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WEIGHTS FOR COVERING GROUPS OF SYMMETRIC 
AND ALTERNATING GROUPS,/? ^ 2 

G. O. MICHLER AND J. B. OLSSON 

Introduction. In his fundamental paper [1] J. L. Alperin introduced the idea of 
a weight in modular representation theory of finite groups G. Let p be a prime. A p-
subgroup R is called a radical subgroup of G if R = Op (NG(R)) • An irreducible character 
(p of NG(R) is called a weight character if (p is trivial on R and belongs to a /7-block of 
defect zero of NG(R)/ R> The G-conjugacy class of the pair (R, ip) is a weight of G. Let 
b be the/7-block of NG(R) containing (p, and let B be a/?-block of G. A weight (/?, (p) is 
a Z?-weight for the block B of G if 5 = bG, which means that 5 and b correspond un
der the Brauer homomorphism. Alperin's conjecture on weights asserts that the number 
l*(B) of B-weights of a /7-block B of a finite group G equals the number 1(B) of modular 
characters of B. 

At present, a theoretical proof of Alperin's conjecture seems to be inaccessible. How
ever, its truth has been proved for several classes of groups. In [2] J. L. Alperin and 
P. Fong have verified it for the/7-blocks of the symmetric and the general linear groups, 
where p ^ 2. 

It is the purpose of this article to show that for odd primes p Alperin's weight conjec
ture holds for the/7-blocks B of the covering groups S+(n) or A+(n) of the finite symmetric 
groups S(n) or alternating groups A(n) of degree n, respectively; see Corollaries 5.3 and 
5.5. 

Recently, the second author [13] has determined the number 1(B) of modular charac
ters of a /7-block B of S+(n), A+(n), and A(n). Using the methods of our joint paper [11] 
we construct in Section 4 all B-weights, (R, ip) of B having the same radical /7-subgroup 
R\ see Theorem 4.11. This result and a counting technique of Alperin and Fong [2] en
able us in Section 5 to compute the number l*(B) of all B-weights of B, see Theorems 5.2 
and 5.4. In each case it turns out that 1(B) — l*(B), which is the assertion of Alperin's 
conjecture. 

In Section 1 we restate some subsidiary and known results about irreducible modular 
characters of covering groups. By Alperin and Fong [2] we may assume that B is a spin 
block of S+(n) or A+(n) with width w. In Section 3 we reduce the conjecture to the case 
where B is the principal spin block of S+(pw), which has a Sylow /7-subgroup X of S+(pw) 
as a defect group, see Reduction Theorem 3.4. Now let R be any radical subgroup of 
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S+(pw) contained in X. In Section 2 the group structure of the normalizer N+ of R in 
S+(pw) is determined. With these subsidiary results, the above mentioned theorems are 
proved in Sections 4 and 5. 

Concerning our terminology and notation we refer to Feit [5], Gorenstein [6] and 
James and Kerber [9]. 

1. Preliminaries. Throughout this paper p is an odd prime. A large amount of no
tation and many introductory results from our paper [11] are needed here. We give a 
condensed version of the most important concepts in order to make this paper more self-
contined and refer the reader to [11], § 1-2 for further details. 

We consider the covering group S(n) = S+(n) of the symmetric group S(n) defined by 
the generators and relations 

A, v I" \ z2 = l,a2 = ^(a/flf+i)3 = z 1 
S(n)= \aua2,...,an-i9z r , . . . . ., . - . 

L I [ai9aj] = z if \i-j\ > 2 J 
The other covering group of S(n), which plays a minor role, is denoted by S(n). We let IT 
be the canonical epimorphism 

7T : S*(n) —•> S(n) with kernel ker TT = ( z). 

When H is a subgroup of S(n) we define 

H+ = ir-l(H)9 H~ = 7T-l(Hr\A(n)). 

Moreover S~(n) = A(n)+ — A~(n) is the covering group of A(n). The exceptional 6-fold 
covers of A(6) and A(7) are denoted by Ce and C7, respectively. When H Ç S(n) and P is 
a normal /^-subgroup of H, then P may also be considered as normal /?-subgroup of H+. 
In this situation we often write W/ P as [H/ P]+ for notational convenience. 

1(G) and 1(B) denote the sets of ordinary irreducible characters of the group G or of 
a p-block B of G, respectively. The corresponding sets of irreducible Brauer characters 
are denoted by IBr(G) and IBr(B). Moreover, Do(G) is the set of irreducible characters 
of /7-defect 0 of G. When H Ç S(n) and £ is a sign, a character of H£, which does not 
have z in its kernel, is called a spin character of W. We let 

SI(J/e ) Ç I(H£ ), SIBr(//£ ) Ç IBr(/f ) 

be the subsets of spin characters and 

SD0(//£) = SI(//£)nDo(//£). 

A /7-block B of H£ is called a spin Z?/6>CÂ: if/(B) Ç SI(//£ ). The principal spin block is the 
one containing the principal spin characters. Two characters \ , xf; G /(//£ ) (or G IBr(//e)) 
are called associate if 

x " + = ^ (E = - 1 ) orxH- = 1>H- (e = 1). 
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If X has only itself as an associate character we call \ selfassociate (s.a.) and put \a — \ . 
Otherwise, \ is called non-selfassociate (n.s.a.) and we let \a he the unique character 
^ X which is associate to x • Each spin character \ has a sign, which is given by 

, v f l ifx = X* 

We define SDo(//e)+ and SDo(//e)- to be the set of s.a. characters and the set of pairs 
of n.s.a. characters in SDo(//e), respectively. Thus, if 

d0(H
£)a = | SD0(//£).)| 

then 
d0(H

e) = do(H£)+ + 2d0(H
£)-. 

Since p is odd, we get easily the following 

LEMMA 1.1. IfW ^ H~ then for any signs e, a 

do(H£)a = d0(H-£)^. 

Suppose now that the subgroups H\,..., Hu of S(n) operate on disjoint sets, i.e., that 
for all ij, 1 < i <j < u any element of { 1, . . . , n} is fixed by at least one of the groups 
Hi, Hj. Then H\,...,HU form a direct product H = H\ x • • • x Hu and 

H+ = H+X-XH+, 

where x denotes a twisted central product defined by Humphreys [7]. 

LEMMA 1.2. There is a surjective map (& 

SI(#t) x • • x SI(//^) -+ Sl(H+) 

The basic properties of the map <g> are listed in [11], Proposition 1.2. 

LEMMA 1.3. For each sign a, 

d0(H
+)a = £ <h(H\)a, • • • dotfCk. 

{(a],...,cxu)} 

where (a\,..., au) runs through all u-tuples of signs satisfying o\02 — -au — a. 

The labels of characters and blocks in S£(n) are described in [12] and [14]. To each 
block B there is associated a non-negative integer w(B)y called the width of B. (In our 
paper [11], it was called the weight of B, but the name is changed to avoid confusion). 
Moreover, each block has a core 7 (#), which is a partition of a special type (a p-bar core, 
if B is a spin block, ap-core otherwise). We have 

n = w(B)p+\l(B)\. 
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Furthermore, a spin block B has a sign 8 (B) (see [11], § 1). 
Let H Ç S(n). A block B ofH£ is called proper if it contains s.a. and n.s.a. characters. 

Examples of proper blocks are spin blocks of positive defect (i.e. positive width) in S+(n) 
and ordinary blocks of positive defect (width) in S+(n) with a symmetric core. 

