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Miscellaneous Topics Related to Rectifiability

Here I only briefly present some other topics related to rectifiability.

16.1 Curvature Measures

Federer introduced in [202] sets with positive reach and curvature measures.
This paper has had and is still having a huge impact on matters related to conve-
xity and integral geometry. Sets with positive reach include both convex sets and
C2 submanifolds. A closed set F ⊂ Rn has positive reach if there is r > 0 such
that if d(x, F) ≤ r, then there is a unique πF(x) ∈ F with |πF(x) − x| = d(x, F).

Federer proved that there are signed Borel measures μi(F, ·), called curvature
measures, such that for every Borel set B ⊂ Rn and for r > 0 as above

Ln({x : d(x, F) ≤ r, πF(x) ∈ B}) =
n∑

i=0

α(n − i)rn−iμi(F, B).

For convex sets F this is Minkowski’s well-known Quermassintegrale formula.
In addition, Federer proved generalizations of the Gauss–Bonnet formula of

differential geometry and the principal kinematic formula of integral geometry.
His methods were partially based on his 1947 rectifiability theory. This paper
provided one of the first applications of this theory.

In [445], Zähle gave a representation of curvature measures in terms of rec-
tifiable currents supported by the unit normal bundle of F, which is an (n− 1)-
rectifiable subset of R2n. Rataj and Zähle continued this work in several papers,
see, for example, [387] and their monograph [388], which also gives a wider
presentation of the topic.
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144 Miscellaneous Topics Related to Rectifiability

16.2 Dynamical Systems

For many dynamical systems the following dichotomy is typical: either the
limit set is a fractal or something very special, for example, a piece of a
plane, a sphere or a real or complex analytic set. Such limit sets include self-
similar and self-conformal sets, Julia sets of rational functions and limit sets
of Kleinian groups. Fractal here could mean how Mandelbrot at one point de-
fined fractal: Hausdorff dimension is strictly bigger than topological dimen-
sion. Mayer and Urbański [333] and Das, Simmons and Urbański [131] used
rectifiability to prove this type of results. In the paper [131], the setting is very
general including the above cases as special cases, even in infinite-dimensional
Hilbert spaces.

We describe the procedure vaguely (and with errors). Let K be such a limit
set. In all cases there is some self-similarity present: there are appropriate maps
(similarities, conformal, and so on) that map small subsets of K onto its large
subsets. One should show that if the Hausdorff dimension m = dim K equals
the topological dimension dimT K, then K is something very special. First, the
system offers some type of invariant measure, which can be related to Hm by
scaling properties and then one has Hm(K) < ∞. By [200], the assumption
dimT K = m implies that many projections of K on m-planes have positiveHm

measure. Hence by the Besicovitch–Federer projection Theorem 4.17, K is not
purely m-unrectifiable, so it has approximate tangent planes at many points x
by Theorem 4.5. The appropriate maps send the planes to the very special sets
we are after. Using these maps to blow up small neighbourhoods of x to large
sets and taking a limit concludes the proof.

This approach does not work in infinite-dimensional spaces. In particular,
the projection theorem is false (recall Section 7.6). The authors of [131] deal
with this, extending the family of rectifiable sets to what they call pseudorecti-
fiable. A set E withHm(E) < ∞ is pseudorectifiable if there are m-planes TE(x)
and a measure μE ∼ Hm E which, by definition, satisfy the area formula

∫

card{x ∈ A : PV (x) = y} dHmy =
∫

A
det(PV |TE(x)) dμE x

for Borel sets A ⊂ E and m-planes V . For rectifiable sets in finite dimensions,
the planes TE(x) are just the approximate tangent planes. Then any set A with
Hm(A) < ∞ splits into m-pseudorectifiable and purely m-unpseudorectifiable
parts. The latter is now defined by the property that it is a countable union of sets
such that for each of them there exists a finite-dimensional linear subspace V
such that all projections into finite-dimensional linear subspaces containing V
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16.2 Dynamical Systems 145

are purely m-unrectifiable, in the classical sense. With these notions the above
procedure can be followed, but with notable complications.

