph
underlying A contains a nontrivial loop and therefore π1(A) cannot be generated by elliptic
elements. Hence we are in case (b). Since y acts elliptically on TA, it is either conjugate to
an element of H or conjugate to e.

So suppose that y is not conjugate to e, i.e., y is conjugate into H . Then Ty ⊂ TA is
the star of the vertex stabilized by H and all other vertices of Ty are stabilized by conju-
gates of H , while the edges are stabilized by 〈ym〉. Clearly x̄Ty is of the same form. Since
Ty ∩ x̄Ty �= ∅, we conclude that 〈x̄, y〉Ty ⊂ TA is an F(x, y)-invariant subtree, a contradic-
tion to the minimality of A. Hence y is conjugate to e and by the same arguments as in the
amalgamated product case (Lemma 3.5) it follows without loss of generality that e = y and
k divides n. Hence F2 has a relative splitting A which is of one of the two types:

〈xyx−1〉 ∗〈xyk x−1〉 〈yn, xykx−1〉∗{tynt−1=xynx−1},

where k divides n, or

〈y〉 ∗〈yk〉 〈yk, xymx−1〉∗{tymt−1=xymx−1},
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Figure 8. A cannot have one loop edge and two non-loop edges originating
from the same vertex.

Figure 9. The possible relative JSJ decompositions of F2. In the top graph of groups
k divides n, in the bottom one is k = gcd(m, n). In both cases w is contained in the noncyclic
vertex group.

where k divides m. Since we have chosen k maximal, by the same arguments as in the proof
of Lemma 3.5 A has no further refinement, i.e., A cannot have one loop edge and two non-
loop edges as in Figure 8. In addition as in the proof of Lemma 3.6, these two graphs of
groups are isomorphic.

Therefore, under the assumptions of Lemma 3.7 a relative JSJ decomposition of F2 is
of one of the two types pictured in Figure 9.

To complete the proof that a JSJ decomposition of Gw has the desired form, it remains
to consider QH vertices. We first consider the case that the relative JSJ decomposition of
F2 has the form

〈y〉 ∗〈yk〉 〈yk, xymx−1〉 ∗{tymt−1=xymx−1} .

Note that there exist l ∈ Z such that lk = m and therefore by sliding the edge corresponding
to the loop edge over the non-loop edge we get a graph of groups which has two vertices
and two non-loop edges (corresponding to HNN-extensions) connecting these vertices.
Hence by the same arguments as in the HNN case (Lemma 3.6), we conclude that the
JSJ decomposition is as claimed, i.e., with only rigid vertices, if w is not conjugate to
(y±mxy±nx−1)±1 and as in Figure 7 otherwise. In particular, in this case there exists a QH
vertex group.

Now we consider the case that the relative JSJ decomposition is the bottom graph of
groups in Figure 9. Again by the same arguments as before, we conclude that a JSJ decom-
position of Gw is as claimed in the lemma, with only rigid vertices if w is not conjugate to
(y±mxy±nx−1)±1 and as in Figure 10 otherwise. Again in this case there exists a QH vertex
group.

https://doi.org/10.1017/S0017089519000168 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089519000168


JSJ DECOMPOSITIONS OF DOUBLES 381

Figure 10. The JSJ decomposition of Gw if w is conjugate to (y±mxy±nx−1)±1.
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