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ABSTRACT. To provide engineers with a better tool, we have developed a program for avalanche 
computation. Mter a brief description of the mathematical model and the assumptions, we describe influence 
of physical and numerical parameters, which allows a better understanding of the physical phenomenon 
which we call an avalanche. The satisfactory agreement between computations and observations allows us to 
assume that the model is well founded; further experiments will allow us to improve this simulation tool. 

REsuME. Simulation numerique des avalanches. Pour donner aux ingenieurs un meilleur outil, nous avons 
developpe un programme permettant le calcuI des avalanches. Apres une breve description du modele 
mathematique et des hypotheses faites nous decrivons I'influence des parametres numeriques et physiques, 
ce qui perm et une meilleure comprehension du phenomene physique qu'est I'avalanche. Une excellente 
concordance entre les calculs et les observations nous permet de conclure que le modele est bien adapte. 
D'autres experiences nous mettront en mesure d'ameliorer cet instrument de simulation. 

ZUSAMMENFASSUNG. Numerische Simulation von Lawinen. Als Hilfe fUr ingenieurtechnische Massnahmen 
wurde ein Program m zur Berechnung von Lawinen entwickelt. Nach einer kurzen Beschreibung des 
mathematischen Modells und seiner Voraussetzungen wird der Einfluss physikalischer und numerischer 
Parameter behandelt, woraus sic:h ein klares Verstandnis fur den physikalischen Vorgang der Lawinenbildung 
ergibt. Die hinreichend gute Dbereinstimmung zwischen Rechnung und Beobachtung weist auf die hohe 
Wirklichkeitsnahe des Modells hin. Durch weitere Versuche kann dieses Hilfsmittel der Simulation noch 
verbessert werden. 

I. INTRODUCTION 

It is becoming more and more evident that specific quantitative data must be available 
in order to characterize snow-avalanche phenomena. The growing urbanization of mountain 
areas is accompanied by intensified construction and interconnecting communication routes; 
as a result, a considerable number of people have been led to live and travel in avalanche
prone zones. In addition, formerly established villages where inhabitants used to accept a 
residual risk with fatalism, are now demanding that government bodies provide shelter from 
any danger. 

In practical terms, the specialist must be able to answer two types of question. One 
requirement is determining the specific local area of risk, in other words defining the zones 
where there is no danger, which means a zone where avalanche action however minimal 
during a certain characteristic time period, which is represented by the period during which 
the climate is stable, is of negligible probability. A second requirement is the ability to 
estimate the overloads which a given "building" may- be subjected to within the doubtful zone 
(this could refer to a bridge, roadway, "passive" protection structure, etc.). 

The term "avalanche" is used to refer to a number of rather different kinds of snow flow. 
The ability to define a powder-snow avalanche, an aerosol consisting of snow which is 
pulverized in air (Hopfinger and Tochon-Danguy, 1977), is more or less established. As an 
extreme case, melted-snow avalanches consist of wet snow and are characterized by a quasi
laminar type flow. This type of avalanche is much slower and considerably more dense. As an 
intermediate case, and depending upon the original state of snow, we find complex flow, 
generally of a multi-strata nature, and composed of air and ice, characterized by varying 
degrees of turbulence, density, and velocity. 
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When confronted with an unexplored physical phenomenon, it is possible to consider two 
approaches-the analogical approach and the numerical approach. The first approach lends 
itself well to visualization and has enabled marked progress to be made in the field of powder
snow avalanches (Hopfinger and Tochon-Danguy, 1977) where engineers presently have 
interesting quantitative data at their disposal. 

The second approach enables a high degree of flexibility in utilization due to the fact that 
it allows extensive analysis of the sensitivity to poorly defined parameters. We consider this 
approach to be particularly well adapted to the study of melted-snow avalanches and certainly 
useful in the case of other types of avalanche, provided that the role played by friction with 
ambient air is limited. We can associate this type of approach with the previous simplified 
models elaborated by Voellmy (1955) and Kozik (1962) which have been of great service. 

