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MINIMAL SURFACES IN 3-DIMENSIONAL
SOLVABLE LIE GROUPS II

JUN-ICHI INOGUCHI

An integral representation formula in terms of the normal Gauss map for minimal
surfaces in 3-dimensional solvable Lie groups with left invariant metric is obtained.

1. INTRODUCTION

In the previous paper [3], we obtained an integral representation formula for minimal
surfaces in the 3-dimensional solvable Lie group:

G(,Uq, I'l'ﬁ) = (Ra(zlv 223 1'.3)7 g(ul,yz)):
with group structure
(z!,22,2% - (3,75, 3°) = (2! + M%7, 2% + 4732, 1% + T°)

and metric
I pin) = € 217 (dz1)? + e~ %22° (dz?)? + (dz®)2.

This two-parameter family of solvable Lie groups contains the following particular exam-
ples: Euclidean 3-space E?, hyperbolic 3-space H3 and Euclidean motion group E(1,1).
Moreover, G(0,1) is isometric to the Riemannian direct product H? x E! of hyperbolic
2-space and the real line E.

In this paper, we investigate the normal Gauss maps for surfaces in G(u,, 2) and
reformulate the integral representation formula of (3] in terms of the normal Gauss map.

On the other hand, study of minimal surfaces in the reducible Riemannian symmetric
space H? x E! has been started very recently by Rosenberg and his collaborators. See
(9, 10].

In a recent paper [7], Mercuri, Montaldo and Piu obtained an integral representation
formula for minimal surfaces in H? x E! ([7, Theorem 5.1]). Their formula coincides
with our formula for G(0,1). Thus our formula is a unification of Gées-Simdes—~Kokubu
formula (2, 5] and Mercuri-Montaldo-Piu formula [7].
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2. SOLVABLE LIE GROUP

In this paper, we study the following two-parameter family of homogeneous Rieman-
nian 3-manifolds;

(21) {(Ra(zlizz,xs)’g(uhﬂz)) I (/1'1)/1'2) € Rz}’

where the metrics g(,, ,,) are defined by
2.2) G ) -= €17 (dz)? + €727 (dz?)? + (dr?)2.
(B1,02)

Each homogeneous space (R?, g(u, ;) is realised as the following solvable matrix Lie
group:

0 em® 0 gl

Glu,p2) =4 |0 0 e g2

0 o0 0 1

2z, 2’ e R

The Lie algebra g(u1, p2) is given explicitly by

0 0 0 ¢

0 ,u1y3 0 yl 1.2 3
2.3 o) = 2, R
(2.3) g(m, p2) 0 0wyt 2| VY €

0 0 0 1

Then we can take the following orthonormal basis {Ey, Ey, E3} of g(u1, u2):

0000 0000 00 0 1
0001 0000 0w 0 O
E: ,E: , 3 =
! 00002 oo o] 0 0 pp O
0000 0000 00 0 0

Then the commutation relation of g is given by
[E1, Ea) =0, [Ey, B3] = —poE,, [Es, By = mEh.

Left-translating the basis { £, E2, E3}, we obtain the following orthonormal frame field:
23 0 0

s 0
_— pHtT — pM —
e =e€ €y =€ €3 = .
oz?’ Oz3

ozt’
The Levi-Civita connection V of G(u, y,) is described by

Veer = pmes, Ve =0, V€3 =—pe,
(24) Vegel = O) vezeQ = U2€g3, ve;,vef! = —Ha€9,

Vee1 = Ve,e0 = Voe3 = 0.
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ExaMPLE 2.1. (Buclidean 3-space) The Lie group G(0,0) is isomorphic and isometric
to the Euclidean 3-space E® = (R?, +).

EXAMPLE 2.2. (Hyperbolic 3-space) Take p; = py = ¢ # 0. Then G(c,c) is a warped
product model of the hyperbolic 3-space:

H3 (=) = (R¥(z*, 2%, %), e72" {(dz")? + (dz*)?} + (dz?)?).
This matrix group model G(c, ¢) is used by Gdes—Simdes {2] and Kokubu [5].

ExAMPLE 2.3. (Riemannian product H%(—c?) x E!) Take (u1, p2) = (0,c) with ¢ # 0.
Then the resulting homogeneous space is R? with metric:

(dz')? + €72 (dz?)? + (dz®)2.

