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MINIMAL RATIONAL THREEFOLDS II

HIROSHI UMEMURA

The Enriques-Fano classification ([E.F], [F]) of the maximal connected
algebraic subgroups of the three variable Cremona group, despite of its
group theoretic feature, seems to be the most significant result on the
rational threefolds so far known. In this paper as in [MU] we interpret
the Enriques-Fano classification from a geometric view point, namely the
geometry of minimal rational threefolds. We explained in [MU] the link
between the two objects; the maximal algebraic subgroups and the minimal
rational threefolds. Let (G, X) be a maximal algebraic subgroup of three
variable Cremona group. We denote by ^(G, X) the set of all the alge-
braic operations (G, Y) such that Y is non-singular and projective and
such that (G, Y) is isomorphic to (G, X) as law chunks of algebraic
operation: namely (G, Y) is birationally equivalent to (G, X). Then we
define an order in tf(G, X): for (G, Z), (G, W) e V(G, X), (G, Z)>(G, W) if
there exists an G-equivariant birational morphism of Z onto W.

Using the classification of [U4], we can state our result.

If (G, X) is one of the maximal algebraic subgroups except for (J9)

and (Jll) listed in Theorem (2.1), [U4], then there exists the unique minimal

element in the ordered set 9"(G, X) and any other element of &(G, X) is

an equίvariant blow-up of the minimal element. For the operations (J9)

and (Jll), we can describe the relatively minimal elements in ^(G, X);

there are countable many relatively minimal elements and they are explicitly

constructed and are related each other by the equivariant elementary

transformation. In these cases too, any other element is an equivariant

blow-up of a relatively minimal elements.

Since our result thus reveals a new fascinating corner where the
simplicity dominates, we have not tried to relate our result with the
recent attempts of constructing minimal models for threefolds allowing
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16 HIROSHI UMEMURA

terminal singularities. Therefore there remains a very interesting problem
of studying minimal elements in wider categories allowing some reason-
able singularities.

As in our preceding papers, we work over the complex number field

*=C.
I should like to express my appreciation to the referee who pointed

out an error in the argument of Section 8 and revealed the Euclidean
model in a particular case.

§ 1. Preliminaries

We start with recalling the convention and some definitions.
(1.1.1) A Borel subgroup of SL2 is denoted by B. We denote by D^

the 1-dimensional dihedral subgroup of SL2; ΰ , = ( L .Λ, ( - \\

tek*.
(1.1.2) An integral divisor on a variety is an irreducible reduced

closed subscheme of codimension 1.
The rational ruled surfaces appear very often in the discussion. We

recall some of their properties.
(1.2) The ruled surface Fn (n>0) is by definition P(0 P 1 θ0 P i(-n))

which has a natural P^bundle structure /: Fn —» P1. We denote /*0Pi(m)
by Φγn{m). The projection 0Piφ0Pi(—ή) ->ΘVl{—ή) gives a section CTO of
F n ->P\ The self-intersection number CL = — n and CU is characterized
by this property if n > 1 (cf. [Marl]). Φ(CJ) is the tautological line bundle
on P ( 0 P 1 Θ 0 P I ( - Λ ) ) so that /*(jCJ ~ S ' ( 0 P 1 Θ 0 P 1 ( - Λ ) ) for j > 0, where
Sj(E) denotes the j-th symmetric tensor of E. We have a spectral
sequence for /.

(*) El* = ί P ( F , R%(ΘFn(m) <g> O(jCJ)) ==$ ίΓ*(Fn, 0Fu(m)

For j > 0,

by the projection formula. Therefore the spectral sequence (*) degene-
rates giving

(1.2.1) 0 H*(Έ\ 6vx'τn - en)) ~ H'(Fn, Φ¥n(m) ® OtJJCJ) for j > 0,
s=0
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RATIONAL THREEFOLDS 17

(1.3.0) F^ is by definition Spec(S(0p i(-n)), where S(E) = ® Sj(E)

denotes the symmetric algebra on E. F'n has a natural structure of A1-

bundle /': F^-> F . We denote f'*Θj>ι(m) by Θγ,n(rn). A'-bundle F'n -* P1 is

the total space of line bundle Θvx(ri) and hence we can regard as an open

subvariety of Fn: namely Fn — CL ~ F£.

F^ has the 0-section Co of the line bundle ΘPi(n) which is defined in

Fn by a surjective morphism ΘP1(B @Pi( — n) -+ ΘF1. We have C2

Q = n and

Co is disjoint from C^. And conversely if we have a section C" on Fn

with C'2 = 7i, C'ΠCoo = 0 or equivalently if we have a surjective mor-

phism 0piΘ 0Pi(—ra)->0Pi, then there is a P^automorphism of F'JP1 (or

a P^automorphism of F J P 1 fixing CL) which transforms C to Co. Since

AutpxF^ is identified by Lemma (4.4), [U4] with the semi-direct product

iJ°(P\ ^(τι))xGm, the 0-section of F^/P1 is not characteristic to F£: or

they are determined only up to Autp iF^ = AutPiFn.

It follows from the definition / ^ F ί ι — S(Θ( — n)). For a coherent

sheaf M on (9F>n the spectral sequence for ff degenerates since / is affine.

If we write the isomorphism deduced from the degeneracy of the spectral

sequence for M = ΘF>n(m), we get

(1.3.1) iϊ*(F;, (Pr;(m» - ίf^P 1 , 0pi(m) ® / ^ n )

^ P 1 Θ 0A-nW

(1.3.2) Let S->Pι be a P^bundle. As the Brauer group for a curve

vanishes, there exists a line bundle E on P1 such that S is P!-isomorphic

to P(E). If there exists sections Do, DM of S such that DQ is disjoint

from Dπ with either D2

0 = n or DL = — n, then we have both D2

0 = n

and JDL = — n and there exists a P^isomorphism S cr: Fπ mapping Z)o

(resp. ZL) to Co (resp. CJ) (cf. Atiyah [A]).

(1.3.3) Let D ClFn(n> 0) be a section with D2 = —n. H3nce as we

mentioned above D = CL (cf. Maruyama [Marl] and [U3]). A non-trivial

operation of SL2 on Fn gives a semi-simple part of Aut° Fn and leaves

invariant C^ and another section DQ disjoint from C^ hence D2

0 = n by

(1.3.2): the SL2-orbit decomposition of Fn is (open orbit) U ΰ 0 U D M [U3].

In particular D^ (resp. Do) is characterised as the SL2-invariant curve

on Fn whose self-intersection number is negative (resp. positive). Con-

versely if we give a section DQ with D2

0 = n disjoint of C^, there exist a
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18 HIROSHI UMEMURA

unique semi-simple part of Aut° F n or equivalently non-trivial operation

of SL2 on Fn leaving DQ and CTO invariant (cf. (1.3.0) and [U3]).

We consider the ordered set ^(G, X) of equivariant completions which

are birationally equivalent to a fixed operation.

DEFINITION (1.4). For a law chunk of algebraic operation (G, X), we

define ^(G, X) = {(G, Y) \ (Q> Y) is an algebraic operation isomorphic to

(G, X) as law chunks of / algebraic operation: in the usual language

(G, Y) is birationally equivalent to (G, X). Y is non-singular and pro-

jective (cf. [Ul], [MU]).

^(G, X) is non-empty by [Su] if G is linear, in particular if X is

rational (see Theorem (3.2), [U2]) (see also [U5]). We define an order

> in V(G, X).

DEFINITION (1.5). For (G, Xt), (G, X2) e <g{G9 X), (G, X,) > (G, X2) if

there exists a G-equivariant birational morphism of X1 onto X2.

Our result is a fruitful application of the theory of extremal rays

due to Mori, which is a generalization of the classical theory of both

ruled surfaces and of exceptional divisors of the first kind over a surface.

Referring the reader to [Mo] for the detail, we recall briefly the frame-

work of his theory and indicate how we can apply it. Let N(X) be the

R-vector space of all numerical equivalence classes of 1-cycles over a

non-singular protective threefold X with coefficients in R and NE(X) be

the smallest convex cone in N(X) containing all effective 1-cycles closed

under the multiplication by R+. We denote by NE(X) the closure of

NE(X) in the R-vector space N(X). A half line R = R+[Z] in NE(X) is

called an extremal ray if (i) (Z, c,(X)) > 0 and if (ii) for Zu Z2 e NE(X),

Zt + Z2eR implies Zu Z2 e R.

THEOREM (Mori [Mo]). Let X be a non-singular protective threefold and

RczNE(X) be an extremal ray. Then there exists a morphism φ: X-+Y

to a projectίve variety Y such that (i) φ%Θx = Θγ and (ii) for any irreduci-

ble curve C in X, [C] eR if and only if dim φ(C) = 0.

The structure of the morphism φ is analysed in Theorem (3.3), Corol-

lary (3.4) and Theorem (3.5), [Mo]. Roughly speaking we have one of

the following: (i) φ is a blow-down, (ii) φ makes X into a fibration over

a surface or a curve, (iii) X is a Fano threefold with p(X) = 1.

Since the morphism φ is functorial, if an algebraic group G operates
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on X, then G operates also on Y such that φ is G-equivariant. We apply

this for an operation (G, X) of a linear algebraic group on a non-singular

projective threefold X such that (G, X) gives a maximal connected

algebraic subgroup of the three variable Cremona group. In most of our

applications, Y is automatically smooth and we get one of the following:

(1) φ is an equivariant blow-up of non-singular Y,

(2) φ makes X into an equivariant P1 -bundle over a rational ruled

surface,

(3) φ makes X into a del Pezzo bundle over P1,

(4) X is a Fano threefold with p(X) = 1.

In the case (1), we apply the Mori theory again to Y and continue

to look for a minimal model. In the cases (2) and (3), we can determine

the structure of X completely. The case (4) rarely happens and in fact

never when we limit ourselves to the de Jonquieres type operations

(G, X): recall that (G, X) is of de Jonquieres type if there exist an

operation (G, Y), dim Y = 1 or 2 and a dominant G-equivariant rational

map X•••* Y.

(1.6) We mean by a blow-up X-+ Y a blow-up of a non-singular

variety Y at a non-singular irreducible center. But by abuses of language,

we often call a sequence of blow-ups ft also a blow-up : / = / 1 o / 2 o . . . o / B :

Xn —• XQ, where fί + 1: Xί + 1 —> X{ is a blow-up of Xt at a non-singular

irreducible center (0 < i < n — 1). We shall distinguish them clearly to

avoid the confusion.

The following theorem is useful when we analyse the elements of

, X).

THEOREM (Danilov [Da]) (1.7). Let f: X -> Y be a bίrational morphism

of non-singular projective varieties. If dim f~\y) < 1 for any point y e Y,

then up to an automorphism of X, f can be decomposed into a sequence

of blow-ups with smooth centers of codimension 2.

When dim X = dim Y = 2, the Theorem is classical and well-known.

We use the Theorem for threefolds.

We need the following Lemma which is finer than Lemma (1.21),

[U3].

LEMMA (1.8). Let f: X-+Y be a projective, flat morphism of algebraic

varieties. Let ψ: G X X-> X be an operation of a reductive algebraic

group G on X such that /Όψ = /Όp2, where p2: G X X—> X is the projec-
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20 HIROSHI UMEMURA

tion. Then the following conditions are equivalent.

(1) (G, X) is effective (resp. almost effective).

(2) There exists a point yoeY such that the induced operation

(G, f'XyJ) is effective (resp. almost effective).

(3) For any point y e Y, the induced operation (G9f~\y)) is effective

(resp. almost effective).

Proof. The implications (3) => (2) => (1) are evident. Thus we have

to prove (1) φ (3). This follows from Expose IX, S.G.A.D. but we prove

this directly. First we prove (1) => (3) for the almost effective case. We

show that if (3) does not hold for (G, X), then (1) does not hold. If there

exists a point y0 e Y such that (G^f'^yJ) is not almost effective, then

there exists a positive dimensional normal subgroup of G which operates

trivially on f'Xy). Since any positive dimensional normal subgroup of

the reductive group G contains a non-trivial torus, we can thus find a

torus T Φ 1 c G which operates trivially on f~ι(y0). It is sufficient to show

that (T, X) is trivial. Namely to prove (1) ==> (3), it is sufficient to prove

it for the following special case: if G is a torus T and if there exists a

point y0 e Y such that T operates on f~\y) trivially, then (T, X) is trivial.

Let L be a relatively ample line bundle for f: X-+Y such that f*L is

locally free of finite rank and Rιf%L = 0 for all i > 1: such a bundle L

exists replacing L by L 0 n, n > 0 if necessary, ψ defines a morphism

ψ: G X Y = T X Y -> AutFP(/*L) of group schemes over Y. For a point

yQ e Y, we can find an affine neighbourhood Y' of yQ such that f*L is a

free Θγ,-Module. Therefore we may assume that Y is affine. Then ψ

gives over Y = Spec A a morphism ψ7: Γ x Y -> PGLW X Y. Using embed-

ding PGLn —-> GL^, we finally get φ: Tx Y-^GL^x Y and have to

prove that φ is trivial. Putting by T£n = {t eT\ t£n = 1} the finite subgroup

of elements of order £n, φ defines a TVmodule M = A®N, where £ is a

prime number (different from p if ch k — p > 0, which is not the case).

The character 1: Tίn —• A is a function of an element t of T£n and of a point

3/ of Y: X(t; y). If we fix t e 2%, JΉ-> %(ί; 3/) is regular function on Y. Since

Tέn is finite, there are only finitely many representations of T£n of rank

N over k and hence the function y^l(t\y) is constant. Namely for all

y e Y, the reduction of TVmodule M at y is isomorphic each other. Since

the reduction at yQ is the trivial TVmodule, T£n operates trivial on each

fibre. Taking all n > 0, U T£n is dense in T£n, we conclude T operates
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RATIONAL THREEFOLDS 2 1

trivial on M. Hence φ, ψ' are trivial. The proof (1) => (3) for effectiveness

follows from the last argument for finite groups.

Lemma (1.8) is the rigidity of operation of a reductive group.

We prove 2 lemmas for the automorphism group of A1-bundle. As

we explained above A1-bundles appear very often in the sequel.

LEMMA (1.9). Let L be a line bundle over a projectίve algebraic

variety X and D an effective Cartier divisor on X. (a) Then we denoting

by L the total space Spec(0^>oL
Θ~') of the line bundle L, AutxL is

representable in the category of reduced schemes over k and Aut°ΓL is

isomorphic to the semi-direct product H°(X, L) xi Gm. (b) If the inclusion

H°(X,L(-D))->H°(X,L) is bijective, then H°(X, L) fixes all the points of

L lying over D.

Proof. For any reduced scheme T-+X, a e Autτ(T X x L) is locally

an affine transformation and hence can be extended to an T-automor-

phism of the F-bundle T X x P(Θ ® L"1). Therefore AutΓ(T X x L) =

{σ € Autτ(T χxP(Θξ& L'1)) leaving the oo-section invariant}, which is a

closed subgroup of the automorphism group AutP(d?®L~1) of the projec-

tive variety P(Θ ® L"1). Let [Ja6I Ua be a covering of X such that L is

defined by a 1-cocycle {gaβ}a>βel, gatβeH\UaΠUβ9 0*). Let seH°(X,L)

which is locally given by sa e H°(Ua, 0) such that gaβsa — sβ. L is an

A'-bundle gluing Ua X A1 (a 6 /) by gaβ: (x, ua) e Ua X A1 and (y, uβ) eUβXA1

are identified if x — y and gaBua = uβ. Thus the automorphism (x, ua) »-»

( x ^ + sa) of Ua X A1 defines an action of the vector group H°(X, L) and

Gm operates on each fibre by the scalor multiplication. If we notice that

the Lie(Autr L)^{fe End(0 Θ L) \f(Φ φ 0) c G ® 0}/scalor multiplications,

(a) follows from Lemma (1.8). If H\X, L(-D)) ^ H°(X, L\ all the section

of H°(X, L) vanish on D and (b) is proved.

A similar argument gives

LEMMA (1.10). Let L be a line bundle over a projective variety X and

D an effective Cartier divisor on X. (a) We denoting by Z an A^-bundle

over X defined by a non-trivial extension 0—>Θ —>i —>L—>0, Aut x Y is

representable in the category of reduced schemes and Aut°rY is isomorphic

to the vector group H°(X, L). (b) If the inclusion H°(X, L(-D))-+H°(X, L)

is bijective, then Aut^Z fixes all the points of Z lying over D.

Proof. This is proved by the same method as Lemma (1.9). See also
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Lemma (4.22) [U4].

Certain SL2-actions on a rational threefold do not have a fixed point

as we see in [MU] and shall see later. In general, an SL2-action on a

threefold does not have too many fixed points.

LEMMA (1.11). Let (SL2, X) be an operation of SL2 on a non-singular

threefold X. Then the dimension of the subvariety S of SL2-fixed points

is at most 1 unless X = S.

Proof. Assume that SL2-fixes all the point of a surface S o n I and

that (SL2, X) is non-trivial i.e. X ψ S. Let x e S be a smooth point of S.

SL2 operates on the Zariski tangent space mjm2

x but this operation fixes

the S-direction so that mjmx contains a trivial representation k@k oΐ

degree 2. Hence by the complete reducibility of SL2) mjm\ is a trivial

SL2-module. As we have Sj{mjmx) ~ mUmί+1, milmJ

x

+1 is a trivial SL2-

module. Therefore by the complete irreducibility. Θx\mβx is a trivial SL2-

module for j > 1. Consequently Θx = lim^ Ojm{ is a trivial SL2-module

and SL2 operates on Gx trivially and hence on its quotient field, which

is the function field of X. This is absurd as we assumed that (SL2, X)

is non-trivial.

The following Lemma gives an obstruction for blowing-down a divisor

to a smooth point.