Käenmäki, Sahlsten and Shmerkin [272] used ergodic-theoretic methods to
investigate geometric properties of very general measures, involving also rec-
tifiability, see also the survey [271]. Each tangent measure (recall Section 4.3)
of a measure μ at x tells us something about μ around x only at scales that
generate it, which can be very sparse. In order to have a more complete picture
we should look at all tangent measures at x. In between there is a way to look
at average behaviour via scenery flows and tangent distributions. These have
been studied by many people, mainly in connection with fractal properties such
as various dimensions.

A tangent distribution is a measure on a space of measures. Given a measure
μ ∈ M(Bn(0, 1)), define for x ∈ spt μ and t ≥ 0 the probability measure μx,t on
Bn(0, 1) by

μx,t(A) =
μ(e−tA + x)
μ(B(x, e−t))

, A ⊂ Bn(0, 1).

Then (μx,t)t≥0 is called the scenery flow of μ at x. Letting δa denote the Dirac
measure at a set for T > 0,

〈μ〉x,T =
1
T

∫ T

0
δμx,t dt.

Then any weak limit P of a sequence 〈μ〉x,Ti ,Ti → ∞ is called a tangent distri-
bution of μ at x, P ∈ TD(μ, x). They are probability measures onM(Bn(0, 1))
and they enjoy very strong translation and scaling invariance properties by a
result of Hochman. The support of a tangential distribution at x is contained in
the set of the restrictions to the unit ball of the tangent measures at x.

The authors of [272] studied in particular conical density and porosity prop-
erties. By Theorem 3.7, and its higher-dimensional analogues, for a purely m-
unrectifiable set there is much measure in small cones around (n − m)-planes.
The same is true for sets of Hausdorff dimension bigger than m. In [272], simi-
lar results are proven for general measures. In particular, the authors introduced
a concept of average unrectifiability. A special case of their results states that
if μ ∈ M(Bn(0, 1)), 0 ≤ p < 1, and for every P ∈ TD(μ, x),

P({ν ∈ M(Bn(0, 1)) : spt ν is not m−rectifiable}) > p,

then for every 0 < s < 1 there exists 0 < ε < 1 such that

lim inf
T→∞

1
T
L1

({

t ∈ [0,T ] : inf
V∈G(n,n−m)

μ(X(x,V, s) ∩ B(x, , e−t))
μ(B(x, e−t))

> ε

})

> p
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146 Miscellaneous Topics Related to Rectifiability

for μ almost all x ∈ Rn. A converse holds if μ has positive lower and finite
upper density almost everywhere.

Hovila, Järvenpää and Ledrappier [242] proved that on a class of Riemann
surfaces the union of complete geodesics has Hausdorff dimension 2 and H2

measure zero. To prove the second statement, they used their generalization
of the Besicovitch–Federer projection theorem for transversal families, recall
Section 4.5. The useful family was produced by investigating the geodesic flow
on the tangent bundle.

Fuhrmann and Wang [217] proved that ergodic measures of certain dynam-
ical systems on the 2-torus are 1-rectifiable.

16.3 Higher-Order Rectifiability

Anzellotti and Serapioni [26] introduced higher-order rectifiable sets. Let us
say that E ⊂ Rn is (m, k, α)-rectifiable if there are m-dimensional Ck,α sub-
manifolds Mi of Rn such that Hm(E \ ⋃

i Mi) = 0. Here k and m are positive
integers and 0 ≤ α ≤ 1, with Ck,0 meaning Ck and (m, k) = (m, k, 0). Of course,
(m, 1)-rectifiable is then the same as m-rectifiable. Then, among m-rectifiable
sets, Anzellotti and Serapioni characterized (m, 2)- and (m, 1, α)-rectifiable sets
in terms of non-homogeneous blow-ups. That is, the blow-up maps are rota-
tions of (x, y) �→ (r−1x, r−1−αy), x ∈ Rm, y ∈ Rn−m.

As observed in [26], the (m, k, 1)-rectifiable sets are the same as the
(m, k+1)-rectifiable sets due to the Lusin-type theorem [203, Theorem 3.1.15].
The question of whether the upper limit in that theorem can be replaced by the
approximate upper limit was solved in the negative by Kohn in [279].