Modern methods of calculation (Mahmood and Yevjevich, 1975) make it possible to 
envisage more complex numerical models which more closely define the physical reality being 
studied. 

2. MATHEMATICAL MODEL 

2.1. Description of an avalanche 

A schematic representation of the reality being studied is necessary for mathematical 
modelling. Couloir geometry is defined by a series of cross-sections, in other words the 
intersections of planes which are perpendicular to the line of greatest slope with respect to 
terrain relief. That schematization (Fig. I) allows us to represent a one-dimensional flow. 

Fig. I. Diagram showing schematic representation of couloir cross-section. 

Let s be the wet area, l the width at the surface, h the snow depth, and R the hydraulic 
radius. Then in order at least partially to escape from the restrictions due to the indeterminate 
value of snow density p during flow, we consider the variables S = ps (units kg/m), H = ph 
(units kg/m'), and P = VS (units kg/s). The variable P represents snow flow rate; Vis the 
average velocity of flow in the section parallel to the couloir axis. In such a model, we are not 
attempting to define the exact distribution of specific speeds at a given moment, as this would 
entail too much; we aloe calculating an average speed. Subsequent exploitation of our results 
requires that this be taken into account. 

In addition, we have schematized the sections in the following theoretical form: 

s = khn, 

where k and n are variables along the couloir axis. 

2.2 . Hypotheses 

We suppose the free surface to be horizontal in a cross-section and, connected with this, 
the distribution of pressures to be hydrostatic. These suppositions are an absolute requirement 

https://doi.org/10.3189/S0022143000011242 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000011242


NUMERICAL SIMULATION OF AVALANCHES 79 

for the derivation of simple equations. During flow, snow density varies as a function of snow 
speed and depth. As we do not know this law, we have tested the following form of variation : 

Po 
P = I +o:(V- Vo) , 

where Po is the density at rest, Vo the threshold speed at which P varies, and 0: the coefficient 
of variation. This obviously questionable law was introduced to attempt to quantify the 
influence of density. 

Friction is represented in the form ofa polynomial in V: Fp =fs+f I V+ ftV2 in which the 
three terms traditionally represent static friction, laminar friction, and turbulent friction. The 
coefficients of friction are selected on an a priori basis as a function of couloir roughness and 
geometry. 

2.3. Equations 

Flow equations for snow can be established by simple balance considerations. Conservation 
of the snow mass in motion requires 

as op 
at+ ox = o. 

The momentum equation can be written 

OP _ 2P as + [gh _ P2] as = gS sin t/J + gh ( OS) h 
ot S at n S2 ox n ox 

= const - [fsgS cos t/J +fig ;2 + ftg:~] . 

These equations apply to the entire flow with the exception of the frontal zone, for which we 
use equations of the "mobile jump" type; continuity implies 

W(S-So) = P, 

and dynamics give 

P( W - V) = +g (Sh-Soho) , 
n I 

where W is the advance velocity of the avalanche front and So the entrainment of existing 
snow by flow at the front level. The dynamic equation is obtained by means of a supple
mentary hypothesis being that pressure forces are preponderant and that friction at the bank 
as well as gravity in the frontal zone do not have to be taken into consideration. Eliminating 
W between the two front equations gives an equation F (P, S) = 0 which can be used as a 
boundary condition for up-stream flow. Front velocity W is computed using the continuity 
equation after solving the flow equations. 

2.4. Boundary conditions- initial conditions 

Activation of flow when the avalanche starts is calculated by a mass-balance equation and 
an approximation of velocity. The free surface, in fact, is not horizontal in the section of the 
avalanche at its origin. On the other hand, as soon as there is a question of motion, this 
hypothesis becomes valid. Total snow mass, therefore, is considered with the context of 
motion applied (surface area of the point of origin times average depth of snow times apparent 
density of in-place snow) and snow depth is calculated for each flow cross-section in order to 
conserve this mass. The Voellmy formula is used to approximate velocity. The variability of 
initial conditions has little relevance to the following stages of the calculation, provided that 
the mass-balance equation is respected. 
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The phenomenon of snow entrainment up-stream of the avalanche front is not well known, 
and the mathematical model elaborated schematizes this recovery with the supposition that a 
given snow depth ho (provided by the user in each section) is completely recovered at the 
avalanche front level (Fig. 2, diagram CD). 