LEMMA (1.12). Let φ: X—• Y be a bίratίonal morphίsm of smooth

protective threefolds and D a X be an irreducible subvariety of X. If the

image φ(D) is a point, and if φ induces an isomorphism X — D ~ Y — φ(D)9

then Θ{D) ® ΘD is an ample line bundle on D.

Proof. Let A be an ample divisor on X. φ*φ*A is linearly equivalent

to A + nD with n > 0. Since for any divisor B on Y, Φ(φ*B) <g> ΘD is

trivial on D, φ*φ*A = A + nD is trivial when restricted on D. Thus

(9{A)®Θ{nD)®ΘD ~ ΘD hence Θ(A)®ΘD ~ Θ(-nD)®ΘD and Θ{-D)®ΘD

is ample.

The following Lemma would be well-known among the specialists.

For the definition of a conic boudle, see [Be].

LEMMA (1.13). Let (φ,f): (G, X)-> (G, Y) be a morphίsm of algebraic

operations such that f: X-^Y is a conic bundle over a non-singular surface

Y and p(X) = p(Y) + 1. // any reduced G-invariant curve on Y is isomor-

phίc to the disjoint union of some P1Js, then f: X—>Y is a P1-bundle.
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Proof. Let C C Y be an irreducible component of discriminant locus

of the conic curve. We prove C = 0 . For otherwise it follows from the

assumption that ρ{X) = ρ(Y) + 1 and from p. 87, Lemma, [Mi] that φ~\C)

is irreducible. Therefore by Proposition 1,5, [Be], there exists an etale

2-covering C -> C with an irreducible C''. This impossible since by

hypotheses C ~ P1.

§ 2. Compact case

Let (G, X) denote one of the following operations of Theorem (2.1),

[U4]: (PI) (PGL4, P
3), (P2) (PSO5, quadric C P4), (Jl) (PGL2 X PGL3, P1 X P2),

(J2) (PGL2 X PGL2 X PGL2, P x F x P1) and (J4) (PGL3, PGL3/B). These

are the maximal subgroups where X is a projective homogeneous space.

Let (G, Y) e ^(G, X). Then by definition, there exists a G-equivariant

birational map /: X ^Y which should be biregular as X is a complete

homogeneous space. Therefore we have proved.

THEOREM (2.1). Let (G, X) be one of the operations (PI), (P2), (Jl), (J2)

and (J4) of Theorem (2.1), [U4]. Then the set <g(G, X) consists of a single

element.

§ 3. Equivariant completions of J3

(J3) is the operation (PGL2 X Aut°F;, P1 X F J - (G, X) (m > 2) which

has a projective non-singular compactification (G, Y) = (PGL2 X Aut°Fm,

P1 X F J . The orbit decomposition is P1 x F'm U (P1 χ F m - P χ F;). The

latter is a divisor on P1 X Fm, which we denote by D. Let (G, Z) e ^(G, X).

Then we have a G-equivariant birational map /: Y + Z. By Hironaka's

theorem of equivariant resolution, we can blow-up Y equivariantly to

eliminate the indeterminacy of /. But as there is no orbit of co dimen-

sion > 2, / should be a birational morphism inducing an isomorphism

between the open orbits. We show that / is biregular. Assume that

f(D) is a curve. Then it follows from Theorem (1.7), / is a blow-up but

this is impossible since D ~ P1 X P1 and 0(D) ® ΘD is 0piχP1(O, —m\ m> 2.

It follows from Lemma (1.12) that f(D) is not a point since Θ{D) ®ΘD~

0PixPi(O, — m), m > 2. Therefore it follows from Zariski's main theorem

that / is biregular. Hence we have proved.

THEOREM (3.2). The set ^(PGL2 x Aut°Fς, P1 X F^) (m > 2) consists

of a single element.
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§ 4. Equivariant completions of J5

(J5) is the operation (PGL2, PGL2/Z)2J, where D2n is the dihedral

subgroup of order 2n with n ^ 4. We denote by D2n the binary dihedral

subgroup of order An of SL2: D2n is the subgroup of SL2 generated by

( 1

 λ) and β ®_\ Cn = 1. Since (O, W) = (SI*, SWA.) almost effec-

tively realizes (PSL2, SLJD2n) = (PGL2, PGL2/AJ, we study V(G, W). Some-

times ίί(G, VΓ) is denoted by ^(J5: rc).

The following Lemma was proved in [MU] but we give a proof because

later we need a more general assertion which one can prove easily once

one review the following

LEMMA (4.1). Let (SL2, X) be an operation of SL2 on a projectίve non-

singular threefold X. If SL2 has an open orbit on X, then there is no

$L2-fixed point on X. In particular if (G, Y)e#(J5;n), then there is no

G-fixed point on Y.

Proof Let P e Y and assume that P is a fixed point of G. Since Y

is projective and G = SL2 is simple, there exists an SL2-invariant affine

neighbourhood Spec A of P. We denote by I the ideal of A consisting

of the elements of A vanishing at P. Putting m — IAl9 we get a surjective

SL2-linear map φ: V —> rriιlms. We can choose an SL2-invariant finite

dimensional subspace V of P such that φ(V) — m2/mz by (1.9) Proposition,

[Bo]. The Zariski tangent space rn/m2 is an SL2-module and S2(m/m2) ~

rrizlm3. Thus m2jmz contains a non-zero SL2-invariant f. For, there

certainly exists f if m/m2 is reducible (which implies that m/m2 contains

a trivial representation since m/m2 is 3-dimensional) and if mint1 is irre-

ducible, m/m2 is isomorphic to the vector space of homogeneous polyno-

mials of degree 2 in x, y where SL2 operates on x, y in usual way and

the discriminant which is a polynomial of degree 2 in the coefficients of

a given homogeneous polynomial, is the SL2-invariant. Since the image

φ(V) = m2lm3 contains a trivial representation kf, by the complete reduc-

ibility of SL2, we can find a non-zero lifting feVoΐf which is SL2-

invariant hence constant as SL2 has an open orbit. This is absurd since

/ vanishes at P.

To apply the main Theorem of [Mo], we need a more general asser-

tion than Lemma (4.1).
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LEMMA (4.2). Let (G, X) be an (algebraic) operation of a reductive

algebraic group G on an affine variety X = Spec A. Let PeX be a fixed

point, n a non-negative integer and let W be a G-ίnvariant subspace of

InjIn + \ where I is the ideal of A consisting of regular functions on X

vanishing at P. Then there exists a G-ίnvariant subspace W of In such

that the canonical map W-+ W + Jw + 1//« + 1 -+ j * / / ^ induces a G-isomor-

phism of Wf and W.

Proof. The lemma is proved by the same method as in the proof

of Lemma (4.1).

COROLLARY (4.3). Let (G, X), P and n be as in Lemma (4.2). If there

exists a G-invariant element f in InIIn + \ then there is a G-invariant lifting

foffto Γ.

Proof. This is a particular case of Lemma (4.2) since G is com-

pletely reducible.

LEMMA (4.4). Let (G, X) e ^(J5; n). Then the 4 cases (3.3.2) (3.3.5)

for X in Theorem (3.2), [Mo] never occur.

Proof. We excluded the case (3.3.2) by Lemma (4.1) since SL2-operates

on Y. The case (3.3.4) does not occur neither. For otherwise, the divisor

D to be mapped to a singular point is SL2-invariant and the single singular

point of the cone D is left fixed by SL2, which contradicts Lemma (4.1).

Assume that the case (3.3.3) happens. Then fl-PxP1 and ΘD{D) is of

bidegree ( — 1, —1). Let φ: X—> Y be the morphism arising from the Mori

theory and φ(D) = Q. SL2-operates on Y and φ is equivariant. It follows

from Lemma (3.3.2), [Mo] that IJPQ ~ H° (ΘD{-D)) ~ # 0 ( P x F , 0(1, 1)).

Thus the Zariski tangent space IQIPQ at Q, as an SL2-module, is isomorphic

to the tensor product Mλ (x) M2. Thus we have either (1) Mx and M2 are

irreducible or (2) M1 or M2 is trivial. The first case never occurs. For

otherwise since Y is protective and SL2 is simple, we can find an SL2-

invariant affine neighbourhood Spec A of Q. Since there is a non-zero

SL2-invariant in IQII\ in case (1), it follows from Corollary (4.3) that we

can find a non-zero SL2-invariant meromorphic function regular on Spec A

vanishing at Q. This is absurd since SL2 has an open orbit on Y. In

case (2) we can find as before an SL2-invariant affine neighbourhood

Spec A of Q. Since there is a 2-dimensional SL2-invariant subspace in

IQ/IQ in case (2), it follows that we can find a 2-dimensional SL2-invariant
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subspace of A by Lemma (4.2) hence an SL2-invariant linear system of

dimension 1. Namely we get an SL2 equivariant dominant rational map

X' * P \ hence in particular a morphism (SL2, SLg/AJ —• (SL2, P
1) of alge-

braic operations from the open orbit. This is impossible as D2n can not

be contained in a Borel subgroup. Now assume that the case (3.3.5)

occurs. We argue similarly, using the notation in Mori [Mo], p. 146-147

as above. It follows from Lemma (3.32) that IJPQ ~ H°(D, ΘD(-D)) ~

H°(P\ 0(2)). The latter is isomorphic to S\H°(P\ 0(1)) hence contains a

non-zero SL2-invariant element f as we see in the Proof of Lemma (4.1).

Arguing as in the preceding cases, f yields a non-zero SL2-invariant (hence

constant) rational function h vanishing at Q.

Let (SL2, P1 X P1) be the diagonal operation and E denote the irre-

ducible SL-module of dimension 3. Then SL2 operates on P(l?) giving an

operation (SL2, P2). SL2 has an open orbit on P2 and the orbit decom-

position of P2 is SLJIL U SL2/JB, where B is a Borel subgroup and D^ is

a subgroup generated by (a A, α e £* and ( - V The latter orbit

is a quadric in P2. Let us define φ: P ^ P 1 — > P 2 by φ((x, y), (u, v)) =

(xu, yu + xv, yυ) e P2 for ((*, y), (u, v)) e P1 X P1. Then φ: P1 x F -> P2 is

an SL2-equivariant 2-covering whose branch locus is the diagonal of

P1 X P1 and whose ramification locus is the quadric X\ — 4X0X2 = 0 in P2.

Let Θ(i, j) denote the line bundle over P1 X P1 of bidegree ί, j . The direct

image sheaf φ*d){i, j) = E(ί, j) is the rank 2 vector bundle studied by

Schwartzenberger [Sc]. SL2 operates on E(i, j) hence on P(E(i, j)). Since

φ*Φj>t(ϊ) is isomorphic to 0(1, 1), E(i, j) ^ E(i — j , 0) (x) φ*Θγ>*{j) hence

P(E(ί, j)) - P(E(ί - , 0)). Thus we denote by Et the vector bundle E(i, 0).

LEMMA (4.5). SL2 operates on ~P(En) and has an open orbit isomorphic

to SLJD2n for n^l.

Proof. The stabilizer H set (0,1, 0) e P2 is the one dimensional subgroup

ZL of SL2 generated by (I J_Λ e SL2, t e k* and ( 1

 X\ φ-\0, 1, 0) =

((0, 1), (1, 0)) U ((1, 0), (0, 1)) and the fibre of En at (0, 1, 0) is identified with

the direct sum of the fibre of Φ(n, 0) at ((0, 1), (1, 0)) and ((1, 0), (0, 1)).

t e k*\ on the fibres of Θ(n9 0) at ((0, 1),The operations of T = II ̂  .A

(1, 0)) and ((1, 0), (0, 1)) are respectively by tn and t~n. The operation of

( _ 1 1 ) o n p l x p l interchanges the points ((0, 1), (1, 0)) and ((1, 0), (0, 1))
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hence the fibres of Θ(n, 0). Thus the stabilizer at a suitable point of

P (the fibre of En at (0, 1, 0)) is D2n.

LEMMA (4.6). Let (G, X) e ^(Jδ; n), (G, Y) be an algebraic operation

and f: X-> Y be a G-equiυariant dominant rational map. If Y is non-

singular and complete and if dim Y ^ 2, then (G, Y) is isomorphic to

(SL2, P
2) where SL2 operates on P2 through the irreducible representation

of degree 3.

Proof. Assume that Y is a curve. As X is rational, Y is isomorphic

to P1 by the Lύroth theorem and (SL2, Y) is the usual operation of SL2

on P1 since SL2 must have an open orbit on Y. Thus / defines a surjective

morphism SL2/jD2n —> SL2/JB. Namely up to conjugacy Dln is contained in

the Borel subgroup B of SL2. This is absurd because DudSL2 is an-

irreducible representation of degree 2 of D2n Hence Y is a surface. G

has an open orbit also on Y since (G, X) has the open orbit and / is

dominant. Let the open orbit on Y be isomorphic to SL2/i7. Then there

is a surjective morphism SL2/Z)2w -+ SLJH for the open orbit and hence

we may assume DlndH. It follows now that H = ΰ M , Thus (G, Y) is

isomorphic to (SL3, P
2) as law chunks of algebraic operation, where SL2

operates on P2 through the irreducible representation of degree 3 (cf. [U3]).

Let g: F - ^ Y be an SL2-equivariant birational map. By Hironaka, there

exists an equivariant blow-ups gλ\ Z-> P2, g2: Z^>Y such that g = g2°gϊ1*

But the orbit decomposition of P2 is SL2/D°° U SL2/JB and hence Z = P2

and g is a birational morphism hence an isomorphism since P2 is relatively

minimal and Y is non-singular.

THEOREM (4.7). For n^>4, the ordered set ^(J5; ή) contains the unique

minimal element which is given by (SL2, P(En)) and any other element of

^(J5; ή) is obtained by an equivariant blow-up of the minimal element

along curves isomorphic to P1.

Proof. Let (G, X) e ^(J5; ή). We show that if p(X) ̂  3, then we can

equivariantly blow down X to a non-singular projective Y. In fact, as X

is rational, by Mori [Mo] there exists an extremal ray and a morphism

φ: X-+ Y in Theorem (3.1), [Mo]. The 4 cases (3.3.2) (3.3.5) are already

excluded by Lemma (4.4). We have to exclude all the cases in Theorem

(3.5) in [Mo].

The case (3.5.1) in [Mo] never happens. Otherwise there would be a
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morphism (G, X) —> (G, Y) with Y non-singular projective surface. It fol-

lows from Lemma (4.11) that Y= P2. Now p(X) = p(Y) + 1 = p(P2) + 1

— 2, which is a contradiction.

The case (3.5.2) in [Mo] is impossible by Lemma (4.6). The case

(3.5.3) is excluded in Section 7, [MU].

We conclude therefore that if p(X) I> 3, then only the case (3.3.1) in

[Mo] occurs.

Now we must show that if (G, X) e ^(J5; n) and p(X) = 2, then (G, X)

is isomorphic to (SL2, P(En)). Then as in the p(X) >̂ 3 case, the extremal

ray exists. Since as we have seen in Section 7 [MU] ρ(Y) >̂ 2 for (G, Y)

G ^ ( J 5 ; M ) , the case (3.3.1), [Mo] never happens. The cases (3.3.2)

(3.3.5), [Mo] are excluded by Lemma (4.4). The case (3.5.2), [Mo] is excluded

by Lemma (4.11) and we need not consider the case (3.5.3), [Mo] since

p(X) = 2. The only possible case is the (3.5.1), [Mo] and it follows from

Lemma (4.4) and Lemma (1.13) that φ\ X—> Y = P2 is an SL2-equivariant

P1-bundle over P2 and hence X is isomorphic to P(E) for a suitable vector

bundle E over P2 of rank 2 since the Brauer group of P2 vanishes. Let

U denote the open SL2-orbit on P 2; U = P2-(the invariant quadric). We

show that the orbit decomposition of P(E \ U) is SL2/Z52ra and SL2/GW and

the morphism φ makes the latter orbit an etale 2-covering of U. In fact

as we saw in the proof of Lemma (4.5), the stabilizer at (0, 1, 0) e P2 is

JCL. DOC operates on the fibre P(2J)|(Mf0) which contains DJD2n = P1 — 2

points = {(a, b) e P11 α, b Φ 0} = Q. The operation of ZL on Q is (a, b) >->

(t2na, b) for tt °t_λ and (a, b) »-> (b, a) for ( ±

 1Y Thus Dm operates on

P(J5)|(0|lf0) as on Q. Let us put Df = P(£ | U) - SL2/A%. Then ^^(0,1, 0)

— Q consists of 2 distinct points and these 2 points are interchanged by

(__ i ) hence in the same SL2-orbit. Since the morphism Όr -> £7 is

SL2-equivariant and surjective, Ό' is an SL2-orbit. Consequently Df is

isomorphic to SL2/Gm and SL2/Gm —> SL2/JCL is of course etale. Now let

D be the closure of Όf in Ί*(E) = X. There exists a line bundle L over

P2 such that Θ(D) = ΘΈ{E){2)®φ*L. Hence we have an exact sequence

0 > Θ(-D) • Θj>{E) > ΘD > 0 .

Tensoring ΘP{E)(ΐ) we get
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0 • OV,E){-1) <g> φ*L-1 > ΘP(E)(1) > ΘD(l) • 0 .

If we take the direct image φ*,

0 > 0*(0 P ( *)(-1)) ® L > Φ*6>V<E)(X) > ΦMΪ) > R'ΘV{E){-1) ® L.

E 0

Consequently E^φ*ΰ)D(ΐ). We shall show below that D ^ F x P .

Admitting this for a moment, we conclude that X — P(E) is isomorphic

to P(Ei) for a some integer ί >̂ 0. SL2 has an open orbit on P(Et) isomor-

phic to SL2/Z52i. Therefore i = n by Theorem (2.1), [U4].

LEMMA (4.8). D is isomorphic to P1 x P1.