Let B* be the unique block of H~e (^ H£) covering B (when e = —1) or covered 
by B (when e — 1). We call B and B* corresponding blocks. If B is proper we let l+(B) 
and /-(£) be the number of s.a. and the number of pairs of n.s.a. Brauer characters of #, 
respectively. The following result follows immediately. 

LEMMA 1.4. la(B) = l-.a(B*)for each sign a. 

When A is a partition, A0 denotes its conjugate (dual) partition. If A — A0, then 
A is called symmetric. When r,w G N we let K(r,w) — {(Ai,...,A r) | A,- partition 
and E/1 Ai| = w} and k(r,w) = \K(r,w)\. If X - (Ai,...,A r) G tf(r, w) let À0 = 

r\ ui piiriiiiuiis is caneu seii-uuai, n A. = / 
such self-dual A. is denoted by 
(Ar°, A^_!,..., Aj0). An r-tuple X of partitions is called self-dual, if A. = X . The set of all 

Ks(r, w) = {ke K(r, w) \ X = X0} 

and Ârs(r,w)= \Ks(r,w)\. 
In [13] the second author computed the number of modular characters of a/?-block of 

the covering group of S£(n). In particular, he showed the following two results: 

PROPOSITION 1.5. Let Bbea block ofS(n) of width w(B) = w > 0 and core 7 (B). 
(1) If If (B) is nonsymmetric and B* is the block ofA(n) covered by B, then 

1(B) = l(B*) = k(p- l,w). 

(2 ) If J (B) is symmetric, then 

l-(B)= l-[k(p-\,w)-l+(B)l 

where 
[k{(p- l)/2,w') ifw = 2w' 

l+(B) = k?(p-\,w) = 
0 ifw is odd. 

PROPOSITION 1.6. Let B be a spin block ofSe(n) of width w(B) = w > 0 and with 
sign 8(B) — 8. Then for every sign oy 

la{B)= lk((p-l)/2,w) ifaE8=(-ir, 
\ 0 otherwise. 
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2. Normalizers of radical subgroups. In this section the group structure of the 
normalizers of the radical p-subgroups in the covering S+(n) of the symmetric groups 
S(n) is determined. 

The proofs of these subsidiary results depend on the following constructions and lem
mas of Alperin and Fong [2] describing the structure of the normalizers of the radical 
/^-subgroups of S(n). 

Let S(n) = S(V) be the symmetric group of degree n acting on a set V with n = | V\ 
elements. For each positive integer c, let Ac be an elementary abelian /^-subgroup of S(n) 
with order \AC\ = pc, embedded regularly as a subgroup of S(pc). It is well known that 
CS(pc)(Ac) = Ac, and ^c } (A c ) /A c ^ GL(c,/?). 

For each sequence r = (c\, C2,..., cS(T)) of positive integers, let AT = Ac, lAC21 • • • I 
ACi(r), and d(r) = Ylf=\ Q. With this notation Alperin and Fong [2] have shown 

LEMMA 2.1. a) AT is embedded uniquely up to conjugacy as a transitive subgroup 
qfS(pr™). 

(b) N5(^(r))(Ar)/Ar ^ GL(ci,p) x GL(c2,/?) x • • • x GL(cs(rhp). 

The group Ar is called a basic p-sub group of S(//(r)) with degree deg(Ar) = / / ( r ) and 
length /(Ar) = s(r). 

Lemmas (2 A) and (2B) of Alperin and Fong [2] are restated as 

LEMMA 2.2. Let C be the set of sequences r = (c\, Q , . . . , C^D) of positive integers. 
Let Rbe a radical p-subgroup of G — S(n) = S(V). Then the following assertions hold: 

a) There exist decompositions 

V = V0 U Vi U V2 U • • • U Vu 

R = R0xRx xR2x -xRu 

such thatRo is the identity subgroup ofS(Vo), and for each i G { 1,2,..., u} R[ ̂  I is a 
basic p-sub group AT ofS(Vi) for some sequence r G C 

b) For each r G C let V(r) = U,-Vi, R(r) — n* R» where i runs over all the indices 
i such that R[ = Ar. Let £(r) be the multiplicity of Ar in R(r). Then £ is a function 
C —* N U {0} satisfying Er C( r)/^ ( r ) < n and the following assertions hold: 

R = R0xY[R(r\ 
r 

NG(R) = S(Vo)xyNs^(R(r)) 

NG(R)/R = S(V0) x Y[N, ,(R(r))/R(r). 

£ is called the multiplicity function ofR. 
c)IfVr denotes the underlying set of Ar in V then 

N
S(vW)(R(r)) - WwrMr)} I S(C(r)), 

Ns^(R(r))/R(r) S [NS{vr)(Ar)/Ar] I S(((r)). 
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d) For each r G C Ar is a basic p-sub group ofS(pd^r)) with length l(Ar) = s(r) and 
degree deg(Ar) = pd(r\ and 

R=n n (*rfr). 
d>\ {r,d(r)=d} 

e) The G-conjugacy class of the radical p-sub group R is uniquely determined by the 
multiplicity function £ : C —>NU{0},/.e,, 

R=GRc = u n oMc(r). 
d>l {r\d(r)=d} 

PROOF, a) follows at once from (2A) of [2]. Assertions b) and c) are restatements of 
(2B) of [2]. Certainly, d) is a consequence of a). The final statement follows from d) and 
Lemma 2.1a). 

DEFINITION. For every radical /^-subgroup R with multiplicity function £ the number 

w(#)=E £ C(r)pd~l 

d>\ {r\d(r)=d} 

is called the width of R. 
We now turn to the covering groups S+(n) of S(n). The semidirect product of the groups 

H and N is denoted by N x //, where N is assumed to be normal. 

LEMMA 2.3. Let p ^ 2 and let c be a positive integer. Then the following assertions 
hold: 

a) GL(c,/7) 9* SL(c\/?) x C, where 

a 0 0 

0 1 : 
C= (m= | • i \ | EGL(c,/?) 

0 
•• o 
0 1 

a G GF(p)* with 0(a) = p - \ \ . 

b) m is an odd permutation ofS(pc) having pc ' fixed points andpc l orbits of length 
p-i. 

c) SL(c,p) consists of even permutations ofS(pc). 
d) GL(c,/?)+ *Ê SL(c,p) x C, where 

I C x Z / 2Z ifp = 1 (mod 8), p = 3 (mod 8) and c is even, 
p = l (mod 8) and c is odd, 

Z / 2(p — 1 ) Z otherwise. 

PROOF, a) holds trivially as det(m') ^ 1 for 1 < i < p — 1. 
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b) The matrix m operates on the GF(p)-vector space Ac = GF(/?)C by matrix multipli
cation. Therefore, m has pc~x fixed points and PZP_{) — Pc~l orbits of length (p — 1). 

c) holds because SL(c,p) and the alternating group A(pc) are both perfect subgroups 
of the symmetric group S(pc). 

d) Since p is odd, the Schur multiplier of SL(c,/?) is trivial by [4], p. XVI. Hence 
SL(c,/?)+ ^ SL(c,/>) x Z / 2 Z , and GL(c,/?)+ ^ SL(c,/?) xi C*. The assertions on the 
structure of C* follow from b) and Lemma 3.6 of [11]. 

