Dependence of solar cycles duration on the magnitude of the annual module of the sunspots magnetic field

Valery N. Krivodubskij and Natalia I. Lozitska

Astronomical Observatory of Kyiv National Taras Shevchenko University Observatorna Street 3, Kyiv - 53, 04053, Ukraine email: krivod1@observ.univ.kiev.ua nloz@observ.univ.kiev.ua

Abstract. The dependence of the solar cycle duration, T, on the 3 years averaged module of the large-scale sunspots magnetic fields (30-60 arcsec), B_{sp} index, was investigated on the base of about 10,000 visual observations conducted during last eight (16-23) cycles. It was found that the duration T of the investigated cycles linearly depends on the index B_{sp} of the magnetic fields observed during 3 years on decline phase of the solar cycle (second, third and fourth years after solar maximum T_{max}). Namely, the duration of the cycles T was varied between 9,5 and 12,5 years, when the magnetic index B_{sp} was ranged from 2450 to 2600 G. An explanation for this dependence is proposed within the framework of non-linear $\alpha\Omega$ - dynamo model. We found the following equation for the dependence of solar dynamo-period on magnetic index: $T \approx B_{sp}^{3/2}$. Therefore, the large observed index B_{sp} , the longer calculated period T.

Keywords. Sun: activity, Sun: sunspots, magnetic fields

The new index of annual averaged module of the magnetic fields for the large-scale sunspots with penumbra diameter 30-60 arcsec (22-44 Mm), B_{sp} , measured by visual method on the Zeeman splitting in the Fe I $\lambda\lambda$ 525.02 and 630.25 nm lines was proposed (Lozitska 2005). The dependence of duration of last eight (16-23) solar cycles, T, on the observed annual index, B_{sp} , was investigated by Lozitska this year. Firstly, it was ascertained the dependence of sunspot magnetic field value on the time, years of cycle relatively maximum epoch, T_{max} , of the average solar period (Fig. 1, where *B* corresponds to index B_{sp}). Then it was found that the duration of the investigated cycles, T, was varied between 9,5-12,5 years, when the maximal 3 years averaged magnitude of magnetic induction, $B_{(Tmax+3)}$ (index B_{sp}), was ranged from 2450 to 2600 G (Fig. 2).

An explanation for the derived dependence is proposed within the framework of nonlinear $\alpha\Omega$ - dynamo model. According to our conception (Krivodubskij 2012) the magnetic index B_{sp} reflects information on values of the deep toroidal field B_T in the solar convection zone (SCZ). So this index could be used for the dynamo-period estimation. In this case the period of solar dynamo-cycle in non-linear regime is determined by equation $T = 2\pi/\{(1/2) | \alpha(\beta) \partial \Omega/\partial r|\}^{1/2}$ where α is the parameter of mean helicity of turbulent convective pulsations, $\partial \Omega/\partial r$ is the radial gradient of angle velocity, Ω , in the SCZ, $\alpha(\beta) = \alpha_0 \Psi_{\alpha}(\beta)$ is the helicity parameter of the turbulent pulsations, α_0 is the "non-magnetic" helicity parameter, $\beta = B_{sp}/B_{eq}$ is the normalized magnetic field, $B_{eq} \approx v(4\pi\rho)^{1/2}$ is the equipartition magnetic induction, v is the small-scale turbulent velocity, $\Psi_{\alpha}(\beta)$ is the quenching-function. We took into account that the alphaquenching for strong magnetic field ($\beta \gg 1$) is expressed by the equation $\alpha(\beta) = \alpha_0 \Psi_{\alpha}(\beta)$ $= \alpha_0 15\pi/64\beta^3$ (Rüdiger & Kitchatinov 1993; Krivodubskij 2005). Since the period of

Figure 1. Sunspots magnetic field 3 year averaged, $B_{(Tmax+3)}$, relatively solar maximum, T_{max} , against years of average cycle period (16 -23 cycles).

Figure 2. Solar cycles duration, T, dependence on 3 years average sunspots magnetic field, $B_{(Tmax+3)}$ (index B_{sp}), during 2, 3 and 4-th years after epoch of maximum sunspots relatively numbers (16 -23 cycles).

dynamo-cycle T is reversely proportional to square root from the parameter $\alpha(\beta)$ then we found following equation for the period dependence on the magnetic parameters, $T \approx \beta^{3/2} (\approx B_{sp}^{3/2})$. Thereby, we received following correlation between magnetic index and cycle period: the large observed index B_{sp} , the less calculated quenching-function $\Psi_{\alpha}(B_{sp})$, and therefore the longer calculated period T.

References

Krivodubskij, V. N. 2005, AN, 3, 61
Krivodubskij, V. N. 2012, This volume
Lozitska, N. I. 2005, Kinenatika i Fizika Nebes. Tel (Suppl.), 5, 151
Rüdiger, G. & Kitchatinov, L. L. 1993, AA, 269, 581