Proof. It is sufficient to prove that D is non-singular. In fact if we

know that D is non-singular, D is a projective non-singular equivariant

completion of SL2/Gm. A particular projective, non-singular equivariant

completion of SL2/Gm is given by (SL2, P1 X P1), where SL2-operates

diagonally. Therefore P1 X P1 and D are connected by equivariant blow-

ing-ups and downs. But as SL2-has no fixed point on P1 X P1 and P1 X P1

is relatively minimal, P1 X P1 is isomorphic to D.

Let us now prove that D is non-singular. Let us denote by /: D -> D

the normalization of D and by L the inverse image /*(0P(jE)(l)® βD). SL2

operates on D and has no fixed point since SL2 has no fixed point on D.

Therefore D is a non-singular equivariant completion of (SL2, SL2/Gm)

and it follows from the argument above that D is isomorphic to P1 X P1

with the diagonal action of SL2 and if we put ψr = ψ \ D, ψ' o /: P1 x P1 -> P2

is the map studied above. Since / is an isomorphism outside the diagonal,

(ψf °/)*£ is isomorphic to E when restricted on P2 — (the ramification quadric

curve). Therefore SL2 has an open orbit isomorphic to SL2/Z)2n on

P((^/° /)*£) and consequently by Proposition (7) [Sc], and Theorem (2.1),

[U4], L = 0 p i χ P 1(α + n, a) (or @(a, a + n)). This is a contradiction once

the following Lemma is proved.

LEMMA (4.9). Let M be a line bundle on D. If D is singular, then

/ * M ^ 0 p i χ P 1 ( α , a).

Proof The following sublemma is well-known (see [Sc]). To explain

the assertion we need
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NOTATION (4.10). Let Ybe a variety, L a line bundle and ψ a global

section of U. Let L be defined by a cocycle gtj for an open covering

(Ui)ίeI and assume that φ is locally given by φt so that g\3ψi = ψj. Let

Xt = {(zi9 xt) e A1 X Ui I z\ = <pi(Xi)}. Identifying (zi9 xτ) e A1 X Ut and (^ , xά)

e A1 X £7, when (z,, xs) = (gtizu xt), we get the A1-bundle Spec(®^ 0 L®~j).

Then X/s are glued together to give X = U-X*. We say that the scheme

X is the 2-covering defined by the section φ of L. The ramification

locus of X-+ Y is the 0-locus of φ.

SUBLEMMA (4.11). Let X—>Ybea finite morphίsm of degree 2, Y being

non-singular. If X is Cohen-Macauley, then there exist a line bundle L

on Y and a section ψ of U such that X is Y-isomorphic to the 2-coυering

of Y defined by φ.

By Sublemma (4.11), D is defined by a section s of ΘF2(2£) whose

reduced 0-locus is the SL2-invariant quadric. Namely let h(x0, xί9 x2) be

the quadric defining the ramification quadric. Then s = he. Therefore,

as foφ': P χ P - > P 2 is nothing but the canonical map associated with

P 1 X P 1 -^( the symmetric product of 2 copies of P1) ~ P2, foφ' and φr are

locally written as follows:

D = P1 X P1 >D • >P2

u u u
Spec k[x, y] > Spec k[xy, x + y, (x — y)e] > Spec k[x + y, xy]

£ is odd and ^ 3 since D is an irreducible 2-covering of P 2 and singular.

Let zJ(2) denote the non-reduced subscheme of P 1 X P1 defined by PΔ, where

IΔ is the defining ideal of the diagonal. The inclusion morphism L: J(2)

- ^ P x P 1 is locally written by k[x,y]/(x — yf+-k[x,y]. Composing with

/, we get ψ: zf(2)->D which is locally given by k[x,y]/(x — y)2 ^-k[x + y,

xy> (χ — y)£] Let now i be the automorphism of P1 X P1 interchanging factors.

It follows from the local expression that foίoL = ψ. Therefore if f*M

= ^pix Pi(α, b), then L*ίP(α, b) ^ L*Φ(b, a). Now the Lemma follows from

LEMMA (4.12). If ΘJ{2) (x) Θ(a, b) = Θm) ® Θ{b, a), then a = 6.

Proof. By tensoring Θ(—b, — a), we have to show that ΘΔ{1) ®Θ{j, —j)

is not isomorphic to ΘΔ{2) if j ^ 1. In fact we have an exact sequence:

(4.13) 0 *0(-2, -2) X9FlχF1 >Θm) >0.
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Assume that ΘA{2)Θ(9(jf —j) ^ ΘΔ{2) with j ^> 1. Tensoring Φ(j, —j) with

the exact sequence (4.13), we get

0 > <p(j - 2, -j - 2) > <ΰ(j, -j) > Om(j, -/) • 0.

(4.14)

Since the morphisms in this exact sequence are SL2-morphisms, we get

SL2-exact sequence

0 > H\ΘΔ{2)) > H\Θ(j - 2, - - 2)).

(4.15) ||2

k

The SL2-module H\Θ(j — 2, —j — 2)) contains the trivial module k. Let

Wd denote the irreducible SL2-module of degree d + 1 if d ^ 0 and Wd = 0

if d < 0. By the Kύnneth formula and the Serre duality, H\Θ(j - 2, j - 2))

= Wj_2®Wj for j ^ l . By the Clebsch-Gordan formula (p. 126, [Hu])

Wό.2® Wj = VF2j-_2Θ W2j_,® .- ®W29 Wj_2(g) Wj c o n t a i n s n o t r i v i a l SL2-

module k which is absurd.

§ 5. Equivariant completions of J6

We have to consider the operation (G, Wm,n) = (Gm X SL2 X SL2, Gm X

SL2 X SL2/tfw,n), where

) ( J ) ) Gm x SL 2 x SL211» t2 e k * , x , y e k

and m, n are integers with m^2, —2^>n. We denote #(G, WTO,J by

^(J6; m, τi). Wm,ra is the principal Gm-bundle of bidegree (m, n) over

SL2/JB X SL2/β ^ P1 X P , Hence (G, WmJ has a natural equivariant

completion Lm>n = P ( ^ p i χ P 1 Θ (Pp i χ P 1( —m, —n)) and we know that we have

a G-equivariant morphism (φ, / ) : (G, P ( 0 p i χ P 1 0 0PixP1(/tt, ft)) —> (SL2 X SL2,

P1 X P1), φ being the projection ([U4]). We can regard Spec(φ^ 0 ^( — ̂w2>

as a Zariski open set in P ( $ P i x p i 0 0pixPi( — m, — ή)). We set

and Z)o = Spec(0^>o( — £m, in)) — Wm,n (= the zero section of the line

bundle Spec(@^o0( — $m> ^^)) Namely adding the 0-section Do to the

Gm-bundle Ww?7l, we get the line bundle Spec 0{®t^{ — im, —in)) and further-
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more by adding the co-section ZL to the line bundle Spee(0^ o 0( — £m9

— ίn)\ we get the P1-bundle P(Θ® (9(—m, -ή)) over F X P1. By the

equivariant morphism /, the orbit decomposition of P(Θ®Θ(—m, —ri)) is

THEOREM (5.1). #(J6; m, n) (m^>2, —2^ή) consists of a single ele-

ment (G, LTO,n).

Proof. Let (G, X)e(£(J6; m,ή). By Hironaka's Theorem, there ex-

ists an equivariant blow-up fλ: Y—> P(0® &(—m, — ή)) and a birational

morphism f2: Y—>X. It follows from orbit decomposition that /i is an

isomorphism. Thus we get a birational morphism f2: P{Θ@Θ( — m, — ή))—>

X. We have Θ{-D,)®ΘDQ ^ ^ p i χ P 1(/n, ή) and Θ{-Dca)®ΘDoΰ ^ 0 p i χ P l ( - m ,

— n) if we identify DQ and Z)^ with P1 X P1 by the equivariant map /.

It follows from Lemma (1.12) that neither f2(D0) nor f2(D00) is reduced to

a point. Since m ^ 2, — 2 >̂ n, then we can blow down neither DQ nor

ZL to a curve (cf. Theorem (1.7)). Hence by Zariski's Main Theorem f2

is an isomorphism.

§ 6. Equivariant completions of J7

J^ is by definition Spec(Sr(^P2( — m)); the total space of the line bundle

of degree m over P2. We study the operation (J7) (Aut° J'm, J'm) (m ̂  2).

We know by Proposition (4.8), [U4] Aut °J'm respects the ίibration Jm -> P2.

Therefore the operation (J7) (Aut0 J^, JQ has a natural equivariant com-

pletion (Aut°JTO, JTO) by Corollary (4.10), [U4] where Jm denotes P(0P 2 0

(Pp.(-m)). We denote ^(Aut° jς, J J by ^(J7; m).

THEOREM (6.1). ^(J7; m) (m :> 2) consists of a single element (Aut0 Jm,

JJ.

Proof. For the same reason as in the case (J6), it is sufficient to

notice that we can not collapse the orbit D^ = J m — J^ ^ P2 to a smooth

point. In fact, let /: J m - > Z be a birational morphism such that X is

non-singular and projective, / is biregular outside D^ and such that /(ZL)

is a point. Let H = τr*0P2(l) so that H®(PDΰO = 0P2(1), where /r: J m - > P 2

is the projection. Then tf^ ^ fKf*H) ® ΘDΰo = (H® Θ(rDJ)) ® ̂ ^^ ^

® 0DJ. Hence r = l and Θ{DOΰ)®ΘD^^Θ^{-l). But

= ^P a(—m), which is a contradiction.
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§ 7. Equivariant completions of J8

We study (J8) (Aut°L'mtn, L'm,n) (m^n^ί): L'mtn is the total space

Spec(S(0(—m)® Θ{—ή))) of the line bundle Θ(m, n) of bidegree (m, n) over

P1 X P1. The operation (J8) (Aut°Z4>n, 14, J respects the fibration Z4,n->

P1 X P1 by Proposition (4.11) and hence by Corollary (4.12) the operation

(J8) (Aut°Z4,n> L'min) has a natural equivariant completion (Aut° Lm,n, LTOiΛ),

where Lm,n denotes the P1-bundle V(Θ® Θ(-m, -n)) over P1 X P . If

n = 1, by the composite morphism LmΛ Λ P1 x P1 - i P1, we can regard LmΛ

equivariantly as F rbundle over P1. Replacing each fibre Fj by P2, we

get an equivariant completion (Aut°Z4%1, Xm). The P2-bundle Xm over P1

is isomorphic to P(0P i© 0 P iΘ $pi( — τrιj) by its construction. We denote

4,π, UmJ by (J8; m,n).

THEOREM (7.1). If m ^> n ^> 2, ^(J8; m, n) consists of one element (Aut°

, im,n) The ordered set <^(J8;ra, 1) consists of 2 elements; (Aut°Z4,i,

Theorem is proved by the same method as Theorem (6.1). Hence we

omit the proof.

§ 8. Equivariant completions of J9

Let CL = Fn - F;; namely CTO is the section of P1 -bundle fn: Fn -> P1

with CL = —n. The section with this property is uniquely determined

and called the infinity section of Fn (see (1.2)). We denote by ΘFn(t) the

line bundle /*0P1(Z) and by ΘF>n(t) its restriction on F^.

The variety F^>w (m ^ n I> 1) is the total space of the vector

bundle 0px(m) Θ Θ?ι{n) over P 1 : F'm,n = Spec(S(<^pi(-m) φ 0p i(-τι))), where

S(£J) denotes the symmetric algebra on E. We can regard F^ n also

as the total space of a line bundle ΘY'n{m) over Ψn. Namely F^)72 =

Spec(S(^F;( — m))) and we have a morphism F^>n-> F^ giving the bundle

structure over F£. (J9) is the operation (Aut0Fς,n, F'mJ (m > n ^ 2).

Since (Aut°F^TO, F^>w) respects the fibration by Proposition (4.13), [U4], to

complete equivariantly the A1-bundle F'm^n over F'n, first we want to equiv-

ariantly extend it to an A1-bundle over Fn. For this purpose, in view of

Lemma (1.9) in section 1 of this paper, Lemma (4.4), Proposition (4.13)

and Corollary (4.17) all in [U4], it is sufficient to find a line bundle M

over F n such that (1) M is Aut°Fn-equivariant, M is isomorphic to Θγ,{m)
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when restricted over F^ and such that (2) the restriction H°(Fn, M)

-> H\F'n, M) ^ H°(F'n9 ΦF,n(m)) induces an isomorphism. In fact, then

Spec^M" 1 ) ) D Spec(S((9F,n(-m)) is a desired extension to F n and P ( 0 F T C Θ

M"1), which is an equivariant completion of SpeciSiM'1)), is an equiv-

ariant completion of (Aut°F^iΛ, F^ n ) .

We choose an integer & such that m = £n+r, 0<Lr<n (cf. Corollary

(4.17), [U4]).

LEMMA (8.1). (Aut0F'n)n, F ^ J has an equivariant completion (Aut0F^w,

Fm,«) for any integer k^£, where F^n denotes the Pι-bundle fk

m%n\ P(0F nΘ

Θ¥n(-rn)®ΘYn(-kCJ)-+-Fn.

Proof. By the argument preceding the Lemma, we look for a condi-

tion for the restriction 0 -> H%Fn, ΘFn(m) ® ΦFn(kCJ)) -> H\Ψn, Φγ,Jjn)) to be

isomorphism. It follows from the spectral sequences in (1.2), (1.2.1) and

(1.3.1),

0 -> H\Έn, 0F,(ro) ® ΘVn(kCJ)) >H%F'n,

ί !
0 -> H°(P\ ΦF1(m) ® Sk(Θpi ® 0 P 1 (-n)) >H°(P\ ΘF1(m) (g) S(ΘF1 Θ tP p i(-n)

0 -» 0 ff°(P, (P(ι» - en)) >® //0(P', <Pp,(ι» - in)) .

Therefore k ^ ^ is the necessary and sufficient condition.

We denote by Ό\ the co -section of the P1-bundle F^tTO over Fn so that

Dξ = F^n-Sφc(S(0FJί-m))®ΦFJ<-kCJ)) and by Afc the inverse image
(fm^y1 Coo We have a morphism

αd, A, n ): (Aut°Ffe

m,n, F^>n) >(Aut°F*lin, Fn) of algebraic operations.

The projection pm^n induces an isomorphism Dt = F n and the divisor

Dί is isomorphic to V{(Θ ® Θ{-m)® Θ{-kCJ)® ΘCJ hence to P(0 P 1 ®

#P t( — n+• &tt)) = F|_m + f c n | . The intersection D^ΠDί is the co-section of

the ruled surface D* ^F.m+kn (see Fig (8.2)).

We use the orbit decomposition of F^)TO in a substantial way.

LEMMA (8.3). The orbit decomposition of (Aut°F^%n, F^ n) is F^ n U

(Dί - D{f]Dξ)U(Di - DίΠDDU(DίΠD0. For any integer k>£, the orbit

decomposition of (Aut° F'm>n, Fk

mJ is F'mU (Df - Afc Π Afc - C) U (Dξ - D\

U (jDf Π-D*) U C, u Λβre C is a Osectίon of the ruled surface Ώ\ ^ F_TO+7lfc.
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Fig. (8.2)
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Proof. It follows from Corollary (4.17) and Lemma (4.4), [U4] that

F'ntn, D( and Ώ{y D{V\D{ are Aut F^-invariant subvarieties of F^n for

j ]> £. By the morphism /4,w, the invariant divisor Ό{ decomposes into

the union (D( - D{ Π Dζ) U (D{ Π AO of 2 invariant subvarieties. It follows

from Corollary (4.17), [U4] that the unipotent part of the Ker(Aut°F^re->

Aut°F0 is H%Ψn, Θn(m)). In the Proof of Lemma (8.1) we choose j ^ £

so that the restriction

, Θ¥n(m) = H°(F'n, ΘF,(m))

induces an isomorphism between the cohomology groups and £ is the

smallest among such integers. Now the injection (9¥n{nί) (x) ΦFn(jC^) ->

0Fn(m) ® ΦYn((j + ΐ)CJ) induces an injection 0 -> H°(Fn, ΘYn(m) ® ΘFn(jCJ)) ~>

H°(Fn, ΘFn(m) 0 @γn((j + l)CΌo)), which is thus an isomorphism since their

dimensions coincide by (*). Therefore all the sections of H°(Fn, ΦFn{m)

® ^Fn0 + l)CΌo) vanishes on C^. It follows from Lemma (1.9) that

H°(Fn, ΘFn(m) (x) ΘFn(jCJ)) operates on D( trivially if j > 6 and non-trivially

on D[. The Lemma now follows from Lemma (1.8) and from [U3].

DEFINITION (8.4). Let X be a projective non-singular threefold and S

a finite set of irreducible divisors Dt on X (l<^i ^Lri) such that (1) each

A is isomorphic to a rational ruled surface Fm., mt Jg; 0 (1 <J i ^n), (2) if

DίΓ\DjΦ0, then A a n ( i A intersects transversely along A Π A —

C i / ^ P 1 ) which is a section of the rational ruled surfaces Fm. and Fm.

with \(Cij'Cίj)Di\ = mt and KC^ C^ )^-! = ms and such that (3) for any

three distinct divisors Da, Db, DceS, DaΓ)DbΓ\Dc = 0 . We associate to
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S a diagram D. D consists of n segments £u £2, - - •> £n

 o n the plane

satisfying the following conditions.

(a) £i Π £j is either empty or a point for any 1 ^ i < j ^ n.

(b) tt DSjφ 0 if and only if Dt Π Ώj ψ 0 .