Fig. 2. Method of entrainment of snow ~v aualanche front assumed in the model (left) and as it is thought to occur in physical 
reality (right). 

Actual entrainment is more probably gradual, in other words, partial recovery at the 
avalanche front level followed by recovery through the action of the snow in motion (Fig. 2, 

diagram (2)). Through the intermediary of equations expressing the front, this recovery 
represents the down-stream limit condition of the model. We consider snow flow rate to be 
zero up-stream. 

2.5. Solution 

For solution of the system of partial differential equations we have selected a method using 
finite differences with an implicit solution. This type of method is commonly used in the 
mechanics of fluids It allows us to calculate the progression of the variables Sand P at each 
point in time. For a simulation, the computer program requires 16000 words, 1.5 min using 
an Iris 80 (C II ) computer, which represents a total cost of approximately 75 F.Fr. This 
limited cost makes it possible to perform any simulations required using different coefficient 
values and snow-data elements. 

3. ApPLICATIONS 

3. I. Sensitivity analysis 

In order to test how the model functions and the influence of the various hypotheses, we 
have conducted several simulations which make it possible to isolate the fundamental ideas 
required for comprehension of avalanche phenomena. The values of the coefficients used and 
of the geometry are given in Tables I and II respectively. 

Friction 

Figures 3 and 4 clearly show that, depending on the value selected, the model can give 
extremely varied results The approach based on expressing friction in terms of a polynomial 
necessitates a setting of three coefficients and therefore the obligation to develop experience 
through comparison with observations. We consider this to be indispensable, and clearly 
Figure I demonstrates the influence of static friction on avalanche advance, which tends to 
prove that the period of time during which the snow is driven at high velocity (at a given 
abscissa) is limited in relation to the duration of flow. Figure 2 demonstrates the high degree 
of sensitivity obtained with the value assigned to the turbulent friction coefficient.fi for the 
velocity of advance of the front. 
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TABLE I. VALUES OF COEFFICIENTS 

Avalanche 
No. Is f roJjd " 

I 0.2 0 5 0 
2 0.2* 0 5 0 
3 0.2t 0 5 0 
4 0.2* 0 30 0 
5 0.2* 0 15 0 
6 0.2* 0 5 0 
7 0.2* 0 5 0 
8 0.2* 0 5 0.1 
9 0.2* 0 5 0·3 

10 0.2* 0 5 0.6 
II 0.2* 0 5 0·3t 
12 0.2* 0 5 0·3 
13 0.2* 0 5 0·3 
14 0.2* 0 5 0.1 
IS 0.2* 0 5 0.1 
16 0.2* 0 5 0.1 
17 0.2* 0 5 0.1 
18 0.2* 0 5 0.1 

• Or 0 if V > 3. 
tOr 0 if V> 6. 
t Vo = 0.6. 
§Then 3. 

TABLE 11. GEOMETRY 

Maximal height of starting zone: 790 m 
Minimal height of run-out zone: 340 m 
Inclination of starting zone: 32.5° 
Average inclination of avalanche path: 23.5° 
Area of starting zone: I.3 X 104 m' 
Length of starting zone: 205 m 
Depth of snow in the starting zone: 1.5 m 
Density of snow in the starting zone: 360 kg/ml 

Entrainment 
h 
m 

0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
2 
0.05 
2§ 
2§ 
0.05§ 
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These figures make it possible to prove that overall flow factors determine front velocity, 
which clearly establishes the value of complete simulation models. The static friction 
coefficient and depth of recovery largely determine avalanche stopping. 

Apparent density 

Model sensitivity (Fig. 5) is not as distinctive as with friction. In reference to observations, 
we consider it reasonable to apply an "avalanche no. I I" type law to represent this 
phenomenon. 