LEMMA 2.4. For each sequence r — (c\, ci,..., cs) of positive integers ct with d — 
Z/=i Q the following assertion holds: 

[NS(pd)(Ar)]
+/Ar * GL(cup/\ GL(c2,p/\ • • • | GL(c,,/>)+, 

v 
where | denotes the (untwisted) central product. 

PROOF. By Lemma 2.3 GL(c;,/?) = SL(c;,/?) x C/, where C,- = (m,-) is generated 
c . c i c—] 

by an odd permutation m, of S(p l) having p l fixed points and p l orbits of length 
p— 1. Therefore, 

(minmj)
+ = (mj)

+(mi)
+foTi^j 

by the proof of Lemma 3.7 of [ 11 ]. 
Furthermore, Lemma 2.3 asserts that SL(c,,/?) consists of even permutations of S(pl). 

As p is odd, SL(Q,/?) is generated by even permutations JC, of odd order. Now let / ^ j , 
and assume that x+ and xj are preimages of odd order in S+(pCi) and S+(pCj), respectively, 
such that [x+,yj] = z. Then (jct)_1(Y+)(jc+) = ^-z has even order, a contradiction. Thus 
[jt+,y/] = 1 for i ^ j . Hence GL(c,,/?)+ = SL(c;,/?)C? and GL(c/,/?)+ = SL(c,,/?)C; 
commute elementwise for / ^ 7. This completes the proof. 

DEFINITION. For x G S(n) and any positive integer k the k-fold diagonalization of x 
in S(nk) is denoted by A*JC. 

For example, if x = (1,3,4) G 5(5) then 

A3JC = (1,3,4)(6,8,9)(11,13,14) G 5(15). 

With the notation of Lemma 2.2 and Section 1 the following subsidiary result holds. 

LEMMA 2.5. Let p / 2. Let R be a radical p-subgroup of S(n) with multiplicity 
function £. Then 

ifpd(r) = i ( m o d 4 ) 

ifpd(r) = 3 (mod 4). ««or- [v*«W)r«{$$ 5 
PROOF. Since pd{r) is odd, the result follows immediately from Lemma 3.5 of [11]. 

As in Section 1 the twisted Humphreys product of two or finitely many groups is 
A 

denoted by x or IL respectively. The Humphreys product of u copies of a group U is 
A 

denoted by U U. With this and the notation of Lemma 2.2 we have 
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PROPOSITION 2.6. Let p ^ 2. If R is a radical p-subgroup of the covering group 
G+ = S*(n) ofS(n) with multiplicityfunctionÇ, then 

a) NG.(R) = S+CVo)* W , ( x (R(r))]+ 

b) NC,(R)/R = S+(V0)* n[tf / N (/?(r))]+/«(r) 

cj fc^o^r - [M^i* s(<(r))]+ 

rf) K(v(r))(^r))]+/^C)= [Nvr)(Ar)/^r]^(C(r))]+ 

e) //*Mr denotes the base subgroup of the wreath product [A/s(vr)(Ar)/Ar] 2 S(£ (r)), 

then \N, s(R(r))]+/ R(r) = M+
rS

+(((r)), M+
Tf\ S(Ç(r))+ = (z), M+

r ^ 

ft [A^r»(A)r/Ar]
+, 

ccr 
[ 5 r a r ) ) l + - ! ^ C ( r ) ) ^ " s i (mod 4), 
l ^ O j j - | S ( C ( r ) ) , / / « = 3 (mod 4). 

/) //" r = (c\, C2,..., Q(r)) <zra/ 5 = s(r), then 

v 
[^5(p*r,)(Ar)]

+/Ar = GL(cuPr\ - . . | GL(c„/7)+, 

V 

where \ denotes the (untwisted) central product. 

PROOF. Assertions a), b), c) and d) follow immediately from the remarks in Sec
tion 1 and Lemma 2.2. Lemma 2.5 implies e). The final statement f) is a restatement of 
Lemma 2.4. This completes the proof. 

3. Reduction Theorem. Let B be a proper block of S£(n) of positive width. A B-
weight (R, <p) is called s.a. (n.s.a.) if the character (p is s.a. (n.s.a.) as a character of 
Ns£(n)W- We let 11(B) be the number of s.a. ^-weights and l*_(B) the number of pairs 
of n.s.a. B-weights. In the last section Alperin's weight conjecture will be verified by 
showing la(B) — /* (B) for any sign a. 

PROPOSITION 3.1. Let B and B* be corresponding blocks of S£(n) and S~£(n), re
spectively. Let a be a sign. Then 

ra(B) = r_a(B*). 

PROOF. Assume that B is a block of 5+(n) and let (R, if) be a B- weight. Lemma 2.3 
and Proposition 2.6 imply \Ns+(n)(R): Ns-(n)(R)\ = 2. By a result of Blau ([11], 
Lemma 2.3) (/?, <p*) is a #*-weight whenever </?* is a constituent of the restriction of 
(p to Ns-(n)(R). Since all Z?*-weights may be obtained in this way, the result follows in 
the case e = 1. Now Lemma 1.4 completes the proof. 
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NOTATION. Let B be a proper spin block of S+(n), w(B) = w > 0. Let (R^, <p) be a 
^-weight. Thus 

%«(«) = Wo>* n[^(V(0)(*(r))]+ 

in the notation of Section 2. By Lemma 1.2 we may write <£> = <£>o®<£i» where <̂o € 

Sl(^(V 0)) ,^ ,€Sl(n[iV s ( v < f ) )( i ! (r))]+) . 

Since </? has defect 0 as a character of Ns+(n)(R)/ R, Proposition 1.2(1) of [11] implies 
that <po G SDo(5+(V0)). With this notation we state: 

PROPOSITION 3.2. Let Bbea spin block ofS+(n) with sign 6 (B), positive width w(B) 
andp-barcore 1(B). Let (/?, <p) be a B-weight with radical p-sub group R of width w(R). 
Then: 

(1) w(B) = w(R) 
(2) ifo is an irreducible defect zero spin character ofS+(Vo) labelled by 7 (B). 
(3) a(<p0) = 6(B). 

PROOF. By the general remarks in [2], Section 1, there exists a block b of RCs+(n)(R) 
with R as defect group, such that bG = B. Thus (R, b) is a self centralizing B-subpair 
in the sense explained in [3], Section 3.8(e). Moreover, by the proposition proved there, 
the core of B has to be a partition of n — w(R)p, which proves (1). (2) is a consequence 
of the description of the inclusion of subpairs given in [3], Theorem A. (3) follows from 
the définitions. 

THEOREM 3.3 (REDUCTION THEOREM). Let B be a spin block ofS£(n) of positive 
width w and sign 6 (B) = 6. If a is a sign then 

C(B) = /;(fi0), 

where Bo is the principal spin block ofSeè (pw). 

PROOF. Let B* be the block of S~£(n) corresponding to B and BQ be the block of 
S~e6 (wp) corresponding to BQ. By Proposition 3.1 

ll(B) = t_a(B*\ ll(B0) = r_a(B*). 

We may therefore assume that e = 1, so that B is a spin block of S*(n). Let (R, (/?) be 
a ^-weight. In the notation above ip — <£o®<£i> where ipo is a spin character labelled 
by 7(B). Moreover, by Proposition 3.2(1) R may be considered as a radical subgroup of 
S+(pw). Thus (R, (f\) is a weight in S+(pw). Since only the principal spin block BQ of 
S+(pw) has width w, (R, ip\) is a /^-weight. Conversely, if (R, ip\) is a #J-weight, then 
(R, (fo&ipx) is aB-weight. Using [11], Proposition 1.2(1), we see that 

0-(<Po$¥>i) = 0"(<PoM<pi) = 6(B)a((f\). 