EXAMPLES (8.5.1). We taking for S the set of G-invariant divisors on

F^>TO, it follows from Lemma (8.3) that S is described by

and

* m-nί

(if k >

Assuming m — n£ > 0, to indicate that C = FπΠFm_w^ has the inter-

section numbers; (C/2)Fm_^ = n£ — m < 0, (Cn)Fn = — n < 0, we complete

the diagram by making the segments into arrows:

F

For k with nk — m > 0, C / = F w n F ? ? f c _ w has the intersection number

(C / 2)F n = — n < 0, (C/2)Fnfc_m = nk — m > 0. Therefore our diagram is

F

"F1

••• T i f c - m

(8.5.2). The diagram

F

signifies

Fα and F& (resp. F 6 and Fβ) intersect transversely along sections of the

ruled surfaces and we have the intersection numbers

and

( F α n F α ) | o = - α , (Far\FbYn = b, (F α ΠF c ) | 6 = -b
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(8.5.3). The diagram

F
signifies among other things

(F α ΠF δ ) | α = - α , (FαΠF δ) | δ = -b, (FδnF c)^ 6 = b and (F δ ΠF c ) | c = - c .

The following Lemma shows the convenience of the diagram.

LEMMA (8.5.4). Let X be a non-singular projectίve threefold.

(i) Assume that we have two divisors on X isomorphίc respectively

to Fa and Fδ such that they are expressed in the diagram

F δ

Let p: Y-^X be a blow-up of X along F α ΠF δ . If a > b > 1, then the

divisor p"1(FαLJFδ) on Y is expressed in terms of the diagram

where Fa and Fδ are the proper transforms and Fa_b is the exceptional

divisor.

(ii) Assume that we have two divisors on X isomorphic to Fa and Fb

such that they are expressed in the diagram

F

Let p: Y-> X be a blow up of X along Fn Π Fδ. If a, b > 1, then the divisor

p-\Fa\jFb) on Y is expressed in terms of the diagram
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where Fα and Fδ are the proper transforms and F α + 6 is the exceptional

divisor for p.

Proof. Since Fα and Fδ intersect transversely, the exceptional divisor

E is a rational ruled surface and E (Ί Fα, E Π Fδ are disjoint sections of

the ruled surfaces. To distinguish Fα, Fδ from their proper transforms,

the proper transforms of Fα and Fδ are denoted by Fα and Fδ. Let us

first prove (i). (¥aC\EfE = <(FβΠE)• (F o ΠE)), = (Fa-Fa-E)r = (Fα + E -

E-fa-E) = (p*Fa-E-Fa-E) = (p*Fa-fa-E)r-(E Fa E) = (Fa.p*(Fa.E))x

— (—a) = — b + a.

Similarly we get (Fδ Π E)% = a — b. Therefore E is isomorphic to

Fα_δ. Since a — b > 0, the arrow on E ~ Fα_δ points from Fα to Fδ. The

second assertion is proved by the same method.

Remark (8.5.5). In the diagram it is convenient to extend the arrow

to the ruled surface Fo = P1 X P1. To be precise, for example by defini-

tion the diagram

Tji

(a,b>ΐ)

signifies that the divisors intersect transversely, (Fα Π F 6) |α = — a, (Fa (Ί Fδ)|α

= — b and F α Π F 6 is a section of the ruled surfaces Fα, F6. Let us allow

here a = 0 or b — 0 and then an arrow means one intersection number

is greater than or equal to the other. The diagram

(b > 0)

shows that Fo Π Fδ is a section of the ruled surfaces Fo, F 6 and (Fo Π FJ

= 0 and(F 0ΓlF»)ϊ,= -b.

Therefore the diagram (8.5.5) is equivalent to

F

This remark being done, Lemma (8.5.4) (i) holds for a > b > 0 and

(ii) is correct for α, b > 0.
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It follows from Lemma (8.3),

(8.6) the set of the G-invariant divisors on Fe

mtn are described by,

* m-£n if m - in > 0

or by,

if m — in — 0,

Let us treat only the case m — in > 0 because the case m — in = 0 is

treated without any essential modification. There is only one choice of

the center to blow up Ψm,n equivariantly: the intersection F n ΠF m _ / n .

Let us blow-up Ψm,n at FnΓ\Fm_£n\ πt: X1-*Fi

m%n, we get a new diagram of

G-invariant divisors

(8.7)

center b l o w - u P F

V j \

•Π1

-*- m -in.

by Lemma (8.5.4).

We can now show that we can blow down Fm_ T̂C in Xx to P ι and we

get XiϊX. This procedure is called the elementary transformation applied

for the P1-bundle f£

my. F ^ i n - > F n with center DlΠDi (see Maruyama [Mar

2]). Similarly the F-bundle /*,n: Fk

m,n -> Fn and the P1 -bundle / * £ : F ^

—> Fn are related one another by equivariant elementary transforma-

tions. Since F^>n is a P1-bundle over Fn obtained from the line bundle

Spec(S(0Fn(—m))®ΘYn{— iCJ) by adding the oo-section, we have ΘDi(Dζ) ̂

ΘFn( — m)® @Fn(— iCπ) hence, denoting by / the fibre of the ruled surface

(8.8) If i = 1, we can equivariantly blow down D{ ̂  Fπ to get F^ n ->

x Θ Θj>ι(-m) Θ ^ P 1 ( - n ) ) .

(8.9) Let us blow up Xx at F(/+1)M_TOΓlFn: π2: X2-+Xu where F(/+1)?ι_TO
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is the exceptional divisor for πx and Fn is the proper transform πϊv[D2].

It follows from Lemma (8.5.4)

\ center b l o w

(8.9.1) E {e + l)n-7Λ
2) n- m

If we continue blowing up jf-times on the invariant curve ( ^ P1) on

F n 5 we get

F

(8.9.2)

E (e + l)n-m

(8.10) Let us blow up X, at F ( , + 1 ) i l . m nF m _ i ? 1 : π3: Xι-+Xί. We get

by Lemma (8.5.4) a diagram

(8.10.1)

\

•t* (« + l ) n -(£ + l ) n - m .

£ == Fj(2ί + i)n-2

F»-ι»

if (2^ + ΐ)n — 2m > 0, otherwise the arrow on E should be reversed.

Assume now that (2£ + ΐ)n - 2m = 0 so that E ^ F X P = Fo and we

can choose a G-invariant section L of F X P1 disjoint from Fi£+1)n_mΓ\E

and Fm.£nΓ\E.

(8.11) Let us blow up Xz at L: ττ4: Z 4-> X3. Denoting by £ the ex-

ceptional divisor for π4, we can calculate the intersection number (JE.P1 X

P . P X P1) = £n-m. In fact let
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F»

(8.11.1)

be the diagrams for Xz and X,. Then we have (E. FQ. FQ)Xi = (E. FQ. FQ + E

- E)Xi - (E. F o . (π*F0) - E)Xi = (E. Fo. π*F0)Xi - (E. Fo. E)Xi = (E. Fo. π*F0)Xi

= (π^E Π F o . F0)Xs = (Fm_£n Π FQ. Fo) = £n - m. Since by Lemma (1.11) SL2

operates non-trivially on E leaving invariant the intersection E Π P1 X P1,

then it follows from (1.3.3) E - Fm_£n and ί J ί l F x P 1 is the co-section

of E.

(8.12) Let us blow up X4 at another section of Fn disjoint from

EΠP1 X P 1; τr5: X5->X4. As SL2 operates on E non-trivially leaving the

intersection FnΠE by Lemma (1.11), for the same reason as in (8.11) we

get

(8.12.1)

E = F2(m-£n)

LEMMA (8.12.2). Let X be a (successive) equίvarίant blow-up of Fe

mt7ί.

Then a G4nvarίant irreducible divisor on X is ίsomorphίc to Fa, a > 0

with a e Zm + Zn. There is at most only one G-invariant divisor on X

isomorphίc to Fo (see also Lemma (8.14)).

Proof. This is a cosequence of Lemma (8.5.4), Remark (8.5.5) and
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the argument of (8.11.1) and (8.12.1).

LEMMA (8.13). Let (G, X) e C(Aut0Fς,π, F^J = ^(J9; m, ή). We as-

sume {m, ή) > 2. Then (a) there is no G-invariant divisor on X which

is ίsomorphίc either to P2 or Fx. (b) There is no G-fixed point on X.

Proof. We have an equivariant birational map φ: X ••••> F£

my7l. We can

eliminate the indeterminacy of φ by equivariantly blowing up X;

Since there is no fixed point on F^>n by Lemma (8.3), φ2 is also an equi-

variant blow-up by Theorem (1.7). If there were a G-invariant divisor

isomorphic to P2 or Fj on X, then it proper transform would be a G-

invariant divisor on X isomorphic to P2 or to F l β This contradicts Lemma

(8.12.2) since (m, ή) > 2. The assertion (a) is proved. If we blow up X

at a G-fixed point, (b) follows from (a).

LEMMA (8.14). Let (G, X) e <*f(Aut0F^n, F'mJ = ^(J9; m, ή) and (Id, φ2):

(G, X)-+(G, Fe

mi7l) be an equivariant blow-up, where we choose the integer

& as before: m — nί + r, 0 ^ r < n. We denote by S the set of all the

irreducible reduced effective G-invariant divisors on X. Then (a) S is a

finite set. (b) The subvarίety {JDesDaX is connected, (c) S satisfies the

condition (1), (2), (3) of Definition (8.4). (d) If a divisor D e S is exceptional

for φ2 and if there is only one divisor D' e S, D Φ Dr) with DΠD' Φ 0,

then (D Γi D')2

D > 0. (e) For any G-invariant irreducible reduced curve C,

there exists a G-invariant irreducible reduced effective divisor D such that

C lies on D such that C is a section of the rational ruled surface D = Ft

and (C2)D = ±t.

Remark (8.14.1). Later we shall not use (d). But we need (a), (b),

(c), (d) to prove (a), (b), (c) inductively.

Proof. First of all, we notice that the center of each step of <p2 is a

G-orbit by Lemma (8.13). Therefore the morphism φ2: X->Fι

mi7l maps the

centers onto the unique G-invariant curve D{Γ\De

2 on Fj^n. This proves
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(b) by induction. Now let SL2 —• G be a non-trivial morphism and hence

give a semi-simple part of G by Corollary (4.17), [U4]. Then by Lemma

(1.11) for any D e S, SL2 operates non-trivially on D. We prove the Lemma

by induction on the length of the sequence φ2 of blow-ups at smooth

irreducible centers or on the Picard number p(X) of X. The Lemma holds

for Fe

mtn by Lemma (8.3). The assertion (a) is evidently proved by induc-

tion. The remaining assertions (c), (d), (e) are not obvious. Let us factor

where <p3 is a sequence of G-equivariant blow-ups for which the Lemma

holds and φ± is a G-equivariant blow-up at an irreducible G-invariant

center, which is a curve C isomorphic to P1 by Lemma (8.3). We assume

that the Lemma holds for Xf and prove it for X. There are three pos-

sibilities :

(i) there exists 2 divisors Du D2eS/ such that C = D1C)D2, where

S; denotes the set of G-invariant irreducible reduced effective divisors on

X' (cf. Fig. (8.14.2. (i)), Examples (8.7), (8.9.1), (8.9.2) and (8.10)).

(ii) C lies on the unique G-invariant divisor D on Xf.

We may assume in the case of (ii) that D is exceptional for φs by

Lemma (8.3). For otherwise C is in the case (i) by Lemma (8.3).

The case (ii) is divided into 2 subcases:

(ii a) C lies on the unique G-invariant divisor D on Xf and D is

isomorphic to P1 X P1 and exceptional for φz (cf. Fig. (8.14.2. (ii a)).

Fig (8.14.2)

(i) (iia) (πb)
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Example (8.11)),

(ii b) C lies on the unique G-invariant divisor D on X' and D is

isomorphic to Ft (t > 0) and exceptional for φz (cf. Fig. (8.14.2. (ii b)),

Example (8.12)).

In the case (i), it is evident that Lemma (8.14) holds for X by (1.3.2)

and Lemma (1.11):

blow up

at C

Let us study the case (ii a). In this case, it follows from (e) for C on

Xf that (C, C)D = 0. By the assertions (c), (d), (e) for X', we have:

Namely the exceptional divisor E for φ4 intersects on X with the unique

G-invariant divisor which is the proper transform of D. Let us calculate

the intersection number: by the projection formula — n = {C^. C00)Fn

= (f^nC^(D{ Π Dί))κ> = (ίfi

n,noφά*COB.E.φ:1[D\)* = {{aE+aφ-Λm + (a

divisor disjoint from EΓϊφ^W])}. E.ψ^-[D\)χ with an integer a > 0,

= a(E. E. φ^iDDx + a(φiι[Ώ\. E. φ^[D]h = a(φ^[D]. E. φ^[D\)x by the as-

sumption (e). This proves that for the new born G-invariant divisor E the

assertions (c), (d), (e) hold by (1.3.3) since SL2-operates non-trivially on

any G-invariant divisor on X by Lemma (1.11). The Lemma is proved

for X in this case. Now we study the last case (ii b). By (1.3.3), Lemma

(1.11) and by the assertion (c), (d), (e) for X' we have:

D ^ F£ C V* blow up

at C E
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Namely the exceptional divisor E for <p4 intersects with the unique

G-invariant divisor which is the proper transform of D. We calculate the

intersection number as above: — n = (CL. CJ)Fn = {{fe

m,no ψ^C^.E.ψ^lD})^

= ({aE + aφ 'lD] + (a divisor disjoint from EV\φϊι[D\). E. φΛD])*, with an

integer a > 0, = a(E. E. φ?[D\)χ + a{ψjλ[D}. E. φΛD])*. Hence (E. E. φ~ΛD})x

< 0 since ( ^ [ D ] . E. ^[£>])* = (C, C)* > 0. This shows that the new born

divisor E satisfies the assertions (c), (d), (e) of the Lemma for the same

reason as in the case (ii a). This proves the Lemma for X in the case

(ii b) and hence the Lemma.

COROLLARY (8.15). We assume (m, ή) > 2. Let (G, X) e ^(Aut° F'm,n F'mJ

= ^(J9; m n), (G, X) e ^(J9; m, n), (Id, ψι): (G, X) -+ (G, PTOffl) α^d (Id, ̂ ) :

(G, X) —> (G, X) equivariant blow-ups with smooth centers. Then there is

no G-inυariant divisor D ίsomorphίc to P1 X P1 blown-down to P1 along

different projections by φ1 and φ2: the restriction of φt on D ^ P1 X P1

coincides with the projection pt: P1 X P 1 ^ ? 1 onto the i-th factor (i = 1, 2).

Proof. Assume that the existence of such a divisor D. It follows

from Lemma (8.14) that G leaves invariant a X P1 c P1 X P1 for a suitable

point a e P1. Therefore ψγ(a X P1) is a G-fixed point on X, which con-

tradicts Lemma (8.13).

Remark (8.15.1). We can prove Corollary (8.15) directly. It follows

from Lemma (8.12.2) that in any (successive) blow-up of F ^ n , there is at

most 1 invariant divisor E is isomorphic to P1 X P . Let t be the line

P1 to be contracted to a new direction. Then there is an invariant divisor

D such that t is numerically equivariant to EΓ\D. The divisor D is

isomorphic to Fα for a suitable a e Zm + Zn. Since E is contracted,

— l = (E.£) = (E.E.D)=±a. This is a contradiction as we assume

(m, ή) > 2.

LEMMA (8.16). Under the hypothesis (m, n) > 2, none of the cases

(3.3.2), (3.3.3), (3.3.4) and (3.3.5) of Theorem (3.3), [Mo] occurs.

Proof The cases (3.3.2), (3.3.5) are avoided by (a), Lemma (8.13). The

case (3.3.4) is excluded by (b), Lemma (8.13) since the singular point of

the G-invariant divisor is a G-fixed point.

Assume now that (3.3.3) is the case. Let F£

mtn<r—X1 be an equivariant

birational map, where we choose ί as before. Since there appears no

fixed point by Lemma (8.13), there exist equivariant blow-ups φ2: X - > F
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and φx\ X-+X such that φ^^φϊ1 = φ by Theorem (1.7). The proper trans-

form ψϊ'W] of the divisor fl^PxP1 of case (3.3.3) in [Mo] is O-invari-

ant P1 X P1 on X. Therefore ^(P 1 X P1) is a G-invariant divisor and

hence by Lemma (8.3) contained in D{: in fact ^(P 1 X P1) = D{Γ)De

2 unless

m = in. Since SL2 operates on F ^ n , it operates also on D ^ P X P1.

There are 3 possibilities: (1) SL2 fixes all the point of P1 X P1, (2) SL2

operates through one of the factors of P1 X P1, (3) SL2 operates diagonally

on P1 X P1. The case (1) never occurs by Lemma (1.11). We now exclude

the case where SL2 operates on D through one of the factors of P1 X P1,

say the second. It follows from the assumption (cf. Theorem (3.3) [Mo])

that s x P 1 and P x ί are numerically equivalent. Taking s general, we

may assume that s x P 1 is disjoint from the center of the blow-up φί since

ψx is equivariant. Then φf s X P1 is numerically equivalent to s x P 1 in

the proper transform ^ [ P 1 X P1] and hence φ2*φfs X P1 is numerically

equivalent to either D{f]D£

2 or to a 0-seetion Co of the rational ruled

surface D{ since φ2 is SL2-equivariant and φ2*φ*s X P1 is SL2-invariant

curve on D[. It follows from Corollary (8.15) that φ2*φ*(P1 X t) is numer-

ically equivalent to aC1 + bC2 for some integers a, b ^ 0, where Cx (resp.

C2) is a fibre of the ruled surface D[ (resp. Dζ). π: ¥e

m,n -> Fn —• P1 denote

the fibration which is respected by G and wτe put π*Θpi(ΐ) = H (see Pro-

position (4.13), [U4]). Then (H. Co) - (H. A ΠA) = 1 but (H. Q = (#. C2)

= 0. Therefore (φ*(s X P1). φ*H) = (φ2*φf(s X P1). H) which is equal to

(Co. H) or ((D{Γ)Dξ). H) hence to 1 and (p?(F x t). φ2*H) = (φ2*φΐ(Pι X t). H)

((aCί + bC2). H) = 0. This contradicts the numerical equivalence of P1 X t

and s X P1 on X. Now we have to exclude the last possibility; the

diagonal operation of SL2 on D = P1 X P . Assume to the contrary.