Hence G(0,c) is identified with the Riemannian direct product of the Euclidean line
E!(z!) and the warped product model

(R?(2?,5°), 672" (dz?)? + (da®)? )
of H?(—c?). Thus G(0,¢) is identified with E! x H?(—c?).

EXAMPLE 2.4. (Solvmanifold) The model space Sol of the 3-dimensional solvegeomnetry
[11} is G(1, —1). The Lie group G(1, —1) is isomorphic to the Minkowski motion group

e 0 =z!
EQ1,1) := 0 e 2| |z,2%z%€R
0 0 1

The full isometry group is G(1, —1) itself. The homogeneous space

is the only proper simply connected generalised Riemannian symmetric space of dimen-
sion 3. Here E is the identity matrix.

REMARK 2.1. Let H?(y;,y2) be the upper half plane model of the hyperbolic 2-space
of constant curvature —1:

HY (' 9?) = ({(s'97) € R®| 42 > 0}, {(dy")® + (@*)*}/ (&)%)
Consider the warped product H2(y', 4?) x,2 E!(y*) with warped product metric
(dy')? + (dy?)?
(¥?)?
Then it is easy to verify that this warped product is isometric to E(1,1). In fact, the
mapping (¥, 3% 3°) := (z!,€%’, z%) is an isometry from E(1,1) onto H2(y',4?) x,2 E'(3°).

+ (¥%)*(dy®)%.
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Kokubu showed that every product minimal surface in the Riemannian product
E3(y', v%, ) = E*(y!,y?) x E'(3®) is minimal in the warped product H?(y', y?) x,2 E(3%)
(see [4, Example 3.1]).

In particular, every (totally geodesic) plane ay! +by*+c = 0 in the Euclidean 3-space
E3(y*, y?,¥?) is also minimal in this warped product. These planes are totally geodesic
in the warped product if and only if y' = constant. Hence we notice that every plane
“zl = constant” in G(1, —1) is a totally geodesic surface.

EXAMPLE 2.5. (H?x(y22 S') Take (1, pi2) = (—2,1). Then the resulting homogeneous
space is R3 with metric %=’ (dz')2 + e 2%° (dz?)? + (dz®)2. Under the coordinate transfor-
mation: (y!,y? %) := («?,€%,2!), this homogeneous space is represented as the warped
product H? x; E with base

H? = ({(y‘,yz) €R’| y* >0}, {(dy')* + (dy")z}/(yz)z),

standard fibre E! = (R(y?%), (dy®)?), and the warping function f(y!,y?) = (y?)2. This
metric induces a Riemannian metric on the coset space G(—2,1)/I'(-2,1), where the
discrete subgroup I'(—2,1) is {(27n,0,0) € G(~2,1) | n € Z}. Kokubu has shown that
the catenoid in Euclidean 3-space G(0,0) is naturally regarded as a minimal surface in
G(-2,1)/I'(-2,1) ([4, Example 33)). Note that the helicoid =z
= tan~!(y/z) in Euclidean 3-space is naturally regarded as a “rotational” minimal sur-
face in E(2)/T, where E(2) is the universal covering of the Euclidean motion group
E(2) with flat metric and T is the discrete subgroup defined by T := {(0,0,2mn) n
€ Z}. (See (3, p. 83].)
EXAMPLE 2.6. Let D be the distribution spanned by e; and e,. Since [e1,e2] = 0,
this distribution is involutive. Now let M be the maximal integral surface of D through
a point (z3,z2,z3). Then (2.4) implies that M is flat and of constant mean curvature
(m1 + p2)/2. Moreover, one can check that this maximal integral surface is the plane
1 =z}.

(1) If (pt1, p2) = (0,0) then M is a totally geodesic plane.

(2) I py = po =c#0. Then M is a horosphere in the hyperbolic 3-space

H3(=c?).
(3) If gy = —pg #0. Then M is a non-totally geodesic minimal surface.

REMARK 2.2. Let Gry(T'G) the Grassmann bundle of 2-planes over the Lie group

G = G(p, p2). Take a nonempty subset ¥ of Gry(TG). A surface M in G is said to be
an ©-surface if all the tangent planes of M belong to . The collection of X-surfaces
is called the L-geometry. In particular, if £ is an orbit of G-action on Grz(T'G), then
¥-geometry is said to be of orbit type. Now we regard G as a homogeneous space G/{E}.
Then every G-orbit in Gry(T'G) is a homogeneous subbundle of Gry(T'G). Hence the orbit
space is identified with the Grassmann manifold Grz(g(u1, 2)). Take a unit vector W
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in the Lie algebra g(u;, 12) and denote by Iy, the linear 2-plane in g(p, 2) orthogonal
to W. Let O(W) the orbit containing Il . Recently, Kuwabara [6] investigated O(W)-
surfaces in G(uy, pa) with py = —poy # 0.