If 6(B) — 1, BQ — BQ and the map (R, <p\) —* (R, (foOtxpi) induces a sign preserving 
bijection between the sets of the weights of BQ and of B. If 6(B) = —1, then BQ = BJ. If 
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(R, (f\) is a s.a. BQ- weight then (R, <£o$<£i) and (R, <PQ<8HP\) is a pair of n.s.a. B- weights. If 
(R,<P\) and (/?, (f") is a pair of n.s.a. Bo~-weights m e n ^o®^i = <£o$<£ ? and (R,(fo®(fi) 
is a s.a. B-weight. This shows that /*(#£) = £(5J) = l-a(B). Since /*(B£) = £,(#o), 
the result follows in this case, too. 

THEOREM 3.4. Let p ^ 2. To prove the weight conjecture for all spin p-blocks of 
S£ (n), it suffices to do so for the principal spin p-block ofS+(pw), w G N. 

PROOF. By Proposition 3.3 and Proposition 1.6 it suffices to prove the result for the 
principal spin blocks of S£(wp), w G N. But the result for e = —1 follows from the 
corresponding result for e = 1 by Proposition 3.1 and Lemma 1.4. 

We turn to the case of the alternating groups. 

NOTATION. Let B be a block of S(n) of positive width w(B) = w > 0. Let (/?, <p) 
be a B-weight. As before we may write (f = <po ® ip\, where (fo G Do(S(Vb)) and 

*i€/(n'V,)(*r>))-
As already noted in [11] with this notation the following result holds. 

PROPOSITION 3.5. Let B be a block ofS(n) of positive width w(B) = w > 0. Let 
(R, if) be a B-w eight. Then: 

(1) w(B) = w(R) 

(2) (fo is an irreducible defect zero character ofS(Vo) labelled by 7 (B). 

THEOREM 3.6. Letp be odd. To prove the weight conjecture for all p-blocks ofA{n), 
it suffices to do so for the principal p-block ofA(pw), w G N. 

PROOF. Let (R, (p) be a B-weight in S(n), where B is a block of S(n) of width w = 
w{B) > 0 covering the blockB* of A(n). Write (/? = (^o^^i as above. As ipa = ^o®^? 
it follows that <p is s.a. if and only if both (fo and <p\ are s.a. 

Suppose first that 7(5) is non-symmetric. Then (fo is n.s.a., since (fo is labelled by 
7(B). This means that the restriction (f* of <p to NA(n)(R) is irreducible. Therefore, it is 
clear that the map (R,<p) —> (R, (f*) is a bijection between the sets of B-weights and 
£*-weights. Thus /*(£) = /*(£*). By Proposition 1.5 1(B) = l(B*). Since 1(B) = l*(B) by 
Alperin and Fong [2] the weight conjecture is true for blocks of A(n) with non symmetric 
core. 

Suppose next that 1(B) is symmetric. Thus (fo is s.a. Hence (f s.a. if and only if <p\ 
is s.a. Moreover, if Bo is the principal block of S(wp) then (/?, <p\ ) is a Bo-weight. Using 
Proposition 3.5 we see that the map (R,<p) —> (/?, < î) is a bijection between the sets of 
weights of B and Bo preserving s.a. and n.s.a. weights. Thus /*(B) = /*(Bo). Similarly, 
la(B) = /<r(Bo), by Proposition 1.5(2). Now Bo covers the principal block BJ of A(wp). 
Therefore, by Proposition 3.1 and Lemma 1.4 we get l*a(B*) = /*(B*), /a(B*) = /a(B*), 
which proves our claim. 
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4. Construction and parametrization of the weight characters. In this section 
we construct all irreducible weight characters ip having the same radical /^-subgroup 
R with ( : C —• N U {0} as multiplicity function. Again let d(r) = E-i^Q for all 
r — (c\, c 2 , . . . , cS(r)) E C By the results of Sections 1 and 2 it suffices to determine the 
p-blocks of defect zero in 

A^ = [Ns^r^A^/Ar I S(C(r))}+ for all r E C, 

where Ar denotes a basic /7-subgroup of S+(pd{r)) with length s(r) and degree / / ( r ) . 
Let M r be the base subgroup of the wreath product Nr — NS(pxr))(Ar)/ Ar \ S(( (r)). 

Then by Proposition 2.6 

N+r = M+
r.S

+(Ç(r)), M+
rnS+(t(r)) = (z), and 

K= n[^(p*n)(A r)/A r]
+<A^, 

C(r) 

A 

where n U denotes the Humphreys product of m copies of the group U. 
m 

The defect zero characters 9 of M\ are easily determined by means of Lemmas 2.3 
and 2.4. In order to find the irreducible constituents of their induced characters 6N+r the 
following subsidiary results and notations are needed. 

As in [7] let Ç denote the class of finite groups G+ with central involution z ^ 1 and 
a homomorphism s:G+ —• Z / 2Z with s(z) — 0. Let G be the quotient group G+/ ( z) 
and let IT be the natural epimorphism G+ —* G. An irreducible representation p : G+ —+ 
GL(n,F) is called a spin representation of G+, if p(z) = —/„, where /„ E GL(«,F) 
denotes the identity matrix. 

Certainly, S+(n) E Ç, where for each x E S+(n) 

f 1 if 7T(JC) E S(n) is an odd permutation 
s(x)- j 0 i f 7 r ( j c ) ç A ( n ) 

In this context the homomorphism s: S+(n) —• Z / 2Z is also denoted by S. 
In [7], p. 450, Humphreys constructed for each pair of groups G+ E Ç, i = 1,2, a 

uniquely determined group G\i<G\ E Ç with involutionz. 
For the sake of an easy reference the following result is stated. 

LEMMA 4.1. Let G^ = (G+,s;,z*) E Ç, i = 1,2. Suppose that Gt = TT(G+) has 
a perfect normal subgroup Hi and a cyclic subgroup C[ such that Hi H Cf- = 1, #ra/ 
Gt = ///C/. 7/*//,- has trivial Schur multiplicatorH2(Hi, C) = 1 and Si(Ht x (z,-)) = 0/or 
i = l , 2 , f/ien G+ = /// x C+/or i = l , 2 , am/ 

GjxGj = (//! x H2) x (C\*C%). 

PROOF. Consider the direct product G\ x G\ with twisted multiplication 
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Let Z be the subgroup ( 1 {, 12), (zi, z2)). Then by [7] G^xG^ = (G\ x G+)/ Z. 
Since //; = Ht and H2(HhC) = 1 we have G+ = //, x Cf. Therfore using (*) the 

final assertion G\xG\ = (H\ x H2) x (CJ"xQ) follows. 

DEFINITION [7]. If P is an irreducible spin representation of G+ G Ç, then its asso
ciate spin representation Pa of G+ is defined by 

p*(g) = (-iy^P(g) for every g G G+. 

P is called self associate (s.a.) ifP = Pa, and non self associate (n.s.a.) otherwise. 
Since the covering groups S(n), S(n) of the symmetric group S(n) belong to Ç, this 

definition is easily seen to be a generalization of the corresponding one given in Section 1 
for the s.a. or n.s.a. irreducible spin representations of S+(n). 