Then s X P1 - P1 X t ~ 0 and 0 - φ*(s χ P - P χ ί ) = ( s χ P in ^ [ D ] )

— (P1 X t in φϊ^D]) hence taking <p2*, φ2*(s X P1 in φϊ^D]) is numerically

equivalent to ^ ( P 1 X t in φϊλ[D\) for any s, t e P1. Let us put Cι = φ2(s X

P1 in φϊ'W]) and C2 = ^2(P2 X t in φ^[D]). We have one of the following:

(1) ψ2 blows down φΐ'lD] = P1 X P ' - ^ P 1 . (2) φ2 is biregular at P1 X P .

In the first case one of Ct (i = 1, 2) is reduced to a point and the other

coincides with the unique G-invariant curve DtΓ\De

2. Thus DiΠDi is

numerically equivalent to 0. This is absurd and the case (1) never hap-

pens. In the second case, m = in and Dί ^ P1 X P1, s x P and tχP1dDί

= P X P1 are numerically equivalent, which does not happen (compare

the intersection numbers (Dlt Ct), i = 1, 2).
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LEMMA (8.17). Let (G, X) e ^(J9; m, ή). Let φ: X->Y be the morphism

of (3.5.1), Theorem (3.5), [Mo]. Then the surface Y is isomorphic to Fn and

X is a ^-bundle over F n .

Proof, By Castelnuovo's Theorem [Z] Y is rational and G has an

open orbit on Y. φ induces a morphism ψ: G -* Aut° Y. A semi-simple

part of G is SL2 and its image under ψ does not reduce to 1. For other-

wise Ker ψ would be isogeneous to SL2 since the general fibre of φ is

isomorphic to P1. Hence the semi-simple part of G would be normal,

which contradicts Corollary (4.17), [U4]. Therefore SL2 operates non-

trivially on Y. Since the unipotent radical of G is not abelian by Corollary

(4.17) [U4], it follows from Lemma (4.4), [U4] and Lemma (1.8) that the

unipotent radical of G operates non-trivially on Y, Y is a ruled surface

and G operates on Y with orbit decomposition: (open orbit)UP1. By

Lemma (1.13), X is a P*-bundle over Y. We show that Y is isomorphic

to F n . First assume that Y =Fn. We denote by W3 the irreducible

SL2-module of rank j + 1. It follows from Corollary (4.17), [U4] that the

irreducible SL2-module Wm_n (m — n^. 1) operates on Ff

m^n\ χ\-+x, y*->y,

z >-> z + y<pm-n(x), where ψm-n(x) e k[x] with degφm_n(x) <Lm — n. Hence the

map F^>n —> Fn is generically the quotient by Wm_n. Since Wm_n operates

trivially on Fm, the P1 -bundle is generically the quotient of X by .Wm_n.

and hence Y is G-equivariantly isomorphic to F£. Consequently Y is

Aut° Fn-equivariantly isomorphic to Fw by Corollary (4.17), [U4]. Hence

Fn = Y, which contradicts the assumption. Let us now assume that Y

is not isomorphic to Fm. The using Wm; x^x, y*-+y, z^>z + φm(x) in

place of Wm_n, by the same argument we conclude Fn = Y.

LEMMA (8.18). Let (G, X) e^(J9; m, ή). The case (3.5.2) of Theorem

(3.5) in [Mo] occurs if and only if 2n > m > n and then X is isomorphic

to ( ) ( ) )

Proof. Assume that the case (3.5.2), [Mo] happens and let φ: X-+Y

be the resulted morphism. G operates on Y and φ is equivariant. By

Lϋroth's theorem, Y is isomorphic to P1. Hence induces a morphism

ψ: G —• PGL2. A semi-simple part of G which is isogeneous to SL2, is

mapped surjectively onto PGL2. For otherwise there would be a subgroup

of Ker ψ isogeneous to the semi-direct product (Um+1® £7n+1)SL2 by Corol-

lary (4.17), [U4], where Um+1 and Un + 1 denote respectively the irreducible

SL2-modules of degree m + 1 and n + 1, since PGL2 contains no unipotent
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group bigger than Gα. Therefore (Um+1® Un+1)SL2 would operate on the

fibres of φ. We taking y e Y general, it follows that (C7m+1 Θ Un+ί)SL2

would operate almost effectively on the fibre Xy9 which contradicts The-

orem (2.25), [U3]. Thus ψ: G->PGL2 is surjective and gives the semi-

simple part of G. Hence by letting G/H ^ F ^ π and B a Borel subgroup

of G containing H, both ψ: X-> Y and π: F J ^ - ^ P 1 are birationally equi-

valent to GjH —> G/X In particular ψ and π are birationally equivalent.

It follows that Y is a homogeneous space under G and all the fibres of

ψ is a non-singular del Pezzo surface S. The surface S is an equivariant

completion of A2 under the action: (y, z) •-> (y + α, z + f(y)) f(y) e k[y]

with degf(y) ^ £ by Corollary (4.17), [U4], where £ is an integer with

m = n£ + r, 0 £ r < n. Therefore by Theorem 24.3 (ii) Manin [Man] S

is either P2 or Fx and £ — 1. But the FΓbundles are excluded in the

Mori theory, Theorem (3.5), [Mo]. Thus S is P2. Therefore there exists a

vector bundle E ^ 0(ά) Θ Θ(b) 0 0, a < b £ 0 such that P(#) ^ X Look-

ing at End E, it follows from Corollary (4.17), [U4] that this is possible

if and only if a = — m, 6 = — n. The if part follows from Corollary

(4.17), [U4].

LEMMA (8.19). Let (G, X) e #(J; m, n), ατιd (/n, n) > 2. (1) If m> 2n,

then the Pίcard number p(X) ^ 3. (2) // 2n > m (>n), ί/ιeτz ^(X) ^ 2.

(3) Moreover p(X) — 2 if and only if 2n > m (>ή) and X is isomorphic to

P(0 P 1 ( - m)

Proof. Let us first show that p(X) ^ 2 in general. Assume p(X) = 1.

There exists an equivariant birational map X: F^n ^X9 where we fix a

large integer k. Then we can eliminate the indeterminacy of X by equi-

variantly blowing up Fk

myΎl:

Since there is no fixed point on X, q is also an equivariant blow-up by

Throrem (1.7). p(F^n) = 3 and there are exactly 2 G-invariant integral

divisors Bf and D% on F^)TC and they form with π*0Pi(l) a basis of

Pic F^)W(8) Q. Since p(X) = 1, q should blow-down all the components of
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SUBLEMMA (8.19.1). (a) qp-\Dl{JDf) is a G-ίnυariant curve C. (b)

q~\y) is a 1-cycle on X for any point y eC. (c) Putting q~\y) = f, we

have the intersection number (E.f) = 0 for all but one irreducible com-

ponents E of p~\Dl\JDf) and (E. f) = — 1 for one particular irreducible

component Ef.

Proof We have already observed above (a), (b) follows from Lemma

(8.13). Let us write q as a product of the blow-ups qx: X'->X with

irreducible center C and qf\ X =>. χ\ Let us denote qϊ\C) by Er.

Q \

X

Ef is the only one G-invariant divisor on X'. For an irreducible com-

ponent E of p-ι(DΪΌ Dl\ we have (E.f) = (E. q^iQΐ\y)) = (q*E. q;ι(y)) - 0

or —1 according as q*E = 0 or q*E — Ef (notice that qf is a blow-down).

q.e.d.

Let us continue the proof of the Lemma. Since as in the proof of

Corollary (8.15) q blows-down the exceptional divisors to the same direc-

tions as p, (p*Z)f./) = (Dl.p^f) = (Z>2 /i + />), where ft is the fibre of the

ruled surface D£. It follows from Sublemma (p*Dt.f) = 0 or —1. But

(Dlf) = 1, (Dl.f) = -k hence (Afc,Λ + Λ) = 1 - Jfe. This is absurd. Now

Lemma (8.19) follows from Lemmas (8.16), (8.17) and (8.18).

THEOREM (8.20). We assume (m, ή) > 2. Any element of ^(J9; m, ή)

(m > n Ξ> 2) can be equίvarίantly blown-down to a relatively minimal ele-

ment of the ordered set ^(J9; m, ή): an element x of an ordered set Z is

said to be relatively minimal if x > y for y eZ implies x — y. The centers

of the blow-down are curves isomorphic to P1.

(1) If m^ 2ft, the relatively minimal elements in ^(J9; m, ή) are the

°FJU Fijs (k>£).
(2) If 2ft > m, the relatively minimal elements in ^(J9; m, ή) are the

(k>t) and (Aut°P(ί?P1(-m)Θ 0 p ι (-n)

Proof. It follows from Lemma (8.16), Lemma (8.17), Lemma (8.18),

Lemma (8.19) and Mori [Mo] that if (G, X) e ^(J9; m, ή) with p(X) ̂  4, than

we can find an equivariant blow-down (G, F ) e ^ ( J 9 ; m, ή) with p{Y) =

— 1. By construction the (Aut° F^n, F^i7i)'s are relatively minimal under
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the condition on m, n, £, k of (1) and (2) (cf. (8.8)). Therefore in view of

Lemma (8.17) and Lemma (8.19), it remains to show: Let (G, X) e ^(J9;

m, ή) such that by an equivariant morphism (G, X) -> (G, Fn) compactifying

(Aut°Fw,n, Fς,n)-+(Aut°F;,w, F0, l i s a F-bundle over Fn, then (G, X) is

isomorphic to (Aut°FJi>n, F^n), k^β. Since the Brauer group of Fn

vanishes, there exists a vector bundle E of rank 2 such that X is Fn-

isomorphic to P(E). The restriction of E over F^ = Fn — C^ is denoted by

Ef. Then it follows from the argument of the Proof of Lemma (8.17) that

¥(E') is the natural relative completion of A1-bundle F^ j ? ι->F^ over F^

hence we may assume E' ^ φF,nξ&ΘF,n(—m). The F-bundle P(2S')/F£ has

an equivariant section s': F/

n->¥(Ef) corresponding to the projection

®γ'n®@Έ'n(~#&)-* @γ>n(—m). In other words s/ is an equivariant rational

section s: Fn—>P(£). Since a rational map to a complete variety is

regular in codimension 1, s is G-equivariant and Cro = Fn — F^ is a G-

orbit, s is an equivariant section of P(£J)/FW extending s'. Therefore we

can find a line bundles L, M on Fn such that (1) M\F'n ^ Θγ.n(m) and (2) E

is an extension: (*) 0—•L->£Γ->M->0. Since by definition of s L|F£ ^

^Fίι, we may assume L ^ Θ¥n by tensoring L"1 if necessary. The first

condition implies M^ 0Yn{—m) ® ^Fre(—jCJ). It follows from the proof of

Lemma (8.1) j ^ £. Let us show that the extension is trivial; E = L 0 M .

The extension (*) is parametrized by H^F^ M~ι) and by the restriction

map (**) H\Fn, M'1)-* H-\F'nί M~ι) s H\F'n, 0¥,n{m)\ the class [E] map to

0. Now the triviality of the class [E] follows from the following diagram

that shows the injectivity of the restriction map (***).

H\Yn, M)

i
H\Yn,ΘTn{m)®Θi

X

Γ'(P', Θ(m) ® &(& Θ Θ(—n))

3

s=0
- sή))

(cf. (1.2.1) and (1.3.1)).
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Remark (8.20.1). We can prove Theorem (8.20) without using [Mo].

To this end we associate to a (successive) equivariant blow up of ¥^n a

diagram. We define inductively the diagram whose set of vertices consists

of the irreducible invariant divisors. The diagram is composed of vertices,

an edge and arrows joining vertices. Each vertex is painted white or

black. Namely, we associate to F^n a diagram consisting of 2-white

vertices representing the invariant divisors D(, Di and connect them by

an edge.

F r
x m-Cn

We add to this diagram the intersection number of the divisor with its

fibre. For example, on the vertex Fn, we associate the intersection number

(Fn./) = -£, where / denotes a fibre of the P1-bundle F^-^P 1 . Therefore

thθ number (Fm_βn.f) — 0 is associated to FOT_,TO. Our diagram for ¥έ

m%n is

-Γ n o O *- 77i - t n

-i 0 .

Now we assume that a diagram is associated with a (successive) blow-

up Y of F£

m^n and we define a diagram for an equivariant blow-up π: X—> Y.

The diagram for X is defined to be the union of the diagram for Y and a

vertex which represents the exceptional divisor E for π so that set of the

vertices of the diagram for X is considered as the set of the irreducible

invariant divisors on X. The colour of the new vertex corresponding to

the exceptional divisor E is white if the center of the blow-up π lies on

the proper transform Fn of Ώ[ on F^>n and otherwise black. We join a

vertex corresponding to a divisor D on Y with the vertex E by an arrow

pointing to E if the center of the equivariant blow up is on D. We write

at each vertex the intersection number of the corresponding divisor with

its fibre. This is easily done by the following rule: (1) Write —1 for

the new exceptional divisor E; (2) For vertices to be connected with the

vertex E, diminish by 1 from the number for Y; (3) Write the same

number for other vertices coming from Y.

Here are some examples. For Xx in (8.7) we have
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If we blow up Xx along F ? i ΠF ( ί + 1)?ι_m, the diagram is

P» -£-2

F

here FU+2)W_TO is the esceptional divisor (c.f (8.7)).

If we blow up Xx along F m _^ΠF ( ί + 1 ) 7 l _ m , then the diagram is

-i - 1

(8.20.2)

- 2 - 2

- 1 ,

a —

where Fα is the exceptional divisor. We know

j(2£ + ΐ)n - 2m if (2ί + ί)n - 2m > 0,

|2m - (2ί + l)n if (2ί + ί)n - 2m < 0,

by Lemma (8.5.4).

In (8.20.2) if we blow up along F ( , + 1 ) n _ m ΠF α , we get

Fn - e - i

F α - 2

We can determine b by Lemma (8.5.4).

The set of vertices or the invariant divisors is an ordered set by the

arrows. Namely let A, B be vertices for X. Then we define A > B if

there is an arrow from A to B. We say that an element x of an ordered

set s is relatively minimal if there is no element y e S such that x > y.

We conclude by Corollary (8.15).

PROPOSITION (8.20.3). We assume (m, n) > 2. Let Y be an equivariant

blow-up of Fe

mtn and D be an irreducible invariant divisor on Y. Then
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(A) the diagram for Y is connected and (B) the following conditions are

equivalent.

(1) The divisor D can be equivariantly blown down giving a non-

singular protective threefold.

(2) In the diagram of Y the number associated with the divisor D is

- 1 .

If the divisor D corresponds to a black vertex, then the conditions (1),

(2) are equivalent to the following condition.

(3) The vertex corresponding to D is relatively minimal.

(C) Let x be a black vertex. Then any vertex y with x > y is black.

Proof. The assertion follows from Corollary (8.15) by calculating the

intersection number. Notice that Y is a successive equivariant blow-up

with centers isomorphic to P1.

Let X be a (successive) equivariant blow-up of F^n. Let us study a

successive equivariant blow-down of X; X—> Yj —• Y2 —• Ys, where we

assume that the Y/s are projective and non-singular. Let us first study

Pi*. X—• Y. Thus the exceptional divisor for pί is a vertex of the diagram

for X with intersection number — 1. We associate to Yt a diagram, whose

vertices are the invariant divisors on Y1# We write for each vertex the

intersection number similarly as in X. We explain how we join the

vertices. We construct the diagram for Y1 from that of X as follows.

We eliminate from the diagram for X the vertex of the exceptional divisor

for pl9 arrows and edge related with this vertex. The number for a

remaining vertex is unchanged if the corresponding divisor on Xis disjoint

from the exceptional divisor for pγ and otherwise the number is increased

by 1. For the remaining vertices, we keep arrows and colours unchanged.

The diagram for Y1 has the following properties.

(8.20.4) (1) The diagram is connected.

(2) The vertices consist of the invariant divisors.

(3) For an invariant divisor, the following conditions are equivalent.

( i ) The divisor is exceptional and can be equivariantly blown down

on a projective non-singular threefold.

(ii) The number associated with the vertex is — 1.

If the vertex is black, these conditions are equivalent to the following.

(iii) The vertex is relatively minimal.

(4) Let x be a black vertex. Then any vertex y with x > y is black.
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Now for p2: Yi~> Y2, we can argue similarly and define a diagram for

Y2. The diagram for Y2 has the properties (8.20.8). Inductively we define

a diagram for Ys and the diagram for Ys has the properties (8.20.4) too.

If the diagram for Ys has a black vertex, it follows from the properties

(4) and (3.iii) of (8.20.4) that we can find a black-vertex which can be

blown down. We can find an equivariant blown down Ys —> Y such that

the diagram for Y consists only of white vertices and then the diagram

for Y is one of the following:

-e-t-i

In other words Y and hence Ys is an equivariant blow-up of F ^ in

case of the first and second diagram. The case of the third diagram

occurs when i = 1 and in this case Ys is an equivariant blow up of

p i (-ro) Θ ΦPι(-n) Θ 0P1).

Now let us treat the case (m, M) = 1. First we give an example to

illustrate the situation.

EXAMPLE (8.21). m = 3, n = 2 and ^ = 1, r = 1. On F3>2 we have

isomorphisms D\ ~ F2, Z)} ^ Fx. In terms of the graph,

If we blow up FJ>2 along

F 2

2, we get

F2

with
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as we have seen in (8.7).

