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MINIMAL SURFACES IN 3-DIMENSIONAL
SOLVABLE LIE GROUPS II

JUN-ICHI INOGUCHI

An integral representation formula in terms of the normal Gauss map for minimal
surfaces in 3-dimensional solvable Lie groups with left invariant metric is obtained.

1. INTRODUCTION

In the previous paper [3], we obtained an integral representation formula for minimal
surfaces in the 3-dimensional solvable Lie group:

G(m,iii) = (R3(xl,x2,x3),g{liufli)),

with group structure

(z\x2,z3) • (f1 ,!2 ,!3) = (x1 + e^x3x\x2 + e ^ x 2 , ! 3 + 2*)

and metric
x2)2 + (dx3)2.

This two-parameter family of solvable Lie groups contains the following particular exam-
ples: Euclidean 3-space E3, hyperbolic 3-space H3 and Euclidean motion group £(1,1).
Moreover, G(0,1) is isometric to the Riemannian direct product H2 x E1 of hyperbolic
2-space and the real line E1.

In this paper, we investigate the normal Gauss maps for surfaces in G(/ii,/i2) and
reformulate the integral representation formula of [3] in terms of the normal Gauss map.

On the other hand, study of minimal surfaces in the reducible Riemannian symmetric
space H2 x E1 has been started very recently by Rosenberg and his collaborators. See
[9, 10].

In a recent paper [7], Mercuri, Montaldo and Piu obtained an integral representation
formula for minimal surfaces in H2 x E1 ([7, Theorem 5.1]). Their formula coincides
with our formula for G(0,1). Thus our formula is a unification of Goes-Simoes-Kokubu
formula [2, 5] and Mercuri-Montaldo-Piu formula [7].
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2. SOLVABLE LIE GROUP

In this paper, we study the following two-parameter family of homogeneous Rieman-
nian 3-manifolds;

(2-1)

where the metrics g^,^)

(2-2) 0 ( W i W

Each homogeneous space
group:

{(R3(x\x2,x3),g(lluti2)) | (pllM2) € R2},

) a r e defined by

W ) := e-2^\dxlf + e~2™\dx2)2 + (dx3)2.

lW)) is realised as the following solvable matrix Lie

e"'*3 0

G((J.X,IJV) = { I 0 0 e^2*3

^ 0 0 0 1

The Lie algebra g(^i,//2) is given explicitly by

(2.3) g(/ii,/i2) =

' / 0 0 0 y3\

0 Mi2/3 0 y1

0 0 n2y
3 y2

[\0 0 0 1 /

yl,y2,y3

Then we can take the following orthonormal basis {Ei,E2,E3} of

/0 0 0 0\
0 0 0 1
0 0 0 0

\0 0 0 0/

,£2 =

/o 0 0 o\
0 0 0 0
0 0 0 1
o 0 0 oy

/o 0 0 i\
0 /ii 0 0
0 0 /i2 0
o 0 0 o

Then the commutation relation of g is given by

[EUE2] = 0, [E2,E3] = -»2E2, [E3,Ei] =

Left-translating the basis {E\, E2, E3}, we obtain the following orthonormal frame field:

The Levi-Civita connection V o

(2.4)

/i2) is described by

e i e ! = /xie3, V e i e 2 = 0, V e i e 3 = -f

e 2 e ! = 0, V e 2 e 2 = n2e3, Ve 2e3 = - / i 2 e 2 )

e 3 e ! = V e 3 e 2 = Ve 3e3 = 0.
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E X A M P L E 2 .1 . (Euclidean 3-space) The Lie group G(0,0) is isomorphic and isometric
to the Euclidean 3-space E 3 = (R3, + ) .

E X A M P L E 2.2. (Hyperbolic 3-space) Take nx = /x2 = c ^ 0. Then G(c,c) is a warped
product model of the hyperbolic 3-space:

H3{-c2) = ( R 3 ( z V . s 3 ) . e ~ 3 e i 3 { ( < & 1 ) 2 + (dx2)2} + (dx3)2).

This matrix group model G(c, c) is used by Goes-Simoes [2] and Kokubu [5].

E X A M P L E 2 .3 . (Riemannian product H2(-(?) x E1) Take (/ii,/i2) = (0, c) with c ^ 0.
Then the resulting homogeneous space is R3 with metric:

(dx1)2 + e~2cx\dx2)2 + {dx3)2.