Geometry variations 

When the couloir widens abruptly, flow obviously does not strictly follow the banks. By 
analogy with hydraulic flow, we restrict widening to 15 0 angles in the form given in Figure 6; 
beyond this limit equations are no longer valid. It should be noted, however (Fig. 7), that an 
abrupt widening (avalanche no. 12) results in a sudden braking of avalanche advance. 
Widening and narrowings of the couloir slow down the advance of the avalanche front, but 
do not have much effect on avalanche velocity itself. As a result, it appears that variable 
geometry cannot be relied upon to restrict avalanche advance. For this purpose, breaks in 
slope are much more efficient. 
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Fig. 3. Influence of static friction coefficient fs on the flow curve ~f an avalanche. 
itfalls to zero ifv > 3 m/so For avalanche 3 itfalls to zero ifv > 6m/s. 

Depth of entrainment 

For avalanche I,fs = 0.2. For avalanche 2 

Insufficient knowledge of the stresses involved in contact between the avalanche and 
in-place snow, as well as the relation between the entrainment and the value of these stresses, 
have not enabled us to build a mathematical model representing this phenomenon. 
Avalanches 14 (2 m of entrainment) and 15 (5 m of entrainment) emphasize the importance 
of this parameter (Fig. 8). For a considerable entrainment, the avalanche is slower at the 
outset due to more energy being required to set the snow into motion, then it is launched and 
acquires a much higher speed. In addition to this, the extent of entrainment largely determines 
the zone in which the avalanche stops and consequently the localization of avalanches. 

Avalanche stopping 

There are two problematical elements with respect to avalanche stopping; the first is 
description of the flow: when an avalanche reaches a widened zone, it does not generally 
spread out over the entire width, but divides up into forks, the localization of which can be 
observed on site. In this case, simulation consists in considering all or part of the avalanche, 
and limiting its impact to the width of the fork. This simulation can be performed for any 
advisable hypotheses. The second difficulty resides in modelling how the avalanche stops 
itself; to do this we compare the forces in such a way that an inverse relationship is obtained; 
as soon as the force due to static friction exceeds the sum of the forces due to inertia, pressure, 
and gravity, the avalanche is stopped. 
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Fig. 4. Influence of the turbulent friction coefficient fd on the flow curve of an avalanche. For avalanche 4, fd = 30 X 10-3• 

For avalanche 5,fd = I5 X 10- 3. For avalanche 6,fd = 5 X 10-3• 
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Fig. 5. Influence of the coefficient of variation of apparent density IX on the flow curve of an avalanche. For avalanche 7, ex = o. 
For avalanche 8, ex = 0.1. For avalanches 9 and 11, IX = 0.3. For avalanches 10, IX = 0.5. In all cases except avalanche 
11, Vo = 0, and for avalanche 11, Vo = 6 m/so 
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~ ~_L~=-

Fig. 6. Diagram to show limiting widening for which the avalanche fo llows the banks. 

500 750 1000 

Fig. 7. Influence of the widening on the flow curve of an avalanche. For avalanche 12, the widening is abrupt. For avalanche 13, 
the widening is progressive. 

750 

Fig. 8. Influence of the depth of entrainment on the flow curve cif an avalanche. For avalanche 14, ho = 2 m. For avalanche 15, 
ho = 0.05 m. 
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Figure 9 shows avalanche stopping for three hypotheses about the depth of entrainment. 
A comparison of avalanches 16 and 17 show us how the stopping distance (avalanche 16, 
100 m; avalanche 17, 40 m) is determined by flow inertia; the first case is slow (v ~ 5 m /s) 
but the flowage represents a considerable mass; the second case is faster (v ~ 10 m/s) and 
lower in mass, which results in rapid deceleration. Finally, these two avalanches stop at 
approximately the same point. Avalanche 18 is a more particular case: a sharp variation in 
depth of entrainment causes it to stop suddenly, and in this case, "the wall of snow" plays the 
role of a dam. 