We blow up Xi along FiΠFj to get π2: X2-+Xx. On X2 we have

We show that we can collaspe the divisor Fo to another direction

to get a projective non-singular threefold J73)2 which we call the Euclidean

model of the operation (Aut°F£f2, F^). Namely there exists a projective

non-singular threefold E78t2 which is an equivariant completion of

(Aut°F£f2, F£f2) and an equivariant morphism π: X2->Z73>2. The morphism

7r is an equivariant blow-up morphism π\ X2 —> t/3f2. The morphism π is

an equivariant blow-up with center P1 and the divisor Fo = P1 X P1 on

X2 is the exceptional divisor for π. The restrictions 7Γ2|FO and π\FQ are

equivalent to different projections; α x P c P x P 1 is collapsed by one

of the morphisms π2 and π, and is mapped isomorphically by the other

for any aeP. By calculating the intersection number we know that we

can contract analytically the divisor Fo for a different direction. However

the result of Mori [Mo] tells us that we can do it algebraically. In fact

for this purpose we show that the cone NE(X) is polyhedral. Precisely

the cone NE(X2) is spanned by a finite number of elements of NE(X2).

We determine even a linearly independent generators of the cone NE{X2).

The argument works not only for X but also for any equivariant blow

up of F ^ To begin with, we show that the cone NE(Fli2) is spanned

by the fibres of D\ ~ F2 and D\ ~ Fι and by the curve Fί Π F2. In fact

let GαcSL 2 be a subgroup of SL2 isomorphic to Gα. since a semi-simple

part of Aut°F3)2 is SL2, we can consider G α cSL 2 as a one dimensional

subgroup of Aut°F3j2. We have a Gα-equivariant morphism

Λo/Jf2: F3,2 > F .

The subgroup Gα has an open orbit A ^ P 1 . F£f2 is trivial over A1; F^Π

(Λo/s^^A1 ~ A3 making the following diagram commutative
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We may assume that the operation of Gα on A3 is (x, yy z) —> (x + a, y, z)

(cf. [U4] p. 396). We show that C is rationally equivalent to an effective

curve on i*ΊUF2 and hence the cone NE(Flt2) is spanned by the fibres of

D\ ~ F2 and D\ ~ Fx and by D\ Π D\ since in general an effective curve

on the ruled surface Fa (a > 0) is linearly equivariant to a non-negative

linear combination mf + nS where / is the fibre of Fα and S is the section

of the ruled surface Fa —> P1 with S2 = — a.

If the curve C is not contained in F\i2 — A3 and if Cf] A3 is not Gα-

invariant (or equivalently C Π A3 is not of the form {(x, α, b) e A31 x e A1}

for a certain point (a, b) e A2), then using the operation of Gα, the curve

C is rationally equivalent to an effective curve over F3>2 —- A3. For any

curve on F\t2 — A3 or for any curve on A3 excluded above, using opera-

tions of the additive group Ga along the fibres of F£)2 -> P\ we conclude

that they are rationally equivalent to effective curves on D\\jD\. We

proved that the cone NE(Fli2) is spanned by the fibres of D\ ~ F2 and

D\ ~ F, and by D\f]D\. Since the Picard number of FJ,2 is 3, dimΛ^Fa1^)

= 3 and hence the 1-cycles the fibres of D\ and D\ and D\ (Ί D\ are

linearly independent and therefore they are edges of NE(Fli2). The same

argument works for any equivariant blow-up of FJj2. For example for Xx

any effective 1-cycle on Xx is rationally equivalent to an effective 1-cycle

on F.UFiUFj. Therefore NE(X,) is spanned by F.ΠFj, F J Π F J and by

the fibres of F2 and the F/s. As we noticed above, any effective divisor

on Fα is linearly equivalent to a non-negative linear combination mf + nS

and hence the 1-cycle F 2 nFj is numerically equivalent to a non-negative

linear combination of 1-cycles F1Π Fj and a fibre of the exceptional divisor

Fj. Therefore the cone NE{X^) is spanned by Fx Π F t and fibres of F2 and

the F/s. They are linearly independent and they are the edges of

NEiX,). For Z2, we conclude that NE(X2) is spanned by Fj Π Fo and fibres

of F2, Fj, Fo and Fu here in the intersection FiΠFo we may take any one

of the F/s. By the adjunction formula the canonical bundle of Fo is

(Fo + KλΊ) I Fo. Using again the adjunction formula for the curve

FoΠF! = £ we get (((Fo + ϋΓ^2)|F0) + L £)Fo = - 2 . On the other hand

(((Fo + KΣ%) I Fo) + L t)Fo - (((Fo + KX2 + F^Fo. F , F0)Fo = (Fo + Kz% + Fx. F,.

Fo) = (Fo. F , Fo) + (Kz%. F lβ Fo) + (Plβ F,. Fo) = - 1 + (KZt. F,. Fo). Therefore

(KX2. S) = — 1 and S = FJΠFQ is an extremal rational curve. It follows

from Lemmas (8.16) and (8.17) and from [Mo] that we can contract Fo to

another direction; π; X2-> £73j2 we have
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where the doted line represents P1 consisting of the fixed points. Since

(F2.F0.F0) = - 2 , we get Θ(P2)® $P 2 ~ 0 p a (-2) for F intersecting F2. For

another P , we have over F5f2, Θ{¥) ® 0Fl = p*Θj>i( — 2) since F ^ p - 1 ^

and C2 = — 2. There is a line on this P2 which is isomorphically mapped

to a zero section of F2 on Fgj2 and hence we have 0(P 2 )®$ P 2 ~ 0P3( — 2)

too. Therefore we can not equivariantly contract none of the divisors

on {73ί2 onto a non-singular variety. Namely (Aut0F3?2. f/3>2) is a relatively

minimal element of #(J; 3, 2). It follows from Lemma (8.5.4) and from

the argument of (8.12) that for an equi variant blow-up of X2 there is only

one invariant divisor isomorphic to P1 X P1 and there is no invariant P2.

We can generalize Example (8.21) for <?(J9; m, ή), m>n>2 with

(m,n) = 1. In fact, we blow up F ^ w along Dif]De

2, we get πx: Xi->F^ i Λ

as in (8.7);

where we put j = m — in so that (nj) = 1. We blow up

ΠF m _ ί n to get τr2: X2->Xi. We have on X2

j a t F{£+1)n_
{£+1)n_m

if n - 2; > 0

if 2j — n > 0
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Continuing blowing up along the unique curve where the two arrows

gather, we arrive by the Euclidean algorithm at the exceptional divisor

Fj on Xr for some r. We have on Xr

JC .

Now we still continue blowing up Xr to get finally Xs

The argument in Example (8.21) shows that (i) an effective 1-cycle

on Xs is rationally equivalent to an effective 1-cycle on F^UF^^U U

FiUFoU^U UFj, (ii) NE(XS) is spanned by the fibres of Fn, Fn_,,

F,, Fo, Fj, and F^ and by the 1-cycle Fo D F1? (ii) these 1-cycles are

linearly independent and that (iv) they are the edges of the cone NE(XS).

The same calculation as in Example (8.21) shows (KZa.FQ.Fd = —1 so

that F o nFi is an extremal rational curve. As in Example (8.21) we can

contract equivariantly Fo to another direction to get a protective non-

singular threefold Umn on which the algebraic group A\it°F'm%n acts. We

call £7mjW the Euclidean model of (Aut°F^)?z, F'mtn). For any (successive)

equivariant blow-up of X8, there is only one invariant Fo by Lemma

(8.5.4) and there is no invariant P2. As in Example (8.21), we can show

that (Aut° C/TO>n, Umt7t) is relatively minimal in ^(J9; m, ri).

We can state in a form of Theorem.

THEOREM (8.22). We assume (m, ή) = 1. Any element of ^(J9; m, ή)

(m > n > 2) can be equivariantly blown down to a relatively minimal ele-

ment of the ordered set ^(J9; m, ή).
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(1) If m > 2n, (m, ή) = 1, then the relatively minimal elements in

; m, n) are the (Aut°F^, F ^ J ' s (k>£) and the Euclidean model

(Aut° Um,n, UmJ.

(2) If 2n > m, (m, ή) — 1, Z/IOT ^ e relatively minimal elements in

V(J9;m, n) are the (Aut°F*,n, Fί,nYs (k > i\ ( A u t D P ( ^ p i ( - m ) θ ^ 1 ( - / i )

Θ^pi)), P(0Pi( — m)®(9Vι(—τι)Θ0pi)) and ίΛe Euclidean model (Aut° £7TOfn,

Proof is done by the same method as in remark (8.20.1). Since there

may exist a divisor isomorphic to P1 X P1 which can be contracted for

2 different directions, in the diagram of invariant divisors we have to

associate 2 numbers for P1 X P . We do not give here a proof since this

is done quite similarly and the explication is messy.

Theorem (8.20) and (8.22) determine the relatively minimal elements

of the ordered set ^(J9; m, ή) and we constructed these relatively minimal

elements in an explicit way.

Remark (8.23). In the model £/3|2, we do have the case (3.3.5) of

Theorem (3.3) in [Mo].

§ 9. Equivariant completions of J10

It follows from Lemma (4.20), [U4] that (Aut° F ^ m , F ^ J has an

equivariant completion (Aut°Fm>m, F m i J , where Fm > m denotes P(0P1(—m)@

0 P i(-m) Θ Θ) (m > 2). We put ^(J10; m) = ^(Aut 0 F^ w , F'J (m > 2). As

in the other preceding cases we want to know the orbit decomposition.

LEMMA (9.1). The orbit decomposition of (Aut°Fm>m, Fm>m) is F^>mU

(F m ? w — F^>w). The latter orbit is a divisor D isomorphic to P1 X P1.

Furthermore ΘD{D) ~ 0pixpi( — m, 1).

Proof. The first assertion follows from Lemma (4.20), [U4], Let

Uo = {(xQ, x,) e P11 x0 Φ 0} and U, - {(x0, x,) e P11 ̂  Φ 0}. Then it follows

from the definition that Fm>OT is defined by gluing together UQ X P2 and

Ux X P 2 : (s; (uQ, uί9 u2)) e UQ X P2 and (t; (y0, υu v2)) e Uι X P2 are identified

if t = 1/s, υ0 = s~muQ, vx = s~mux a n d u2 = υ2. D = F m , m - F ^ , m is

{(s; (HO, uu 0)) e UQ x P2} U {(t; (ι;0, vu 0)) eU,x F }

hence isomorphic to P1 X P1. Let / b e a fibre of the projection D - ^ P 1

induced by the map F ^ - ^ P 1 . Since / is a line in the fibre isomorphic

to P2 and D is defined by u2 = v2 = 0 inducing the hyperplane section on
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the fibre Pz, (D.f) = 1. To determine the degree for another projection of

A we put £ = {(s; (1, 0, 0)) e Uo X P2} U {(t; (1, 0, 0)) e Uλ X P2} and calculate

the intersection number (D. £). On WQ = {(s; (uQ, uu u2)) e UQ X P 2 | uQ Φ 0}

Z) is defined by a regular function u2/u2 = 0 and on Wj = {(£; (u0, Ui, v2) e

ΪTj x P21 vQ Φ 0} Z) is defined by a regular function υ2/v0 — 0. Therefore on

WQ\JWU D defines a line bundle whose transition function is (V2IVQ)I(U2IUQ)

= ujvo = r . Thus Θ(D) ®Θ£- ΘF1(-m).

THEOREM (9.2). The set ^(JlO; m) (m > 2) consists of one element

(Aut°Fm>m, F m ,J .

Proof, Since Θ{D)®ΘD ~ ^ p i χ p i ( —m, 1), we can not collapse D nei-

ther to a smooth point by Lemma (1.12) nor to a curve. The theorem now

follows by the argument of Theorem (3.2).

§ 10. Equivariant completions of J l l

Let us first construct some small equivariant completions. Let us

recall the definition of E^: using the notations of the section 1 E^ is the

A1-bundle over F^ defined by the unique non-trivial extension

(*) 0 > Θγ,m • S >ΘvS2 ~ £m"> > °

which is homogeneous under the operation of SL2 on F^. We know by

[U4] that J l l is the operation (Aut° E£, E^) (m > 2, i > 2 or m = 1, I > 3)

which respects consequently the natural fibrations E ^ - ^ F ^ - ^ P 1 . The

extension 0-+ΘFίn-+&r->6)^(2 — £m)->0 is parametrized by the cohomology

group Hι(F'm, ΘγΛjίm - 2)) which is SL2-isomorphic to ©fc>0 IP(P\ Θ{£m - 2

— km)) by (1.3.1) and E'm corresponds to the unique SL2-invariant subspace

JEP(P\ 0(-2)) of φ ^ o ^ ί P 1 , ®Ψ™ - 2 - km)) (see (3.8), [U4]). If we take

j > £, then by the degeneracy of the spectral sequence (1.2) of /: Fn —> P1,

the extension $ on F^ can be extended over F m :

(**) ô  >ΘFm >i >ΘFm(2~£m)®ΘFm(-jCoo) >0,

where C^ = Fm - F^ (see (1.30) and the section 8). The hypotheses j > £

implies (£ — j)m — 2 < 0 and hence the morphism ίΓ°(Fm, ΘFm{£m — 2) (g)

®γJUC™)) -* H°(F'm9 ΘΊΛJίm — 2)) induced by the restriction is an isomor-

phism. In fact by the degeneracy of spectral sequences (1.2) and (1.3.1),

we have a commutative diagram:
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- 2)®ΦFJjCJ) > H\Έ'm, ΘΛZm - 2))

© H\P\ &Pί(£m - 2) <g> Θ(-im)) ^=L © H"(P\ Θpi{£m - 2) <g> Θ(-im)).
i=0 i = 0

Hence the P1 -bundle f£

m(j): E*m(j) = P(#) -* Fm is equivariant completion

of (Aut°E2, EίO by Lemma (4.22), [U4].

NOTATION (10.1). We denote by D[{j) a divisor f'm{JY\CJ) and De

2(j)

the co-section of the P1-bundle fe

m(j): Ee

m(j) -» P1 arising from the A1-bundle

or the extension (**) so that E'm(j) = E^U Dί(j)\J Di(j).

LEMMA (10.2). (a) The divisors D{(j) and De

2(j) are Aut° Ei{j)4nvari-

ant. (b) Eι

m(j) — (Dί(j) U (D{(j)) is an open orbit, (c) D{{ί) is ίsomorphic

to P1 X P1 and the Aut° Ee

m(£)-orbίt decomposition of D[{ί) - P1 X P1 is

(P1 X P1 — diagonal) U diagonal, (c') //.; > £, then D{{j) is isomorphίc to

F(J_/)TO+2 and the Aut° E£

m(j)-orbίt decomposition of D{(j) ~ Fα_ / ) T O + 2 consists

of an open orbit and two P1Js which are disjoint sections of the ruled surface

F ( ; _^ ) m + 2 ->P 1 : they are the oo-sectίon and a 0-section of Fu_e)m+2. (d) L{(j)

is isomorphic to F m with orbit decomposition (Fm — CJUC^.

Proof. The assertions (a), (b) and (d) follow from the construction

(cf. the section 8). The restriction to CL ~ P1 of the non-trivial extension
0 -* ®Fm -• # -^ ^Fro(2 - ^m) (x) (^Fm(- ^CJ -> 0 is an extension:

(*) 0 > Θvx > £ I P 1 > ΘF1(2 - £m+ ίπi) > 0

since (C^)2 = — m. We show that the extension (*) is non-trivial. In fact

putting M = ΘYm{ — 2 + £m)® ΘYm{£CJ), consider the exact sequence 0->

ΘΈm{— C-) ~* @?m ~* ®Coo -> 0 defining the curve CL on Fn. Tensoring M with

(*), we get O->0F m(-2 + £m) ® 0Fm((£ - ^ C J - ^ M - ^ M ® ̂ C o e (-^ p i (-2))

-> 0. Hence combining with the spectral sequence for Fm —> P1 we finally

get an SL2-exact sequence:

H\O* (-2 + im) ® ΦFJί£ - 1)0.)) > H\M) •

\ι \ι
H\V\ Θ{-2 + βm)®Sι-\Θ@Φ(-m))) Hι(Έ>\ 0 ( - 2

e H\P\ &(-2 + im- im)) • φ ίΓ(P\ (-2 + Sm - jm)).
i=0 j=Q

Hence the map H\M) -> HXC^, M(χ)ΘCΰo) induces an isomorphism between
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iί1(P1,^(-2))-factor in H\M) and H\M®ΘCoo\ since H\V\Θ{j)) is the

irreducible SL2-module of degree -1 - j if fΓ(F, Θ(j)) φ 0. Therefore

the exact sequence (*) is SL2-isomorphic to the exact sequence:

(**) 0 > Θ > 0(1) Θ Θ(2) > Θ(2) • 0.

Since it follows from the spectral sequence (1.2.1) that the inclusion map

ON
 H ^ '

— > H\Fm, ΘFm(-2 + em) ®

is bijective for anyjf > £ (cf. the section 8), we conclude from Lmma (1.10)

that Ker ψ = H°(Fm, ΘYm{—2 + £m)) fixes all the points lying over CL, where

ψ denotes the morphism Aut° E^O") -> Aut° F m induced by the equivariant

morphism π. In particular when & — j , the action of Aut° E^(^) on Dι ~

P1 X P1 is an operation of SL2 on P1 X P1 respecting the exact sequence

(**) and hence the diagonal action of SL2 on P1 X P1 by Lemma

(1.11). This proves (c). Since for j > £, there is no SL2-invariant in

JGΓ^P1, 0( — 2 - (j - £)m)), the restriction of the SL2-exact sequence 0-> ΘFm

->£-> ΘYJ2 - im) ® ΘF(jCJ) -> 0 onto CU ~ P1 0 -> 0 P 1 ~> δ ® 0 P 1 -> 0P1(2 +

(j — £)m)—>0 splits and hence D{(j) ~ F2 + ϋ_^)m. (cθ now follows from

isomorphism (10.3), Lemma (1.10), Lemma (1.11) and [U3].

LEMMA (10.4). Let (G, X) e ^(Aut° E £ E^) = ^ ( J l l ; m, i) (m ^ % ί > 2

or m = 1, £ > 3). T/ie^ ί/iβre is no G-fixed point on X and none of the

cases (3.3.2), (3.3.3), (3.3.4) and (3.3.5) of Theorem (3.3) Mori [Mo] occurs.