3. INTEGRAL REPRESENTATION FORMULA

Here we recall the integral representation formula obtained in the previous paper

(3]
Let M be a Riemann surface and (D, z) be a simply connected coordinate region.
The exterior derivative d is decomposed as

0 = 0
gdz, 0= —é%df,

with respect to the conformal structure of M. Take a triplet {w!,w?, w3} of (1,0)-forms
which satisfies the following differential system:

d=0+0, 8=

(3.1) 0wt = pwi AW®, i =1,2;

0w® = ' AW + pow? A w2

PrROPOSITION 3.1. Let {w!,w? w3} be a solution to (3.1)-(3.2) on a simply
connected coordinate region ©. Then

¥4
cp(z,E) — 2/ Re(emz3(z,z) .wl’ e#zza(z,i) -wz,w:‘)

Z0

is a harmonic map of © into G(u, p2). Conversely, any harmonic map of © into G (1, 12)
can be represented in this form.

Equivalently, the resulting harmonic map ¢(z,%) is defined by the following data:
-3, 1 2 ~uyzd

(3.3) w'=eMTz dz, W =eMT 22dz, W =13 de,

where the coefficient functions are solutions to

(3.4) Tz — milEizr + 232)) =0, (i=1,2)

(3.5) 3 + ﬂle'Q“"inzé + pge~ 2% 252 =
CoROLLARY 3.1. Let {w! ,w? w3} be a solution to

Ow' = i Awd, i =1,2;

Wew +w?uW+uwew =0
on a simply connected coordinate region ©. Then

z
p(z,Z) = 2/ Re(e“"a("f) w!, 2=’ (2:3) ~w2,w3)

20
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is a weakly conformal harmonic map of D into G(u,, p2). Moreover ¢(z,%) is a minimal
immersion if and only if
R+ W@ +uwP®uwd £0.
In particular for the product space E' x H?, we have the following result.
CoROLLARY 3.2. Let {w!,w? w®} be a solution to
(3.8) 0w' =0, dw? = cw? Aw?;
(3.9) WRuw +w@uwl+uwiewl=0
on a simply connected coordinate region ©. Then

(3.10) 0(2,%Z) = 2/ Re(w!, e* 9 . (2 %)

20
is a weakly conformal harmonic map of D into the product space G(0,c). Moreover
(z,%) is a minimal immersion if and only if
(3.11) W @wl +w? @uw? +w @ wd # 0.

REMARK 3.1. The representation formula for minimal surfaces in G(0,1) = E! x H?
obtained by Mercuri-Montaldo-Piu [7, Theorem 5.1} coincides with (3.10). In [7], they
assumed that the data (w!,w?, w?) satisfies (3.8), (3.9), (3.11) and the equation: °

(3.12) dw® =w? A2,

However the equations (3.8)-(3.9) imply (3.11)-(3.12) under the assumption: there are
no points on D on which both w? and 8w? vanish (see [5, Lemma 4.5]).

4. THE NORMAL GAUSS MAP

Let ¢ : M — G(u, p2) be a conformal immersion. Take a unit normal vector field
N along . Then, by the left translation we obtain the following smooth map:

Yi=¢"l-N:M— 5% C g(u, p).

The resulting map 1 takes value in the unit sphere in the Lie algebra g(u;, u2). Here,
via the orthonormal basis {E}, E,, E3}, we identify g(u1, u2) with Euclidean 3-space
E3(u!, u?, ud).

The smooth map v is called the normal Gauss map of .

Let ¢ : ® = G(u1, po) be a weakly conformal harmonic map of a simply connected
Riemann surface © determined by the data (w?,w?,w?®). Express the data as w' = ¢ dz.
Then the induced metric I of ¢ is

3
I= 2(Z|¢"|2) dzdz.

i=1
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Moreover these three coefficient functions satisfy

0 _ & p 08 ‘
L=l S = wF e, =
i=1

(4.1) ()+@W+w)=u

The harmonic map g is a minimal immersion if and only if
(4.2) |61 + %> + |°] # 0.