Hence G(0,c) is identified with the Riemannian direct product of the Euclidean line
E 1 ^ 1 ) and the warped product model

(R2(x2,x3),e-2cx\dx2)2 + (dx3)2)

of J / 2 ( -c 2 ) . Thus G(0,c) is identified with E1 x H2{-<?).

EXAMPLE 2.4. (Solvmanifold) The model space Sol of the 3-dimensional solvegeometry

[11] is G(l, — 1). The Lie group G(l, — 1) is isomorphic to the Minkowski motion group

l

The full isometry group is G(l , — 1) itself. The homogeneous space

is the only proper simply connected generalised Riemannian symmetric space of dimen-

sion 3. Here E is the identity matrix.

REMARK 2.1. Let H2(yi,y2) be the upper half plane model of the hyperbolic 2-space
of constant curvature —1:

H\y\y2) = ({(vW) e K21 y2 > 0}, {(dy1)2 + (dy
2)2}/(y

2)2).

Consider the warped product H2{yl,y2) xyi Ex(y3) with warped product metric

Then it is easy to verify that this warped product is isometric to E(l,l). In fact, the

mapping {y\y2,y3) := {xl,ex3,x2) is an isometry from 25(1,1) onto H2{yl,y2)xy2El{y3).
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Kokubu showed that every product minimal surface in the Riemannian product
E3(y\y2,y3) = E2(y\y2) xE'(i/3) is minimal in the warped product H2(yl,y2) xyiE(y3)

(see [4, Example 3.1]).

In particular, every (totally geodesic) plane ayl + by2+c = 0 in the Euclidean 3-space
K3(yl,y2,y3) is also minimal in this warped product. These planes are totally geodesic
in the warped product if and only if y1 = constant. Hence we notice that every plane
"re1 = constant" in (7(1, — 1) is a totally geodesic surface.

EXAMPLE 2.5. {H2 x^? S1) Take (HI, /J2) = (-2,1). Then the resulting homogeneous
space is R3 with metric eix*{dx1)2 + e~2x3(dx2)2 + (dx3)2. Under the coordinate transfor-
mation: {yl,y2,y3) := {x2,ex* ,xl), this homogeneous space is represented as the warped
product H2 XfE with base

H2 = e R2 | y2 > 0}, {(rfy1)2 + (dy2)2}/(y2)2),

standard fibre E1 = (R(y3), (dy3)2), and the warping function f{yl,y2) = (y2)2. This
metric induces a Riemannian metric x»n the coset space G(-2, l)/r(—2,1), where the
discrete subgroup -T(-2,1) is {(27m,0,0) G G(-2,1) | n G Z}. Kokubu has shown that
the catenoid in Euclidean 3-space G(0,0) is naturally regarded as a minimal surface in
G ( - 2 , l ) / r ( - 2 , l ) ([4, Example 3.3]). Note that the helicoid z

= ta,n~1(y/x) in Euclidean 3-space is naturally regarded as a "rotational" minimal sur-
face in E(2)/T, where E(2) is the universal covering of the Euclidean motion group
£•(2) with flat metric and F is the discrete subgroup defined by F := {(0,0,2nn) n
6 Z}. (See [3, p. 83].)

EXAMPLE 2.6. Let D be the distribution spanned by t\ and e2. Since [ei,e2] = 0,
this distribution is involutive. Now let M be the maximal integral surface of D through
a point (XQJXQI^O)- Then (2.4) implies that M is flat and of constant mean curvature
{Hi + ni)/2. Moreover, one can check that this maximal integral surface is the plane
-r3 — r 3

X — XQ.

(1) If (fj.\, fj.2) — (0,0) then M is a totally geodesic plane.

(2) If /ii = fj.2 = c ± 0. Then M is a horosphere in the hyperbolic 3-space
H3(-c2).

(3) If fj,\ = —fjt2 ^ 0. Then M is a non-totally geodesic minimal surface.