Proof. A simple part of G is SL2 and it has an open orbit by Corol-

lary (4.23), [U4] and hence there is no SL2-fixed point by Lemma (1.2.2),

[MU] and consequently there is no G-fixed point on X. We show that

there is no invariant divisor isomorphic to P 2 on X. In fact let X: X-—>

Eβ

m(£) be an equivariant birational map. Let the diagram

X

X ...

be an equivariant elimination of indeterminancy, where p is an equiv-

ariant blow-up. Since there is no fixed point on ~E£

m(£), it follows from

Theorem (1.7) q is an equivariant blow-up too. Assume that there is an
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invariant P2 on X. Since there is no fixed point, the proper transform

p~l(P2) is isomorphic to P2. This is a contradiction since there is neither

invariant P2 nor fixed point on Wm(£).

LEMMA (10.5). Let (G, X) e #(J11; m, i) (m>2,£>2orm = l,β> 3).

Let φ: X-> Y be the morphism of (3.5.1) Theorem (3.5) of [Mo]. Then the

surface is isomorphic to Fm and X is a ¥ι-bundle over F w .

Proof Since Aut°(Eίί; F J = Aut°E2 by Corollary (2.3), [U4], the

lemma is proved by the same argument as in the proof of Lemma (8.17).

LEMMA (10.6). Let (G, X) e #(J11; m, 6). Case (3.5.2) of Theorem (3.5),

[Mo] never occurs.

Proof. It follows from Corollary (4.23), [U4] that a semi-simple part

SL2 has an open orbit on X. Therefore if Φ: X—> Y is a morphism of

case (3.5.2) of Theorem (3.5), in [Mo], SL2 has an open orbit and we have

a non-trivial morphism (ψ, φ): (G, X) -> (PGL2, P
1). Hence all the fibres

of φ are isomorphic to one non-singular del Pezzo surface S and S is an

equivariant completion of a homogeneous surface Y' under the unipotent

radical U of G since U has an open orbit on each fibre (see [U4]). The

homogeneous surface ([/, Y') contains (G®2, G®2) since any homogeneous

surface under unipotent group contains such operation. It follows now

from Theorem (3.5), [Mo] and from Theorem 2.4.4, [Ma] that S is isomor-

phic to P1 X P1 or P2. In the last case, there exists a vector bundle £

of rank 3 on P2 such that X ~ P(^). By a theorem of Grothendieck we

can find 2 line bundles L, M on P1 such that X ~ P(L Θ M® 0). Therefore

G^ operates on X and G^ c G. This is absurd. We notice that the rank

of G is equal to 2 (see [U4]). Now we exclude the first case S ~ P1 X P1.

In fact assume that this is the case. We know that a semi-simple part

of G, which is isogeneous to SL2, has an open orbit (cf. Corollary (4.23),

[U4]). Let B be a Borel subgroup of SL2. B has an open orbit on P1.

Let y eV1 such that B Y — P1 and hence T = {g e G \gy = y} is isomorphic

to Gm. The operation of Gm ~ ϊ 7 on the fibre φ~\y) - P1 X P1 is, up to

an automorphism of P1 X P1, given by (u,v)-^(tau, tbv) for t e Gm, (u, v)

e P1 X P1, where α, 6 are integers, (α, 6) ^ 0 since SL2 has an open orbit

on X lying over P1. Therefore there exists a T ^ Gm-orbit on P1 X P1 ^

ψ~\y) whose closure is P1 X v0 or u0 X P1. We may assume that the

closure is P1 X v0. Then if for general point weP 1, we put D' = B(u, vQ)
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c X and D = D\ then D is a divisor since the stabilizer at (w, u0) of B

is finite. It follows from the construction DΓ\φ~\y) = DΓKP1 X P1) =

F X vQ. This is impossible since by Theorem (3.1), [Mo], P1 X υQ9 uQ X F

belong to the same extremal ray but (D. P1 X a) = 0, (D. b X P1) = 1.

LEMMA (10.7). // (G, X) e ̂ (J l l ; m, ί\ then p(X) > 3 (m > 2, I > 2 or

m = 1, ^ > 3).

Proof. By Lemma (10.4), Lemma (10.5), Lemma (10.6) and [Mo], it is

sufficient to prove that p(X) Φ 1 and this is done by the same argument

as in the Proof of Lemma (8.19).

LEMMA (10.8). If (G, X) e ̂ ( J l l ; m, ί) and p(X) = 3, then X is a P1-

bundle over Fm and Fm4somorphίc to E^(£) for a suitable integer k > £.

Proof. It follows from Lemma (10.4), Lemma (10.5), Lemma (10.6) and

[Mo] that I is a P1 -bundle over Fm and π\ X->Fm is G-equivariant.

Since the Brauer of Fm vanish, there exists a vector bundle $ of rank 2

over Fm such that X ~ P(i). The restriction P(^) | F^ contains the A1-

bundle E^ and Όr = (P(#) | F'J - E'i is isomorphic to Fς, which is a 2-

dimensional G-orbit on P(^) |F^ hence on Y(S) (cf. Proof of Lemma (8.17)

and Theorem (8.20)). The closure D of Όf in P(<?) is an irreducible divisor.

D contains no fibre of P(^) over Fm. In fact D contains no fibre of P(<f)

lying over F^ and if it contained a fibre of V($) lying over Fm — F^, since

Fm - Fς = P1 is a G-orbit, D would contain the surface π~1(Fm - F^),

which contradicts the irreducibility of D. Thus D intersects properly with

any fibre of π. The intersection number (Zλ /) = 1 for any fibre lying over

F^ hence over Fm. This shows that D is non-singular. Since D is an

equivariant completion of U ~ F^, D is isomorphic to Fm and π\D: D—>

Fm is an isomorphism. Therefore we get an exact sequence:

0 >L >i >M >0,

where L and M are line bundles over Fm. Thensoring L"1 we may assume

L = 0:

(*) 0 >Θ >£ >M >0.

The restriction of this extension over F^ should be

(**) 0 >ΘF,m >^|Fς >Θ¥A2 - £m) >0.

Thus M ~ Θ¥J2 - em) ® ̂ (-kCJ, where CTO - Fm - F'm. It follows from
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the argument at the beginning of this section that (£ — k)m — 2'<Ό. The
extension (*) is parametrized by

£Γ(Fm, M-1) = H'(Fm, &Fm(£m - 2)® ί,

~ /Γ(P\ φri(£m - 2) <g> S*(

~ 0 ίP(P\ <?Pl(̂ m - 2 -

and the extension (**) by

Hι(F'm, Mm - 2)) ~ 0 JΪXF, 0pi(^m - 2 - jm))

by (1.2.1) and (1.3.1). Hence the restriction iT(Fm, M-ι)->H\Ψm, M~ι) is
injective and the extension defining g is the cone used to define E£

m(k),
We have thus proved

THEOREM (10.9). Any element of ^(AutE^, EJO = ^(Jll; m, ̂ ) (m > 2,
ί > 2 or m = 1, ^ > 3) ccm 6e equiυariantly blown-down to a relatively
minimal element of the ordered set ^(Jll; m, £) and the centers of the
blow-down are curves isomorphίc to P1. The relatively minimal elements
in <y(JΠ; m, ί) are (Aut°EJL(i), E^Λ) 0" > ^).

Remark (10.10). As in the section 8, we can show that the
(Aut° E^(j), E^O')) (j > £) are related each other by equivariant elementary
transformations.

§ 11. Equivariant completions of J12

Let us recall the definition of the operation (J12). Let π: Cί->C2

be an etale 2-covering of a non-singular open rational curve C2 by an
irreducible curve Ct of genus g > 1 so that CΊ is an elliptic or hyperelliptic
curve of genus g. Let t be the involution of Cx giving π so that CJ(c}
~ C2 and we denote by i an involution of C j X F x F :

i(t, x, y) = (d, y, x) for ί e C ^ x j e P .

We let operate SL2 on C, X P1 X P1: h(t, x, y) = (ί, Λx, %) for (ί, x, y) e d
X P X P , where for /ι e SL2 z e P , hz denote the usual action of SL2 on
P1. The operation of SL2 on Cί X (P1 X P1 — diagonal) commutes with the
involution i and thus defines an operation (SL2, Xκ), where XΓ = (P1 X P1-
diagonal)/<i>. See (3.9), [U4].

Let us construdt a model. Let g be a non-negative integer and
n — g + 1. Let V be an irreducible SL2-module of dimension 3 so that
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we identify V with the vector space of the homogeneous polynomials of

degree 2 in x, y. The operation of SL2 on the vector space kx φ ky is in

the usual way. By letting SL2 operator on Θγjji) trivially, SL2 operates

on a vector bundle $ = (0P 1 (x)fc V) φ (PPι(ή) over P1. We use the basis a,

b, c on V: g(x, y) = ax2 + bxy + cy2 e V. Denoting by z the fibre coordinate

of Φpi(n) locally, if f{t) e H°(P\ 0(2z/)), b2 - 4ac + f(t)z2 is an SL2-invariant

section of H°(P\ S\£)). Therefore we get a quadric bundle p: Xf =

{b2 - Aac + f(t)z2 = 01 (ax2 + bxy + cj2, z) e P(<f)} -> P1 on which SL2-oper-

ates. From now on we assume that the homogeneous polynomial f(t) of

degree 2n has only simple roots so that y'L = f(t) defines a hyperelliptic

(or elliptic) curve.

LEMMA (11.1). If f(t) — 0 has only simple roots, then Xf is non-singular

and projectίve.

Proof. In fact, locally Xf is defined by {(*; α, 6, c, z) e A1 X P 3 |6 2 -

4αc + f(t)z2 = 0}. The smoothness of Xf follows from this local expression.

The projectivity of Xf is obvious.

LEMMA (11.2). Let π: C->¥1 be the hyperelliptic curve defined by

y2 = f(t)% Then (SL2, Xπ) and (SL2, Xπ) are mutually isomorphic as law

chunks of algebraic operation.

Proof. If we add y = V f(t), then over k(t, y) the quadratic form

b2 — 4αc + f(t)z2 is isomorphic to; b2 — 4αc — w2. Namely Xf (x)pi C is

birationally equivalent to the product C X (quadric surface). Now the

descent datum on C X (quadric surface) defining Xf is (α, b, c, w) —> (α, 6,

c, — #;) if written in terms of the coordinate system on C X P3. Let us

see how the quadric is identified with P1 X P1 embedded in P 3 by P x P ' a

((z0, X!); (κ0, u,)) -> (xoι/o, Λ:0"I, *ity>, ^ j e F . If SL2 operates diagonally on

P1 X P1, SL2-module JΪ^P 1 X P1, Φ(l, 1)) is decomposed into the direct sum

Uz Θ Ul9 where U3 is the irreducible SL2-module of degree i. The explicit

decomposition is HXP1 X P1, 0(1,1)) ~ H°(P\ 0(1)) <g> fΓ°(F, (1)) = (kxouo +

k(x^ + X^Q) + kx^) φ ^(XQ^! — XiW0) Thus to connect Xx with Xπ we

had better consider the embedding P1 χ P - > P 3 given by ((x0, x^; (u0, uj)

-> (xouQ, XQUJ + tfjty,, XiUj, xou! — XJUQ) SO that the defining equation of the

image is X\ — 4X0X2 — XI = 0. Therefore the involution (α, 6, c, z#) (α, 6,

c, — w;) on the quadric just corresponds to the automorphism of P 1 X P1

interchanging the factors. Now Lemma follows from the definition of Xπ.
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Remark (11.3). We may expect to argue as in the preceding cases

trying to exclude the cases (3.3.3), (3.3.4) and (3.3.5) in [Mo]. But the case

(3.3.4) does occur as we see below (see (11.18)). Therefore we examine

equivariant completions studying closely the operation (SL2, Xf) in Lemma

(11.1) and its equivariant blow-ups.

LEMMA (11.4). The SL2-invariant reduced irreducible effective divisors

on Xf are; (1) the fibre p~\t), teP1 which is ίsomorphic to (SL2, P
1 X P1)

with diagonal Sh2-action if f(t) Φ 0 and to the singular quadric {u2 + v2

+ w2 = 0} c P3 if f(t) = 0, (2) ZL = {b2 - 4ab = 0\(ax2 + bxy + cy2, 0) e

Xf C P(< )̂} which is ίsomorphίc to (SL2, P
1 X P1) with SL2-actίon through

the first factor.

Remark (11.5). Since SL2 is a semi-simple part of Aut° Z ~ Aut° F2 by

[U3], the operation of SL2 on the singular quadric Z is essentially unique

and given as follows: Let Uz denote the irreducible SL2-module of dimen-

sion 3 which we identify with the vector space of the homogeneous

polynomials of degree 2 in 2 variables x, y. Then U3 has an SL2-invariant,

the discriminant D of the degree 2 polynomial, D(ax2 + bxy + cy2) = b2

— Aac. k being the trivial SL2-module, SL2 acts on the direct sum Uz®k

hence on P3 = P(£/ 30£) leaving the singular quadric b2 — Aaυ = 0 in P3

invariant.

Proof. Lemma follows from the construction of Xf.

general fibre ~ P1 X P,

singular fibre ^ the

singular quadric in P3

Xr
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LEMMA (11.6). The SL2-fixed points on Xf are the singular points of

the singular fibres. If we blow up Xf at one of the SL2-fixed points, SL2

operates on the exceptional divisor P2 through irreducible SL2-module of

dimension 3.

Proof. The first assertion of the Lemma is a consequence of the con-

struction of Xf. Xf is locally defined by {(t; (a. b, c, z)) e A1 X P 3 | b2 — 4ac

+ f(t)z2 — 0}. We may assume that the fixed point is in the fibre p~ι(0)y

namely t — 0 is a simple zero of f(t) = 0. Hence locally for the usual

topology at the singular point y of the singular fibre p~\0), we may assume

that Xf is defined by {(ί, α, b, c) e A41 b2 — Aac + t = 0} and therefore Xf

is isomorpbic to, around (0; (0, 0, 0)), A3 with irreducible SL2-action on A3.

NOTATION (11.7). We denote by Wf the blow-up of Xf at all the

SL2-fixed points of Xf.

LEMMA (11.8). The SL2-invariant irreducible reduced effective divisors

on Wf are; (1) the proper transforms of SL24nvarίant divisors on Xf,

(2) the exceptional divisors isomorphic to P2. The proper transforms of the

singular fibres are isomorphic to F2. There is no SL2-fixed point on Wf.

Proof Since SL2 operates on the exceptional divisor P2 through

the irreducible representation, SL2-orbit decomposition of P2 is SL2/Gm,

which is an open orbit, and SL2/JB ~ P1, which is a conic in P2.

Here we give a table of intersections of 2 divisors on Wf. We denote

by q: Wf-+Xf the blow-up and by CΓ^JD] the proper transform of D.

The statement at (A, B) in the table

A(Ί B as a curve on A.

I

A
•

•

•

B
: describes the curve

ςri(Doo)-piχpi

g'^smooth fibre)
^pi χ P i

g-^singular fibre]
— F2

exceptional
divisor ~ P2

1 .
ςπiφoo)^
p i χ p i

^ ^ ^ ^
diagojnal
P i c ^ x P i
0-section

in F2

empty

Table (11.9)

.q~^smooth fibre)
^pi χ P i

^ P^Xxi. in PixP 1

^ ^ ^ ^ _ _

empty-

empty

Q-^singuiar Hbre]
- F 2

P2Xa in PixP 1

empty

- — ^ _ ^
non-singular

conic in P2

exceptional
divisor ^ P 2

empty

empty
oo-section

in F 2
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where the co -section of F2 is unique section of the ruled surface F2 with

self-intersection number —2 and a 0-section is a section of the ruled

surface disjoint from the oo-section, whose self-intersection number is

necessarily equal to 2.

COROLLARY (11.10). Let C be an irreducible reduced SL2-ίnvarίant

curve on Wf. (a) C is an SL2-orbίt hence ίsomorphίc to P1.

(b) C is contained in a fibre q~x°p~\t) for a some point teP1.

(c) C is an intersection of 2 irreducible reduced effective divisors.

(d) If 2 irreducible reduced effective divisors on Wf intersect, they

intersect transversely along P1.

(e) Any 3 distinct irreducible reduced effective divisors have no point

in common.

Proof. This is a consequence of Lemma (11.8) and the construction

of Xs.

Now we describe the SL2-invariant divisors on an equivariant blow-up

of Wf.

LEMMA (11.11). Let f2: Y —> Wf be a sequence of SL2-equίvarίant blow-

ups: Xίii+1: Xi->Xi+1 (0 < i < m + 1) is an SL2-equίvarίant blow-up at an

irreducible center, Xo == Ϋ, Xm = Xf and f2 = Xm_lmoχm_2m__ί0χ01. For 1 < i

<m, we have the following.

(a) There is no SL2-fixed point on Xt.

(b) Any SL2-ίnvarίant irreducible reduced effective divisor on Xt is

smooth.

(c) Any SL2-ίnvarίant (integral) curve C on Xt has the following

properties:

(cl) C is an SL2-orbit hence ίsomorphίc to P1,

(c2) C is contained in a fibre Xΐ^^p'^t) for a some point teP\

(c3) C is an intersection of 2 SL2-ίnvariant irreducible reduced

effective divisors A, B such that C = Af)B, (C2)A Φ 0.

(d) // 2 irreducible reduced effective divisors on Xt intersect, they

intersect transversely along P1.

(e) Any 3 distinct irreducible reduced effective divisors on Xt have

no point in common.