DEFINITION [7]. Let Mt be a n.s.a. irreducible spin representation of G+ = 
(Gf,Si,Zi) G Ç, i = 1,2. Then the spin representation Mi(g)M2 of GJxGJ is defined 
by (M10M2)(g1 xg2) = (Mitei) + (-l)^2 )M?(£i)) ® M2(g2) for all gi G G+, i = 1,2. 

The spin representation Mi<g)M2 is called the Humphreys product of Mi and M2. It is 
an irreducible spin representation of G{ x G\ by Theorem 2.4 of [7]. 

LEMMA 4.2. Suppose that the groups G* = H(C* G Ç, i = 1,2, satisfy the hypoth
esis of Lemma 4.1. Let 0, Z?e a G*-stable irreducible representation of Hi, and let Xi be a 
linear spin representation of G* for i = 1,2. Then the following assertions hold: 

a) Pi = Oi ® Xi is a n.s.a. irreducible spin representation ofG~[. 
b) P° = Oi ® Af. 
cj Pi<g>P2 = (6\ <g)02) x (Ai<g)A2) w an irreducible spin representation ofG\xGj = 

(#1 x / / 2 ) x (CJ-*CJ). 

PROOF. AS ker 5,- is a proper subgroup of G+, each linear character A/ of G+ is n.s.a. 
by Theorem 1.1 of [7]. Since G\/ Ht = C\ or G+/(//; x (z)) = Q is cyclic, the stable 
irreducible representation Oi of//, can be extended to an irreducible representation of G+ 
by Corollary 11.22 of Isaacs [8], p. 186. Hence a) follows from Corollary 6.17 of [8], 
p. 85, because Ht x (z) Ç kers, by hypothesis, 

b) is an immediate consequence of a). 
By Lemma 4.1 each gt G GJ" = Ht x C\ has a unique representation gt — hiCi with 

hi G Hi and a G C*, / = 1,2. Since /// is perfect, it follows that ker A,- > Ht. By a), 
Corollary 6.17 of [8], p. 86, and the definition of P\<S>P2 the following equations holds. 

(Pi®P2)(gixg2) = [Pito) + (-l)S2(g2)PÎ(gi)] ® P2(g2) 

= [(oi ® AiX/iic,) + ( - I f (/l2C2)(^i ® Af)(fcici)] ® (02 ® A2)(/z2c2) 

- [fli(Ai)Ai(ci) + (-l)*fe)0i(Ai)Af(ci)] ® 02(/*2)A2(c2) 

- fli(fci)[Ai(ci) + ( - l f ^ A f C d ) ] ® 02(h2)\2(c2) 

= fli(Ai) ® »2(fc2) ® [Ai(ci) + (-l)52(C2)Af(ci)] ® A2(c2) 

= [(Ai ® 02)(hi x h2)] ® [(Ai®A2)(ci xc2)], 
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because Ai and Àf are linear characters. Now Lemma 4.1 completes the proof. 
The following subsidiary result is proved in our paper [11]. In order to restate it the 

following notation is needed. 

For every positive integer t let s = [^l. In [14], p. 450,1. Schur constructed t complex 
2s x 2s matrices F,, 1 < i <t satisfying the following relations 

(4.3) F] = F, FiFj = -FjFt for i ± j , 

where E denotes the 2s x 2s identity matrix. 

With these matrices Ft we constructed in [11] a self associate spin representation D of 
the covering group Sf with degree 2s as follows. 

LEMMA 4.4. Let Dt = (-l) '-1 ' -1 yf^(Ft-i + F,_,-+i )for I < i <t - 1. Let D:S{-+ 
GL(25,C) be defined by 

D(z) = — E in each case, 

where 7r(<2,) = (i,i + 1) G S(t). Then D is a s.a. spin representation of the covering 
group S~}~ of the symmetric group S(t) with degree 2s. Ift is odd, then D is the principal 
spin representation ofS*, and ift is even, then D is the direct sum of the principal spin 
representation and its associate representation. 

PROOF. See Lemma 4.2 of [ 11 ]. 

LEMMA 4.5. Let r = (c\, C2,.. •, cs) G C be a sequence of positive integers. Let Ar 

be a basic p-subgroup ofS(pd) of length s and degree pd. Let Sf = { a\, a2,..., at-\, z} 
be a covering group ofS(t), where 7r(a,-) = (/, / + 1) G S(t). Then: 

a) Each element u G N^t = [(Ns^(Ar)/Ar I S(t)]+ can be represented by a 
(t + l)-tuple p, = (jti,jC2,...,Jcr,a), where Xi G [Af5(^)(Ar)/Ar]

+, a G Sf and 
(x\,X2,...,xt) G M\v where MTyt is the base subgroup ofNrj. 

b) The multiplication of the group N+t is given by 

(xux2, • • • ,Xt,aj)(yuy2, • • • ,yt,à) = (x\y*9... ,xty[,aid)ze, 

where 
[ yj ifj Î U i + 1 

y] = s yi+i ifj = i 
hi ifj=i+l 

and e = £ i </<*<, d(y*)6 (xk) + E w,-+i> S (y*) + S (y*)è (y*+1 ). 

PROOF. See Lemma 3.10 of [11]. 
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LEMMA 4.6. Let r = (c\,C2,...,cs) E Cbe a sequence of positive integers. Let Ar 

be a basic p-subgroup of S(pd{r)) of length s(r) = s and degree pd = pd(r\ For every 
positive integer t let Mrj be the base subgroup of the wreath product 

Nrj = NS{pd)(Ar)/Ar X 5(0 - Mr* * S(t). 

Then the following assertions hold: 

a) [NS(pd)(Ar)/Arr = GL(cup)+\ GL(c2,/7)+| ••• | GLfe,/7)+ 

b) GL(c/,/?)+ = SL(ci,p) x CJ\ 1 < i < s, where Ci is a cyclic group of order 
p-i. 

c) Each irreducible defect zero spin representation 9 of[NS(pd)(Ar)/Ar]
+ is of the 

form 

9 = ®(St,- ® A,-) = ((g) St,) ® A, 
i=i i=i 

where St/ denotes the Steinberg representation ofSL(ci,p), A, is a n.s.a. linear 
spin representation ofC\, and A = ®?=1 A/. 

d) [NS(pt)(AT)lAr]
+ has e(r) = \{p — Yf pairs of n.s.a. irreducible defect zero spin 

representations 9, and do ( [^SQ^) (A r)j A r 1 ) = 0 . 
e) Each Nestable irreducible defect zero spin representation ofM\t is the t-fold 

Humphreys power <g)t9 of a n.s.a. irreducible defect zero representation 9 of 
[NS(pd)(Ar)/Arr. 