,4valanche Hi 

~ 

1100 1200 1300 

Fig. 9. Three cases of the termination of avalanches. Avalanche 16 encounters a progressive increase in the depth on entrainment 
up to ha = 3 m at x = 1 100 m. Avalanche 17 has a much slower increase in the depth if entrainment up to ha = 3 m 
at x = 1300 m. Avalanche 18 encounters an abrupt increase in the depth of entrainment from ha = 0.05 m to ho = 3 m 
at x = 1060 m. 
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3.2. Comparison with other models 

We have compared the results obtained using this model with those of the simplified model 
elaborated by Voellmy ( 1955) . Figures IQ and I I demonstrate that in rigorous terms there is 
no correlation between slope, width, and avalanche front velocity. 

Figure 10 enables a comparison to be made with the Voellmy formula; on the average the 
latter represents an avalanche front velocity value which is equivalent to the velocity observed. 
This formula, however, does not provide information on instantaneous velocities; in this case 
the formula for the avalanche in question contains a rate of error which can reach 60% . 
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Fig. 10. Slope of ground plotted against velocity WF of avalanche front. The relation predicted ~v Voellmy V = v(th sin <X) 
is plotted for h = 2 000 m, the mean value, as the dashed curve. 

Figure I I demonstrates that section width is not correlated to avalanche front velocity. 
The rectangle represented in the drawing designates a result obtained with the Voellmy 
formula, a variation in width of 50% which causes a variation in avalanche front velocity of 
approximately 15% only. In this way, a formula which only takes depth into account (shape 
being ignored) will not generate systematic and consequential errors. 

Figures 10 and I I clearly indicate that in addition to the two classical factors of sI ore and 
geometry which determine the velocity of advance of the avalanche front, a representation of 
the instantaneous velocities observed requires the elaboration of a complete model which 
takes slope, friction, inertia, and flow into account on a separate basis. 
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Fig. I I. Section width plotted against velocity W F of avalanche front. 

4. CONCLUSION 

To verify how the model functions, we compared the experimental in situ Soviet results 
(Samoylov, 1976) with our calculations. The example which is of interest to us is relatively 
special: an initial avalanche which cleared out the entire couloir, followed by the activation 
of a second avalanche which spread over a very smooth surface without any entrainment up 
to the zone in which the first avalanche stopped. 

Comparisons of experimental results with those of calculations has proven satisfactory, 
but a few major observations must be made: 

(i) The value for the instantaneous velocities of advance of the avalanche front is highly 
dependent on geometrical variations (for which global advance has limited response). 
However, data for these variations, are very scarce. Despite this, the rate of error 
remains below 15 %. 

(ii) The value for front advance is quite satisfactory, which proves that we have not 
introduced any systematic errors in our calculation of instantaneous velocities. 

As we have just witnessed, the flexibility of our numerical model is remarkable. This flexibility 
represents a certain danger due to the possibility of deviating widely from physical reality 
without our being clearly aware of it. It is fundamental to rely on experimentation in order to 
examine the equivalence between the model and reality. Only such experimentation will 
make it possible to "set" the numerous parameters gradually introduced to satisfy the 
requirements of establishing and solving the equations. 
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These parameters are of two types: 

(a) four numerical constants for which our relatively poor knowledge of the phenomena 
does not give us a measure. These are coefficient of variation for density, which 
influences front velocity; its value is near 0.1, and the roughness coefficients fs, fi, 
andft;fs influences the avalanche stopping (fs = 0.2) ;fl andJi can influence all the 
flow (11 = 10-2 ; ft = 5 X 10- 3). 

(b) Two physical parameters which can be observed in the field. These are the topography 
which can be fitted well in the model, and the depth of entrainment, fixed by the user, 
who knows the field situation. He can test many different values for the depth of 
entrainment. 

The experimental site at Lautaret (Eybert-Berard and others, 1978) has enabled us to 
measure velocities and specific mass as a function of time and at a given point for three 
avalanches. Measurement of front velocities by means of high-speed stereo-photogrammetry 
has been planned for the winter of 1978-79. All these factors should make it possible to 
examine the numerical model, and, we hope, to improve it in such a way that it becomes an 
increasingly satisfactory answer to the needs which we reviewed in the introduction to this 
paper. 

MS. received 7 September 1978 and in revised form 29 November 1979 
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