(f) The exceptional divisor EidXi (0 < ί < m — 1) for X M + 1 is ίso-

morphίc to the ruled surface Fit for suitable integer &i>l with non-trivial

SL2-actίon.
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Proof, (a) follows from Lemma (11.8) since the image of a fixed point

is SL2-fixed. We prove Lemma (11.11) by descending induction on ί. If

i = m, Lemma (11.11) is equivalent to Corollary (11.10). Now we have

to prove the assertions for i assuming the lemma for i + 1. Since there

is no fixed point on Xi+1, Xί>ί+1: Xi—>Xi+1 is the blow-up of Xί + 1 at an

irreducible curve hence by (b) at P1. Therefore the exceptional divisor

Ei is a ruled surface FSi. Since if SL2 operates on F^ non-trivially and

if £ > 1, SL2-orbit decomposition of F^ is F, = open orbit (0-section) U

(oo-section), by Lemma (1.11) and (1.3.3) the other assertions follow once

we prove (c3) for SL2-invariant curves on Et c Xt.

To illustrate our argument, let us first prove the lemma for ί = m

— 1, namely lm-Xm: Xm_.ί->Xm = Wf is a blow-up at an irreducible non-

singular SL2-invariant curve. We give a formal induction later. We

verify £m_1 > 1 case by case. Let h: Y-* Wf be the blow-up of Wf at

the intersection q'\DJ)(λq~ι (smooth fibre) (see Fig. (11.11.1)) and E be

the exceptional divisor for h.

Fig. (11.11.1)

Dx = P ι X P

D2 ~ P1 x P

singular fibres

I L

Xr

smooth fibre p

Since Dt = q~\DJ) and D2 = q~ι (smooth fibre) intersect transversely along

the curve isomorphic to P1, E is isomorphic to F^ for some integer ί > 0.
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Moreover h ^[D^ΓiE and h~ί[D2]Γ\E are disjoint sections of ruled surface
F̂  since A and A intersect transversely along the center of the blow-up.
We calculate the intersection numbers {h~ι[D$. E) and {h~ί[D2γ.E). Since
A is a fibre of p o qy h*D2. E = 0 hence

0 - (h-χ[D2l h*D2. E) = {h-ι[D2}. h-χ[D2] + E. E)

= (Λ-mi. Λ-ΊOJ #) + (h'ι[D2]. E E) = (/i-mi. Λ-ΊA1. #) + 2

by the table (11.9). Therefore

(h~ι[D2l h-ι[D,l E) = - 2 and (/^[AL Λ'ΊA]. ^) = 2

since /r^DdΓi-E is a section of F̂  disjoint from h'ι[D2]V\E. We have
thus proved ί = 2 and ίJ is isomorphic to F2:

Λ-TO - P1 x

Let now j : Z-+ Wf be the blow up of Wf at the intersection of an ex-
ceptional divisor D3 for q and ^~![a singular fibre passing through q(D3)]
which we denote by A (see Fig. (11.11.2)).

For the same reason as in case of h, the exceptional divisor J for j
is isomorphic to F̂  for some integer ί > 0 and

0 = (fibre of p o q oj). J) = (j

+.r1[A] + 3J. J)
+ A ) «7)

. J)

by Table (11.9). Hence (j-ι[D3].j-'[Ds].J) = -6. j-'fAJΓl J c J is a section
disjoint from the section i"'[A]Γl J c J hence O'^tAl i 'ΊA]-^) = 6. Let
us check this by another calculation. For the same reason as in preced-
ing cases,
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Fig. (11.11.2)

D3 = F

0 = fibre oipoqoj.J) = (j-^D^.j-^D,] + j-'IAl + 3J. J)

Let r: V-> Wfbe the blow-up of W/ at the intersection of A = q'XDJ) and

J56 = q-1 [singular fibre](see Fig. (11.11.3)). We denote by D the irreducible

exceptional divisor for q intersecting with Dβ.

Fig. (11.11.3)
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We denote by L the exceptional divisor for r. For the same reason as

before 0 - ( r ^ A L (fibre of poqo r ) . L) = ( r ^ A L ^ [ A ] + L + 2r*D.L)

= ( r - m i . r-^A]. i ) + (r-^AL i i ) = (r-ΊAl r^tAl i ) + 2. Hence L is

isomorphic to F2.

Let us now give a rigorous induction. As we have seen at the

beginning of the proof, X;_M: Xi_1->Xί is the blow-up at an SL2-invariant

curve Ct on Xt and it is sufficient to prove (c3) for SL2-invariant curves

on Eί_1 C Xi_i under the assumption that Lemma (11.11) holds for Xt. For

the center Cu we can find a smooth SL2-invariant divisor At such that

CidA, poqoXim(A) is a point of P and such that (Cf)Ai Φ 0. Let B^

be the G-invariant smooth irreducible divisor on Xt with d = At Π S^: β {

exists by (c3) for X .̂

Fig. (11.11.4)

blow-up at

rmi
(S)\ JSf-i

(Λ)

i is the blow-up at Ct = A^ Π B< as Fig. (11.11.4) shows.

We have:

0 = ((a fibre of 1

'[AJ +

og o χ, m ) . E^. l-ι[Az])Xi_x

&£*_! + other divisors disjoint from

(here α, b are positive integers)

Thus (Ei^.E^. X"1[AJ)2Γ<_1 ^ 0 and E,^ - F,._x with ^ > 1 since E^Π

X~ι[Aά and ^^ΠX-' tBJ CJEJ^J are disjoint sections (cf. (1.3.3)). This

proves (c3) for i — 1. For, since there is no SL2-fixed point on Xt^l9 new

born SL2-invariant curves on Xi_ι are X~1[Bί]f]Eί_1 and λ'^AJ Π^_i.

The fibration p: Xj-^P1 is a dell Pezzo ίibration of Theorem (3.5)

(3.5.2), [Mo]. In fact we show (see Example (11.18)).

LEMMA (11.12). Pic Xf is generated by ΰ , and p* Pic P1. In partic-
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ular the Picard number ρ{Xs) = 2.

Proof. As in the Proof of Lemma (11.2), let C -» P1 be the hyperel-

liptic curve denned by the extension £(V / , t)/k(t). Let B c C b e the set

of branch points and R c P1 be the set of ramification poits so that

π: C - B-> F - R is etale. Let us denote C - B by Ct and P1 - i? by

C2. As we have seen in the Proof of Lemma (11.2). The restriction

C2 X p i J ; is the quotient of Cx X P1 X P1 by the involution i: i(t, x, y)

= ('*> % #) f° r teCl9 x, y e P1 where r is the involution arising from π.

Pic ( d X P1 X P1) is isomorphic to Pic Cx 0 Pic P1 ® Pic P1 hence to Pic Cx

Θ Z®\ By the descent theory,

(11.12.1) Pic C2 X P 1 Xf ~ (Pic Cx Θ ) f - Z.

Given a line bundle L over Xy. It follows from (11.12.1) that we can find

an integer n such that L(nDm) is trivial when restricted over C2 X P i Xf.

Therefore L(nDJ) ~ 0Xf{D) for some divisor D whose support lies in the

singular fibres of p : Xf —> P1. We have thus proved Pic Xf = ZD^ (x)

p * Pic F .

Let now (SL2, Y) e ^(J12, TΓ) = ^(SL2, Xπ). We have an equivariant

birational map /*: F > Ŵ  by Lemma (11.1). By blowing up Y, we can

eliminate the indeterminacy of /:

Y ••• ^ wf —^ xf .
After Hironaka, everything is done SL2-equivariantly. Since there is no

SL2-fixed point by Lemma (11.8), the dimension of any fibre of /2 < 1 and

hence f2 is also a blow-down by Theorem (1.7). We may take f2 minimal

so that there is no non-trivial factorization;

Wr,
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where g, f[ and f'2 are blow-ups. Lst us decompose f2 into a product of

blow ups: χM + 1: Xt -+Xi + 1 0 < i < m - 1, Xo = Y, XTO = W,, /2 = Xm.lfTOo

Xm_2,m-i° - - o XOi
 a n ( i ί̂,ΐ + i is a n SL2-equivariant blow-up of Xi + 1 at non-

singular irreducible curve.

Similarly, let us decompose /i as a product of blow-ups with irredu-

cible centers: ψjtj+1: Yό -> Yj + ί (0 < j < s — 1), Yo = Y, F s = Y and ψJ>J + 1

is a blow-up with a non-singular irreducible center.

LEMMA (11.13). Let D be a smooth fibre p~\t), ί e P 1 . The proper

transform (q°fι)~ι[D\ is not an exceptional divisor for fx.

Proof. ΰ M and p*0 p i(l) generate Pic Xf by Lemma (11.12). The

smooth fibre D is a non-singular quadric in P3 hence isomorphic to P1 X P .

Let us set ίx = P1 X a and £2 = a X P1. They are curves on D hence on

Xf. It follows from the construction (^.DJ) == (^.IL) = 1, (A.p*0pi(l))

= (£2.p*Θpi(ϊ)) = 0. Therefore ίx is numerically equivalent to £2- Hence

f*(βι — 4) = f^WH — f^ί^] is numerically trivial since SL2- operation on

P1 x p 1 — D is diagonal. Assume now that (qofY^D] is exceptional for /1#

Then there exist a blow-down /: Y-+Z collapsing (q°f)~x[D\ to a curve

C ^ P1 on a non-singular projective variety. Putting J9 = (q2°f)'1[D]9 the

restriction /: P1 X P1 — D-^ C ^ P1 is a projection, say onto the first

factor. Then Uf Vi] = aCy a > 0 and hfΛQ = 0. Hence C is numer-

ically trivial. This is absurd since Z is non-singular projective.

LEMMA (11.14). tf^JDJ - 0PixPi(2, - n ) .

Proof. Notice that in our notation, the restriction p \ D^ -> P1 is the

projection from P1 X P1 onto the second factor (cf. Table (11.9)). Let

(DDoo(D00) ~ 0Pix P 1(α, b). Then it follows from the definition of Xf and that

D^ cuts on each fibre a divisor coming from the hyperplane section bundle

of P 3 hence a = 2. Let us calculate b. For this purpose we recall the

definition of Xf. We cover P1 by 2 A1Js U09 Ux in usual way: P1 = U0Ό U,

and the points t e UQ and l[t e Ux are identified. Gluing VQ = Uo X P3 and

V, = U, X P3 together by identifying (ί, (x0, x1? x2, x3)) e Fo and (s, (yϋ, yu

Vi if ί = 1/s, x0 = y0, x, = ̂ , ^2 = x2, y3 = tnxs, we thus get

Θ®Θ® Φ(n)). Let /(ί) be a polynomial of degree 2τz with only simple

roots. Xf is defined locally on Vo by XQ + ?̂ + #2 + f(t)xl = 0 and on VΊ

by 0̂ + y\ + yl + f(i)(l/2ή)yl = 0. Therefore !>« is defined by x3 = 0 on

Vo Π X/ any y3 = 0 on Vt Π X/β Now we put ^ - {(ί, (1, 0, 0, 0))} e VQ \ t e k)
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U {(s, (1, 0, 0, 0)) e V, I s e k}. t is a section of p | ZL : DOT -» P1 and 6 is the

degree of the line bundle Φ(DJ) ® Θ£ on I. On VQ Π {x0 Φ 0} D^ is defined

by xjxo and on V; Π {yΌ Φ 0} by yjyo = 0. Thus (P(ΰM) ® (9, is defined by

the transition function (yslyo)l(xzlxo) = ys/Λ:8 = Γ and hence (P(DJ) <g) 0, is

isomorphic to 0P(—τι). Therefore b — —n.

LEMMA (11.15). The exceptional divisor for ψOί is exceptional for q°fλ.

Proof. Lemma (11.13) shows that the proper transform of a smooth

fibre of p is not exceptional for /i. In view of Lemma (11.11) we have to

show that the proper transform of one of the following divisors can not

be exceptional for fx\ (1) singular fibres for p, (2) D^. In fact let D be

a singular fibre of p. q*D = q'ι[D] + 2E with q-'[D] ~ F2, E ~ F by

Lemma (11.8). Let i be the fibre of the ruled surface q-^D] ~ F2. Since

D is a fibre, 0 = (£. g*(fibre of p)) = ( .̂ g*D) = ( .̂ g^fD] + 2E) = ( .̂ g-'fD])

+ 2(^.£;) = (^g-1[D]) + 2 by Lemma (11.8). Therefore 0(g-J[Z)])® Θt ~

(Ppi(—2) and hence the restriction of Q(q°f?[D\) on a fibre of the ruled

surface (f2oq)-ι[D] ~F2 is 0P1(—fe), k>2 and can not be exceptional

for ψ01. By Lemma (11.14) ΘDoo(DJ) = (2, — Λ). Therefore putting JD' =

( Λ o g ) - 1 ^ ] , <VφO = (2, - 6 ) with 6 > n since SL2 operates on ZL -

P1 X P1 hence on (Zίm o g ) " 1 ^ ] through the first factor. Thus Όf can not

be exceptional for ψ01.

PROPOSITION (11.16). qof: Y +Xf is a blow-up morphίsm or Y is an

SL2-equίυariant blow-up of (SL2, Xf).

Proof. It follows from Lemma (11.15) the exceptional divisor for ψQ1

is an exceptional divisor for fxoq and no exceptional divisor is isomorphic

to P1 X P1 by Lemma (11.11).

THEOREM (11.17). (SL2, Xf) is the unique minimal element of ^(J12; π)

and any other element of ^(J12; π) is an equiυariant blow-up of (SL2, Xf).

The following example shows that the case (3.3.4), [Mo] occurs in

EXAMPLE (11.18). Let p-1(ί) = S c P 3 , teP1 be a singular fibre of

p: Xf->F\ Let m be a line in P3 lying on the singular quadric S.

Regarding £ as a 1-cycle on Xf, we have (m. DS) = 1, (m.p*Θpi(ϊ)) = 0.

Denoting by ^ a fibre of D^ ~ P1 X F - ^ P 1 with (^.p*0pi(l)) = 1 as in

Lemma (11.14). Let us denote by Y ¥((9®Θ®Θ®Φ(n)\ by p: Y->F the
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projection and by LL the divisor on Y defined as follows: using the

notation of the Proof of Lemma (11.14), D^ is defined on VQ by xz = 0 and

on V1 by y3 = 0 so that JCL Π Xf = Iλx>. We need one more divisor j5 on

Y which is defined on Vo by x0 = 0 and on Vx by yQ — 0. By simple local

calculations, we get the following.

(11.15.1)

(11.15.2) P*OγΦ) - Gψx θ 0Pi(n) .

(11.15.3) QYΦ) is generated by its global sections.

Let us content ourselves with checking (11.15.2) and (11.15.3) since

(11.15.1) is proved by the same method. Using the notation of the Proof

of Lemma (11.14), if we calculate p*{Θγ{D)) locally for UQ X P3-> Uo> we

get p*(Θγφ)) I Uo is a free JfeM-module

V. XQ XQ XQ

Similarly on Ul9

- ibQ(s) + b^s)1^ + b2(s)^ +
^ 3

k[s], 0 < i < 3).

Since t — 1/s, x0 = yo> 1̂ = 3Ί* ̂ 2 = x29 y3 — tnxs, the identification of these

2 free modules on the intersection UQ Π Ux gives (9®3 0 Θ(ri). Thus ths set

of global sections

- α0 + α ^ + a2^+ α,(O

+ b2^ +

X*

= {bo +

α, e k for 0 < i < 2,

k[t] with deg az(t) < n\

bi 6 k for 0 < i < 2,
Jo Jo

63(s) e ^[s] with deg b3(s) <n\>

This shows (11.15.3).

It follows from (11.15.1), (11.15.2) and (11.15.3) that φΫφ) ~ ΘΫ0J) ®

p*O?i{n) and 0?(JEL) ® P*^pi(^) is generated by its global sections. In

particular the restriction 0pCCL)®p*0pi(rc) ® ΘXf ~ Θχf{D^)®p*Θί>x{n) onto

X7 is generated by its global sections. Now we can show that R+m +
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R+£ coincides with the cone NE(Xf) spanned by the effective 1-cycles on

Xf (see the section 1). In fact by Lemma (11.14) R/n + R^ = N(Xf) since

we know (ra.p*0Pl(l)) = 0, (Lp*Θpi(l)) = 1. It is sufficient to show that

for α, b e R am + bί is numerically equivalent to an effective 1-cycle on

Xf if and only if α, b > 0. As the if part is evident, we have to show

"only if" part. Assume that am + bί is numerically equivalent to an effec-

tive 1-cycle. Since (9(DJ)(g)p*(9In(ή) is generated by its global sections, we

have 0 < (am + b£.Θ(Doo)®p*Θpi(ή)) = a(m.DJ) + b(£.DJ) + b(£.p*ΘPl(ή))

= a — nb + nb = a by Lemma (11.14). As p*Θpi(ri) is also generated by

its global sections, 0 < (am + b£.p*(9pi(l)) = b as wanted.

Since by the adjunction formula Θ(KXf) ~ ΘY(KY + Xf) (
Xf ~

Xf

(-2D^)®p*M for some line bundle M over F , (LKXf) = - 2 . Hence

is an extremal ray. Let us now blow up Xf at C =
Xf.

E

φ-ι]S]

We denote by E the exceptional divisor. Then Kz = φ*KX/ + E and

(φ-VlK,) = (φ-ιUlφ*KXf + E) = (φ'Vlφ*^,) + (φ'VlE)
= (φxφ'1^]- KXf) + 1, by the projection formula,

= (£.KX/) + l= - 2 + 1 = - 1 .

Hence R+^"1[^] is an extremal ray. Moreover since

(φ-Vlφ-'lS]) + 1 = (φ-VlΦ'ΊS] + E) = (φ-1[£\.φ*S)
= (Φ*φ-Vl S) = (L S) = 0, (φ'Vl ΦΛS]) = - 1 .

Since S is the singular quadric in P3, this shows that on (SL2, W) e

^(Jl.2; π), R+φ~J[£] is an example of an extremal ray giving rise to case

(3.3.4).
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