PROOF, a) holds by Lemma 2.4. 
b) is a restatement of Lemma 2.3d). 
c) By Steinberg's tensor product theorem each irreducible defect zero representa

tion 9 of GL(Q,/?)+ is of the form 9 — St; ®A/, where St/ denotes the Steinberg 
representation of SL(c/,/?), and A, is a linear representation of GL(c/,/?)+. From 
Lemma 2.3 follows that 9 is a spin representation if and only if A, is a spin rep
resentation. Thus c) holds. 

d) Now Lemma 4.2 asserts that GL(c/,/?)+ has \(p — 1) pairs of n.s.a. irreducible 
defect zero spin representations, each of which is of the form St/ ®A,-, where A, ^ 
Af. Since the center of GL(c/,/?) is in the kernel of St/, it follows from a) that 
[NS(pd)(Ar)/ Ar]

+ has (p—l)s irreducible defect zero spin representations 9, which 
are pairwise n.s.a. Thus e(r) = \(p — l)5, and do(^NS{pd){Ar)lAr] ) = 0. 

e) By Proposition 2.6, M\t is the r-fold Humphreys product 

Kt = UWs(rt(Ar)/Ar]\ 
t 

Therefore, Propositions 1.2 and 1.5 of [ 11 ] assert that each irreducible defect zero 
spin character \x oiM\t is of the form \x = 0i$02® • • • <Ê)9t, where each 9t is an 
irreducible defect zero spin character of Ns^(Ar)/ Ar. Let at E S+ map onto the 
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transposition 7T(â ) = (/,/+ 1) G S(t). Then by Lemma 3.11 of [11] Sf operates 
on p via 

^ = 0f(g)02
fl<g> • . . <ê>ojL.l<Ê>Oi+i<ê>Bi<èoil2<ê> • • • & o t

a -

Hence d) and Proposition 1.2 imply that \i is stable in N^t if and only if 0/ = 0 
for all I <i <t. This completes the proof. 

With the notation of (4.3) and of the previous lemmas we can now state 

LEMMA 4.7. Let r — (c\, Q , . . . , cs) G C be a sequence of positive integers. Let Ar 

be a basic p-subgroup ofS(pd) of length s and degree pd. Let S* — ( a\, ai,..., at-\, z) 
be a covering group of S{t), where 7r(a,) = (/, / + 1) G S(t). Let N+t = [NSQjd)(Ar)/Ar I 
S(t)]+ — M\tS\, where MTtt denotes the base subgroup of the wreath product. 

Suppose thatO = (®J=1 St/) ® A is a n.s.a. irreducible defect zero spin representation 
of[NS(pd^(Ar)/Ar]

+. For every (x\,X2,... ,xt) G M\t and every a G S\ let 

DB(XUX2,... ,xt,a) = ®,(® St/)(JCi,x2,... ,*,) ® n A(jt/)f?(xi)...J^(x,)D(a), 
i=i *=i 

where D: S* —> GL(2[2^ C) ^ ^ Sp(n representation ofS* defined in Lemma 4.4, and 
where ®, p denotes the t-fold tensor power of the representation p. 

Then the following assertions hold: 
a) Do is an irreducible spin representation ofN*t extending the t-fold Humphreys 

power <g)t6 G Irrc(M+,) of 6. 
b)Ift is even, then DQ is s.a. 
c)Ift is odd, then DQ is n.s.a. 

PROOF. By Lemma 4.6a) and b) 

[NS(pd)(Ar)/Arr = [GL(cup)] • • • ] GL(cs,p)]\ 

and GL(ct,p)+ = SL(c/,/?) x C\, 1 < / < s, where Q is a cyclic group of order/? — 1. 
Thus Lemma 4.2 implies that the r-fold Humphreys power 

étO = <è,[«g) stf-) ® A ] = ®,«g) st/) ® (êr A ) 
i=l i= l 

^si(ri[i/=1sL(c/,/7)] * o i i - icn) ' a n d 

A V * 

®rA GSKlIt l^ iCt]) . 

Furthermore, it is S^-stable. Since A is a n.s.a. linear representation of | i=1Ct, it follows 
from Lemma 4.6 and the proof of Lemma 4.3 of [11] that 

D9(xux2, •. • ,xt,a) = é f é Sti](j9) ® I I M*,-)*?U,) • • • J ^ D f a ) 
7=lLy=l J 7=1 

defines an irreducible spin representation of N^t such that its restriction De\M+ — 
®*[®J=1(St/) (8) A]. The remaining assertions b) and c) also follow from Lemma 4.3b) 
and c) of [11]. 
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PROPOSITION 4.8. Let r = (c\, c 2 , . . . , cs) £ C be a sequence of positive integers. Let 

ATbea basic p-subgroup ofS(pd) of length s and degree pd. Let N^t = [Ns^(Ar)/Ar) I 

S(t)]+ = M\t - SJ", where Mrj denotes the base subgroups of the wreath product. Then 

the following assertions hold: 

a) Each Nestable irreducible defect zero spin representation (p of MTit is of the 

form cp = (â,0, where 9 is an irreducible defect zero spin representation of 

NS(p*}(Ar)/Ar. 

b) Each Nft-stable irreducible defect zero spin representation (p = ®t0 ofM\t can 

be extended to an irreducible spin representation DQ ofN*v and every irreducible 

defect zero constituent V of (pN^{ is of the form V = DQ 0 T, where T is an 

irreducible defect zero representation ofN+
TtJM\t = S(t). 

c) Ift is odd then every irreducible constituent V of(pN^ is n.s.a. 

d)Ift is even then every irreducible constituent V of(pNrt is s.a. 

PROOF, a) is a restatement of Lemma 4.6e). b) The existence of the extension DQ 

of (p = <g)t is guaranteed by Lemma 4.7. Therefore, Corollary 6.17 of Isaacs [8], p. 85, 

asserts that every irreducible constituent V of (pN^ is of the form V = DQ (8) T9 where 

T is an irreducible representation of N*tJ Mr.t = S(t). Now V belongs to a /?-block of 

defect zero if and only if T does. Thus b) holds. 

Assertions c) and d) follow from Proposition 4.4, a) and b) of [11], respectively. 

LEMMA 4.9. Let B be the principal spin block ofG+ = S+(wp). Let R be a radical 

p-subgroup of G+ with width w(R) = w.If(R,(f) is a B-weight, then the irreducible 

defect zero spin character ip ofNc+(R)/Rhas sign a((p) = (— l)w. 

PROOF. By Lemma 2.2c) the function £ is uniquely determined by the radical sub

group RofG+. Now Proposition 3.2 asserts that 

w = W(B) = w(R) = E E C ( r ) / " 1 , where Q = {reC\ d(r) = d}. 
d>\ red 

Hence 

(*) w = E £ C ( r ) m o d 2 
d>\ rzQ 

because p is odd. 

Furthermore, Lemma 2.2e) asserts that 

* = n no4r)c(r). 
d>\ red 

Now Proposition 2.6 implies that 

NG+(R)/R= ft f l [(NS(pd)(Ar)/Ar)lS(<;(r))}+. 
d>\ red 

Hence (p e SD0(NG+(R)/R) factors as 

<P = &d>d&reCd<Pr], 
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where ipr is an irreducible defect zero spin character of the group [ ( ^^ (A/ - ) / Ar) I 

s(ar))}+. 
The spin character <pr has sign a((pr) — (—l)^(r) by assertions c) and d) of Proposi

tion 4.8. Hence 
a(<p) = (-1)", where u = £ £ C(r). 

d>\ red 

From (*) follows that u = w mod 2. Hence a((f) = (— l)w. This completes the proof. 

PROPOSITION 4.10. Let R be a radical p-subgroup of G+ = S+(wp) with width 
w(R) = T,d>\ J2reCiÇ(r)Pd~l> where Cd = {r e C \ d(r) = d}. For each sequence 
r = (ci,C2,... ,cS(r)) € C let X(r) be the set of \{p — \)s{r)-tuples (/ci,«2, • • -,«*(/•)) 
of p-core partitions «/ swc/z f t o £;=i |«i| = C(r)> w^ere e(r) = \{p — \)s{r\ Let 
Nr = (NS(pd(r))(Ar)/ Ar) I S(C(r)). Then for each r G C there is a bijection between 
the sets X(r) and SD0(N^)a, where a = (-l)C ( r ) . Furthermore, d0(N+)-a = 0. 