Here we would like to remark that ¢® is identically zero if and only if ¢ is a plane
z® = constant. (See Example 2.6.) As we saw in Example 2.6, ¢ is minimal if and only
if 1+ o = 0. v

Hereafter we assume that ¢* is not identically zero. Then we can introduce two
mappings f and g by

3

4.3 =gl — V/—1¢? = ——-¢ .

By definition, f and g take values in the extended complex plane C = C U {c0}. Using

these two C-valued functions, ¢ is rewritten as

v-1
2

P(2,2) =2 / , Re(en7'21(1~ ), e Y0 11+ 62), fo) dz

zp

The normal Gauss map is computed as

¥(z,7) = (2Re(9) By +2Im(9) B + (lgf° — 1) Bs ).

1
1+|gf?
Under the stereographic projection P : $2\ {oo} C g(u1, #2) = C := RE, +RE,, the
map ¥ is identified with the C-valued function g. Based on this fundamental observation,
we call the function g the normal Gauss map of ¢. The harmonicity together with the
integrability (3.4)—(3.5) are equivalent to the following system for f and g:

(4.4) ?—lm%wl—-)um+fn,

3} . =

5;' = _Z{l»"l(l +99)(1 -7 +p(1 - g1+ 7))}
THEOREM 4.1. Let f and g be a C-valued functions which are solutions to the
system: (4.4)—(4.5). Then

(4.5)

J;—lf(l +9%),fg)dz

(4.6) 0(2,Z) =2 /z Re(e“”a%f(l — g%, "™

20

is a weakly conformal harmonic map of D into G(u, ).
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PROOF: Since the harmonicity together with integrability is equivalent to (4.4)-
(4.5), Proposition 3.1 implies the result. 0

EXAMPLE 4.1. For the space form G(c, c) of curvature —c?, (4.4)-(4.5) reduces to

o -
L= —cirpioPs, 92 =~57(1- lot)

In particular, for Euclidean 3-space, we have
of _99 _
9z~ 0z
In the case of hyperbolic 3-space H*(—c?), one can deduce that g is a solution to
the partial differential equation:

g  2lg’g 9909 _

@7) 5207 " T-[g[i 0207

The equation (4.7) means that g is a harmonic map into the extended complex plane
C(w) with singular metric (so-called Kokubu metric) dwdw/(1 ~ |w|*).

ExaMmpPLE 4.2. For G(1,-1) = E(1,1), (4.4)—(4.5) reduces to
Of ;2. Og 1 — =
5z = W9 z==—30+9l¢-9)f.

EXAMPLE 4.3. For G(0,c¢), f and g are solutions to

\ _
o~ Lyra+s, Z=-Sa-a0+7T

EXAMPLE 4.4. Assume that pu; # 0. Take the following two C-valued functions:
V-1
fz—-—_ , gz“v—l
w(z +7)

Then f and g are solutions to (4.4)-(4.5). By the integral representation formula, we
can see that the minimal surface determined by the data (f, g) is a plane 22 = constant.
Note that this plane is totally geodesic in G(1, —1).

ExXAMPLE 4.5. Consider the product space G{0, 1}, and take the following two functions
f and g defined on R2.

V=1(f—1) _ tan(2y)(cos(2z) + sin(2y)) + v—1sin(2z)

2 - 2 —sin(2(z — y)) +sin(2(z + y)) ,
1_gz=% z=z+V-1y.

Then (f,g) is a solution to (4.4)-(4.5). Moreover it is easy to see that ¢! = 1,(¢?)?
+ (¢%)2 = —1. One can check that the minimal surface determined by the data (f, g) is
the minimal helicoid in the sense of Nelli and Rosenberg [8] (See also [7, Example 5.2]).
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REMARK 4.1. In [7], the following two auxiliary functions were introduced.

Then we have
¢' = G* - H?, ¢* = V—1(G?+ H?), ¢° =2GH.

These functions are solutions to the system:

H -2
G. = 5 {m(@ -H) - (G* + H)},

1 —_ — s —
H: = 5 {m(G + H?) (G’ - HY) + (G2 - H)(G' + HY)}
H? =2 =
+5={m(G - H') - 4p(G* + H)}.
2G
The integral representation formula is rewritten as

2z
o(z,Z) = 2/ Re(e"* (G2 — H?), V—1e2**(G? + H?),2GH) dz.
29
In [1], Berdinskii and Taimanov obtained a Weierstrass type representaion for min-
imal surfaces in Sol in terms of spinors and Dirac operators.
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