REMARK 2.2. Let Gr2(TG) the Grassmann bundle of 2-planes over the Lie group
G = G(HI,(JQ). Take a nonempty subset E of Gr2(TG). A surface M in G is said to be
an E-surface if all the tangent planes of M belong to E. The collection of E-surfaces
is called the ^.-geometry. In particular, if E is an orbit of G-action on Gr2(TG), then
E-geometry is said to be of orbit type. Now we regard G as a homogeneous space G/{E}.
Then every G-orbit in Gr2(TG) is a homogeneous subbundle of Gr2(TG). Hence the orbit
space is identified with the Grassmann manifold Gr2(g(/zi,/i2)). Take a unit vector W
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in the Lie algebra g(/ii,//2) &nd denote by Hw the linear 2-plane in 0(^1,^2) orthogonal
to W. Let O(W) the orbit containing Uw. Recently, Kuwabara [6] investigated O(W)-
surfaces in G(^i,/^2) with pi = - / i 2 ^ 0.

3. INTEGRAL REPRESENTATION FORMULA

Here we recall the integral representation formula obtained in the previous paper
[3].

Let M be a Riemann surface and (2), z) be a simply connected coordinate region.
The exterior derivative d is decomposed as

with respect to the conformal structure of M. Take a triplet {uil, UJ2 , u>3} of (l,0)-forms
which satisfies the following differential system:

(3.1) du* = muji A UJ3 , i= 1,2;

(3.2) dw3 = HHJ1 A w1 + /j2w
2

PROPOSITION 3 . 1 . Let {w\w 2 ,w 3 } be a solution to (3.1)-(3.2) on a simply
connected coordinate region £). Then

<p(z,z) = 2 Re(e^ix (z>2) -w\e^x {z'z)
 -UJ2,CJ3)

J ZQ

is a harmonic map ofT) into G{^\, /i2). Conversely, any harmonic map ofD into
can be represented in this form.

Equivalently, the resulting harmonic map ip{z,I) is defined by the following data:

(3.3) w1 = e-"ix3xl
z dz, w2 = e'^xl dz, w3 = x\ dz,

where the coefficient functions are solutions to

(3 5) x3- + u i e " 2 ^ 1 1 3 ! 1 ! ! + / i2e~2 M 2 l 3x2i- = 0

COROLLARY 3 . 1 . Let {W\LJ2,LJ3} be a solution to

(3.6)

(3.7) w 1 ® ^ 1 + w2 <8> w2 + w3 ® w3 = 0

on a simply connected coordinate region 35. Then

¥>(*,«) = 2

https://doi.org/10.1017/S0004972700035401 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035401


370 J-I. Inoguchi [6]

is a weakly conformal harmonic map of!) into G(/J,I,H2). Moreover <p(z,J) is a minimal
immersion if and only if

LJ1 <g> W 1 + LJ2 <S> W 2 + UJ3 <g> W 3 ^ 0 .

In particular for the product space E1 x H2, we have the following result.

COROLLARY 3 . 2 . Let {u1, w2, w3} be a solution to

(3.8) ~dul = 0, dw2 = cw2 A u3;

(3.9) w 1 ® ^ 1 + w2®w2+w3®a>3 = 0

on a simply connected coordinate region 2). Then

(3.10) </>(*,*) - 2 fZRe{cj\ecx3^ • LJ2,UJ3)

Jzo

is a weaidy conformal harmonic map of 13 into the product space G(0,c). Moreover
ip(z,~z) is a minimal immersion if and only if

(3.11) w1 ® w1 + w

REMARK 3.1. The representation formula for minimal surfaces in G(0,1) = E1 x H2

obtained by Mercuri-Montaldo-Piu [7, Theorem 5.1] coincides with (3.10). In [7], they
assumed that the data (a;1,^2,^3) satisfies (3.8), (3.9), (3.11) and the equation:

(3.12) db}3=u2Aws.

However the equations (3.8)-(3.9) imply (3.11)—(3.12) under the assumption: there are
no points on 2) on which both a;3 and duz vanish (see [5, Lemma 4.5]).

4. T H E NORMAL GAUSS MAP

Let (p : M -> G(/ii,^2) be a conformal immersion. Take a unit normal vector field
TV along (p. Then, by the left translation we obtain the following smooth map:

1> — (p~l • N : M -+ S2 C gbiu/ia).

The resulting map ip takes value in the unit sphere in the Lie algebra g^i , /^) - Here,

via the orthonormal basis {E\,E2,E{\, we identify g(/xi,/i2) with Euclidean 3-space

E ^ u ' . u 2 ^ 3 ) .

The smooth map ip is called the normal Gauss map of (p.

Let (p : £) -> G(/j.i,fi2) be a weakly conformal harmonic map of a simply connected

Riemann surface 2) determined by the data (w1, W2,UJ3). Express the data as a/ = <p{ dz.