PROOF. Fix r G C. Let 5 = s(r), d = d(r), f = Ç (r) and e = e(r) = ±(p - l)*(r). 

Then Nr = (NS{pd)(Ar)/ Ar) X S(t) = M r x S(t), where Mr is the base subgroup of the 
wreath product. 

By Lemma 4.6 \N^^(Ar)/Ar)\ has e pairs of n.s.a. irreducible defect zero spin 
representations 9, and d0([/V5(^)(Ar)/Ar] ) = 0 . Then the representatives of these 
pairwise non associated characters 0 can be denoted by 0\, 62,..., 0«?-

Let SD0(M+) be the set of irreducible defect zero spin representations tp of M\. In 
order to parametrize the A^-orbits of SDo(M+) we consider the following set 

* = Utut2,.-.Je)eNe\Y/ti = t). 
1 1=1 J 

For each e-tuple a = (t\, h,..., te) G Si there is an irreducible defect zero spin represen
tation of M\ of the form 0a = /ii<8)/i2<É) • • • <8>/ie, where each /x/ is a refold Humphreys 
power /i = <S>ti6i of the irreducible defect zero spin representation 0; of [NS(pd)(Ar)/ A r]

+ . 
Using now Theorem 2.4 and Proposition 3.3 of Humphreys [7] and Lemma 3.11 of [11] 
it follows that W = { 0a | a G Si} is a complete set of representatives of the A^-orbits 
ofSDo(M^). 

For each a G SA. let Ta be the inertial subgroup of 6a in 7V+ = M\ • S+(f). Then 
Lemma 4.6e) implies 

TajM\ *Ê S(h) x S(t2) x • • • x Sfo) 

Therefore Proposition 4.8b) and Clifford's theorem, see Theorem 7.16 of [10], imply 
that every irreducible defect zero spin representation \a of Ta is of the form 0a ® 7i ® 
72 0 • • • (8) 7*» where 7/ is an irreducible defect zero representation of the symmetric 
group S(ti). Now the theorem of R. Brauer and G. de B. Robinson called the Nakayama 
Conjecture, see James and Kerber [9], p. 245, asserts that each such representation 7/ 
corresponds uniquely to a/7-core partition «/ of U = | K/|. 
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Furthermore, the sign of \a is 

<T(X«) = <T(fla) = ft CT(fli) = (-1)^=1* - ( - 1 / = ( - l p > 

for each a G Si. Hence it follows that there is a bijection between X(r) and SDo(A^Xr, 
where a = ( - 1 / = (-l)C ( r ) . By Proposition4.8c) and A)do(N+)-a = 0. This completes 
the proof. 

After all these preparations we now can show the main result of this section. Together 
with the Reduction Theorem 3.3 it gives for any spin block B oiS+(ri) with positive width 
w the number of Z?-weights (R, <p) having the same radical p-subgroup R. 

THEOREM 4.11. Let B be the principal spin block ofG+ = S+(wp). Let Rbea radical 
p-subgroup ofG+ with multiplicity function £. Then the number of B-weights (R, <p) with 
radical subgroup R is given by: 

a) d0(NG+(R)/R) = do(NG+(R)/R)+ + 2d0(NG+(R)/R)_ 
b) For any sign a 

d0(NG+(R)/R) =l^reCdo(N+
rUr) i/<7 = (-1)» 

v ,a 10 otherwise 

where a(r) = (— Xf^ for every r G C-

c) For each r G C do(A )̂<r(r) equals the number of e(f)-tuples (fti, «2, • • > Ke(r)) of 
p-corepartitions Kt such thatYl |«i| = C(r)> where e(r) = \(p — l)5(r). 

PROOF, a) follows immediately from Section 1. 
b) Proposition 2.6 asserts that 

NG+(R)/R = f l [(Ns^r^A^/Ar) I S(((r))}+ 

reC 

Therefore Lemmas 1.2 and 1.3 yield that each (p G SDo(NG+(R)//?) is a 
Humphreys product of the form ip = cèreC^r, where for each r G C 

ipr G SD0([AV<o)(Ar)/Ar) I S(C(r))}+) 
o{r) 

By Proposition 4.10 a(r) = (- l)C ( r ) and d0(N+)-a = 0. Furthermore, a((p) = 
(— l)w by Lemma 4.9. Since a((p) = UreC °"(r)> Lemma 1.3 completes the proof 
ofb). 

c) is a consequence of Proposition 4.10. This completes the proof. 

5. Proof of Alperin's weight conjecture for S+{n) and A+(n). In this section the 
number l*(B) of all B-weights of a/?-block B of the covering groups S£(n) of the sym
metric and alternating groups is determined, where/? ^ 2. In each case, it turns out that 
1(B) = /*(#), which verifies Alperin's weight conjecture for these groups. 
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LEMMA 5.1. Let C be the set of all sequences r — (c\, c^,..., cS(T)) of positive in
tegers c^ Let d(r) — T,f=\ Cifor each r G C, and for every natural number d > 0 let 
Q = {reC\ d(r) = d}. Then EreG(p ~ D*(r) = (P ~ V " 1 -

PROOF. By Alperin and Fong [2] there are (f^-l) b a s i c subgroups A r of degree 

pd(r) and length 1{AT) = s(r). 
Hence 

raQ t>\\t-^l 

-<p-»ii(f: ,>-')-' 
= (P ~ D[(P - 1) + Ud'1 = (P - D/" 1 

With the notation of Section 1 we now can state the main result of this paper. 

THEOREM 5.2. Let B be a spin block ofS£(n) with width w(B) = w > 0 and sign 
S(B) = 8. Then for every sign a the number l*a{B) of B-weights with sign a is 

* ( i ( p - l ) , w ) iftr=S=(-ir 
0 otherwise. 

In particular, la{B) = /*(#) for each sign a. 

PROOF. We keep the notations of Lemma 5.1 and Theorem 4.11. By the Reduction 
Theorem 3.3 /*(#) = /£(#o)> where Bo is the principal spin block of S£Ô(pw). Further
more, Theorem 3.4 asserts that we may assume that eb — 1, i.e., that Bo is the prin
cipal spin block of S+(pw). By Lemma 2.2 for each Z?0-weight (/?, <p) of G+ = S+(pw) 
there is a uniquely determined multiplicity function ( : C - ^ N U { 0 } such that the 
radical /^-subgroup R has width w(R) = Ed>i Ere G C (r)Pdl • Furthermore, Proposi
tion 3.2 asserts that w(R) = w. Now NG+(R)/R = U [(W5(p«r))(Ar)/Ar) I S(C(r))]+ by 

Proposition 2.6. Therefore the spin character <p of NG+(R)/ R has the Humphreys prod
uct decomposition (f = QreCVr, where <pr G SDo[(A^is(/?4o)(Ar)/Ar) ? S(Ç(r))] by 
Lemma 1.3. For each d > 1 let <p<i = ^reQ^r- Then y = ®d>i<£><*. For each r G C 

let e(r) — \(p — l)5(r). By Theorem 4.11 there is a bijection between the characters 
(fr G SD0n(A^5^(n)(Ar)/Ar) * S(C(r)) ] j and t h e e(r)-tuples («i,/c2,. • • ,«*(r)) of p-
core partitions «/ such that Ê L7? |«/| = C(r)- Using Lemma 5.1 we see that for a fixed 
d > OEreG ^(r) = \(P ~ l)pdl- Since ip<i = ^reCiVr, it follows that each character 
</V determines uniquely a ^(p — 1)/ /_ 1 -tuple of p-core partitions Kdj such that 