Santilli [391] characterized all (m, k, α)-rectifiable sets with approximate
differentiability. This means that he introduced a notion of approximate dif-
ferentiability of higher order for subsets of Rn in analogy to the corresponding
notion of functions (see [203, Section 3.1] and [252]) and he proved that anHm

measurable set with finiteHm measure is (m, k, α)-rectifiable if and only if it is
almost everywhere approximately differentiable with parameters m, k, α. San-
tilli’s definition of approximate differentiability of E at a involves conditions
like

lim
r→0

r−mHm
({

x ∈ E ∩ B(a, r) : d(x,G) > srk+α
})

= 0,

where G is a graph of a polynomial of degree at most k over an m-plane. We omit
the precise definition, but we state the special case k = 1 more explicitly: E is
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16.3 Higher-Order Rectifiability 147

(m, 1, α)-rectifiable if and only if forHm almost all a ∈ E there exist V ∈G(n,m)
and s > 0 such that

lim
r→0

r−mHm
({

x ∈ E ∩ B(a, r) : |PV⊥ (x − a)| > s|PV (x − a)|1+α
})

= 0. (16.1)

Del Nin and Idu [170] used this formulation to give a different proof and a
slightly more general result in this case, such as Theorem 3.7. When α > 0,
they also proved an analogue of Theorem 4.9. That is, assuming positive lower
density, they gave a sufficient condition in terms of ‘rotating’ planes. The proof
is much simpler than that of Theorem 4.9 since (16.1) forces the approximating
planes to converge at a geometric rate. In [249], Idu and Maiale characterized
in Hn the (m, 1, α) rectifiability, n + 2 ≤ m ≤ 2n + 1, in terms of approximate
tangent paraboloids, following the scheme of [170].

Recently, there have been many other results related to higher-order rectifi-
ability. Here are some.

Menne [338] defined higher-order differentiability of a set A ⊂ Rn by the
approximability of d(x, A) by polynomials over m-planes. He proved the higher-
order rectifiability of the sets where this happens. In [339], he proved analo-
gous results for distributions.

It is easy to see that for any subset E of Rn the set of points in E that can
be touched by a ball from the complement is (n − 1)-rectifiable. Menne and
Santilli [340] showed that the set where a closed subset of Rn can be touched
by a ball from at least n −m linearly independent directions is (m, 2)-rectifiable.
The authors informed me that this also follows from Zajicek’s results in [446].
Hajlasz had related results in [231].

Menne [337] proved the (m, 2)-rectifiability of integer multiplicity rectifiable
varifolds whose first variation is a Radon measure, and Santilli [392] proved the
same for general rectifiable varifolds with some extra conditions.

Bojarski, Hajlasz and Strzelecki [69] proved the Ck rectifiability of level sets
of kth-order Sobolev mappings.

Kolasinski [280] and Ghinassi and Goering [224] gave for higher-order rec-
tifiability sufficient conditions in terms of a Menger-type curvature (recall
(3.2)), and Ghinassi [223] and Del Nin and Idu [170] in terms of square func-
tions (recall Chapter 6).

Delladio has had many results on higher-order rectifiability, for example, of
sets related to differentiability properties of functions, see [168, 169] and the
references given there.
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148 Miscellaneous Topics Related to Rectifiability

16.4 Fractal Rectifiability

Let 0 < s < m and E ⊂ Rn with 0 < H s(E) < ∞. Then we could consider
E as (m, s)-rectifiable if H s E is m-rectifiable according to Definition 4.2.
In [312], it was studied how much of the theory of m-rectifiable sets could be
extended to this setting. The paper contains several fairly easy positive results
and many counterexamples.

Another possibility for (m, s)-rectifiability for non-integral s would be to
use s/m-Hölder maps from Rm. Some fractal curves of positive and finite s-
dimensional Hausdorff measure, for example, the von Koch snowflake, can be
parametrized by 1/s-Hölder maps from R, and they would be rectifiable in this
sense. On the other hand, many standard self-similar Cantor sets meet such
Hölder curves in measure zero, see [313], and they would be purely unrecti-
fiable. Investigation along these lines was made by Badger and Vellis in [52].
In [48], Badger, Naples and Vellis gave an analyst’s travelling salesman-type
condition which implies that a set is contained in a (1/s)-Hölder curve.
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