Then the induced metric / of tp is
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Moreover these three coefficient functions satisfy

(4.1) ( ^ ) 2 + (<£2)2 + ( ^ ) 2 = 0.

The harmonic map p is a minimal immersion if and only if

(4.2) |^ | 2 + I^|2 + |03|2^O.

Here we would like to remark that <j>3 is identically zero if and only if cp is a plane
x3 = constant. (See Example 2.6.) As we saw in Example 2.6, tp is minimal if and only
if ni + (i2 = 0.

Hereafter we assume that 03 is not identically zero. Then we can introduce two
mappings / and g by

(4.3) / ^ ^

By definition, / and g take values in the extended complex plane C = C u {oo}. Using
these two C-valued functions, <p is rewritten as

<p(z,z) = 2J* Re(e<"*3i/(1 - g2), e"^^f(l + g2), fg) dz.

The normal Gauss map is computed as

Under the stereographic projection V : 52\{oo} c g(/ii, ^2) —»• C :— REi +RE2, the
map ip is identified with the C-valued function g. Based on this fundamental observation,
we call the function g the normal Gauss map of <p. The harmonicity together with the
integrability (3.4)-(3.5) are equivalent to the following system for / and g:

(4.4) g = i|/
(4.5) I = -i{Mi(l + 52)(1 - f) + Ml ~ 52)(1 + t)}l-

THEOREM 4 . 1 . Let f and g be a C-vaiued functions which are solutions to the

system: (4.4)-(4.5). Then

(4.6) v>(z, z) = 2 £ Re(e^3i/(1 - g2), e^^f(l + g% fg) dz

is a weakly conformal harmonic map of%) into
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PROOF: Since the harmonicity together with integrability is equivalent to (4.4)-

(4.5), Proposition 3.1 implies the result. D

EXAMPLE 4.1. For the space form G(c,c) of curvature -c 2 , (4.4)-(4.5) reduces to

% =-c\ff\g\2g, | = -f/(l-M4)-

In particular, for Euclidean 3-space, we have

In the case of hyperbolic 3-space H3(—c2), one can deduce that g is a solution to
the partial differential equation:

(47)
dzdz l-lgfdzdz

The equation (4.7) means that g is a harmonic map into the extended complex plane
C(w) with singular metric (so-called Kokubu metric) dwdw/(l — |to|4).

EXAMPLE 4.2. For G(l, -1) = £7(1,1), (4.4)-(4.5) reduces to

EXAMPLE 4.3. For G(0,c), f and g are solutions to

EXAMPLE 4.4. Assume that /j,i / 0. Take the following two C-valued functions:

Then / and g are solutions to (4.4)-(4.5). By the integral representation formula, we
can see that the minimal surface determined by the data (/, g) is a plane x2 — constant.
Note that this plane is totally geodesic in (7(1, —1).

EXAMPLE 4.5. Consider the product space G(0,1), and take the following two functions

/ and g defined on R2.

yf^lU - 1) _ tan(2y)(cos(2z) +sin(2y)) + %/^Tsin(2z)
2 ~ 2-sin(2(ar-y)) + sin(2(i + i/)) '

2
l - 5 2 = - , z = x+ y/^Ty.

Then (/, g) is a solution to (4.4)-(4.5). Moreover it is easy to see that <f>1 = 1, {<j>2)2

+ (<j>3)2 — — 1. One can check that the minimal surface determined by the data (/, g) is
the minimal helicoid in the sense of Nelli and Rosenberg [8] (See also [7, Example 5.2]).
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R E M A R K 4 . 1 . In [7], the following two auxiliary functions were introduced.

G2=f-, H = 5 - G .

Then we have
<j>1 = G 2 - H 2 , <f>2 = N / ^ T ( G 2 + H 2 ) , <? = 2 G H .

These functions are solutions to the system:

H2)(G2 - H2) + M 2 (G 2 - H2)(G2 + H2)}
2G

The integral representation formula is rewritten as

<p{z,t) = 2 [' Re (e" l l 3 (G 2 - H 2 ) , ̂ T e « x 3 ( G 2 + H 2 ) , 2 G H ) dz.

In [1], Berdinskii and Taimanov obtained a Weierstrass type representaion for min-
imal surfaces in Sol in terms of spinors and Dirac operators.
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