E M = E <(r) = a</. 
; red 

As w = vv(/?) = E^>i EreG C (r)pd~l = Ej>i a<ipd~x, it follows now from (1A) of 
Alperin and Fong [2] that <̂  determines uniquely an e-tuple (Ai, À2,..., Xe) of partitions 

3=1 I'M — w' wnere e — \( À with E£=i I A,-| = w, where e = \{p — 1). 
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Since all the above steps of the proof can be reversed, we have shown that there is a 
bijection between the B0-weights (B, <p) and the set of ^-tuples of partitions A, such that 
E | A/| = w. By Lemma 4.9 each B0-weight (B, cp) has the sign a(<p) = (— l)w. Hence 
by Section 1 

_ fk(e,w) if a = (-l)w 

10 otherwise. 
Thus the first assertion holds. Together with Proposition 1.6 it implies that la(B) = /* (B) 
for each sign a. This completes the proof. 

COROLLARY 5.3. Letp ^ 2. Then Alperin 's weight conjecture holds for allp-blocks 
B of the covering groups S+(n) of the symmetric groups. 

PROOF. If B is a spin block of S+(n), then 1(B) = l+(B) + 21-(B) and l*(B) = /* (B) + 
2l*_(B). Hence 1(B) = l*(B) by Theorem 5.2. If B is a block of 5(/i), then /(B) = l*(B) by 
Theorem (2C) of Alperin and Fong [2]. Thus Corollary 5.3 holds. 

It remains to prove Alperin's weight conjecture for the alternating groups. Therefore 
we show 

THEOREM 5.4. Let p ^ 2. Let B be a p-block ofA(n) with positive width w. Then 
la(B) — ro(B) for each sign a. 

PROOF. By Theorem 3.6 we may assume that B is the principal/7-block of A(pw). It is 
covered by the principal p-block Bo of S(pw). Therefore Lemma 1.4 and Proposition 3.1 
assert that for each sign a we have 

la(B0) = La(B) and Ç(*0) = l-a(B\ 

Hence it suffices to show that la(B0) = /* (B0). As l(B0) = l+(B0) + 2/_(B0) = l*+(B0) + 
21*_(BQ) = I*(Bo), by Theorem (2C) of Alperin and Fong [2], it is enough to show that 
l+(B0) = ll(Bo). 

The principal p-block B0 of S(pw) has the symmetric p-core 0. Thus l+(Bo) = ^(p — 
1, w) by Proposition 1.5. Therefore it remains to show that there is a bijection between the 
s.a. Bo-weights (R,<p) and the self-dual (p — l)-tuples (Ai,À2,..., A^-i) = 
(AP_!, Xp_2,..., A2, A j0) of partitions Ay satisfying YÏlZ\ I A/1 = w ' because the number 
of these (p — l)-tuples equals ^(p — 1, w) by definition. 

Now let (B, (f) be a s.a. Bo-weight of G — S(pw) with multiplicity function £. Then 
w(B) = w. By Lemma 2.2 

NG(R)/R= n ( ^ 5 ^ ) ( A r ) / A r ) } 5 ( C ( r ) ) 

Hence <p has a tensor product decomposition 

(f = ^reCVr, where <pr G D0[(#s(p*n)(Ar)/Ar) * S(C(r))] 

By Proposition 1.2 of [11] ip — (pa if and only if <̂ r = <p" for all r G C. Lemma 2.1b) 
asserts that for each r — (c\, Q , . . . , c^)) G C 

s(r) 

£/r = Ns^A^/Ar = n GL(Q,/7). 
1=1 
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Therefore Ur has e(r) = (p — l)5(r) irreducible defect zero characters by Steinberg's 
tensor product theorem, which are denoted by 0i, 02,. . . , 0<?(r). Hence for each irreducible 
defect zero character 0 of the base subgroup Mr of Nr = (^V5(/7d(r))(Ar)/Ar) ? S(((r)) 
there are integers nk G N such that 0 = 0^(0,1*0*) and £(r) = Y?£\ nk. Furthermore, 
by Theorem 4.3.34 of James-Kerber [9], p. 155,0 can be extended to its inertial subgroup 
7(0 ) in Nr and 7(0 ) / Mr *Ê Uk S(nk). 

By Theorem 7.16 of [10] for each s.a. irreducible defect zero character iprofNr there 
is a s.a. irreducible defect zero character 0 of Mr and an irreducible defect zero character 
\i of its inertial factor group 7(0)/ Mr = UkS(nk) such that <pr = (0 <g> p)Nr. By the 
Nakayama Conjecture [9], p. 245, \i determines uniquely an e(r)-tuple (K\, «2 , . . . , Ke(r)) 
of p-core partitions Kk of n^ — \K\\ such that Y^=\ 1̂ *1 = C(r)- By Lemma 2.3 and 
4.2 none of the e(f) characters Ok of Ur is s.a. Hence the 0̂  may be ordered such that 
0k

a = Oe(r)+i-k> Since 

e(r) e(r) 

$ = ®(®|«t|fc) = 0a = <8>(®M^(r)+i-*) 

it follows that 

(«1,«2» • • • >«e(r)) ~ (^e(r)'^e(r)-l' • • • iK2>K\) = (^1*^2» • • • »^e(r))-

In particular, each s.a. character </?r, r £ C, corresponds uniquely to a self-dual e(r)-
tuple («1, «2» • • • » Ke{r)) of/7-core partitions «/ satisfying £ |«i| = £ (r). Applying now 
Lemma 5.1 and assertion (1 A) of Alperin and Fong [2] as in the proof of Theorem 5.2 
it follows that there is a bijection between the s.a. #o-weights (R, <p) and the self-dual 
(p — l)-tuples (Ai, À2,..., Ap_i) of partitions satisfying Y?jZ\ I A/I = w- This completes 
the proof. 

COROLLARY 5.5. Let p 7̂  2. Then Alperin's weight conjecture holds for all p-blocks 
B of the covering groups A+(n) of the alternating groups A(n) and of the exceptional 
6-fold covers Ce and C7 ofA(6) and A(7), respectively. 

PROOF. For the blocks B of A+(n) the result holds by Theorems 5.2 and 5.4. Alperin's 
weight conjecture holds for any block B of any finite group G with a cyclic defect group 
6(B) by Theorem 2.1 of Feit [5], p. 275. Since \C6\ = 24 • 33 • 5 and |C7 | = 24 • 
33 • 5 • 7, only the 3-blocks of G G { CO, C7} have to be checked. Now G contains a 
central subgroup Z of order 3 such that Gj Z G { A+(6), A+(7)}. By Lemma 4.5 of Feit 
[5], p. 204, there is a bijection between the 3-blocks of G and the ones of Gj Z, which is 
weight preserving. Furthermore, corresponding blocks have the same number of modular 
characters by Corollary 2.13 of [5], p. 102. Now the conjecture holds for A+(6), A+(7) as 
remarked above. This completes the proof. 
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