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Abstract. Using the notion of discrete Morse function introduced by R.
Forman for finite cw-complexes, we generalize it to the infinite 2-dimensional
case in order to get the corresponding version of the well-known discrete Morse
inequalities on a non-compact triangulated 2-manifold without boundary and with
finite homology. We also extend them for the more general case of a non-compact
triangulated 2-pseudo-manifold with a finite number of critical simplices and finite
homology.
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1. Introduction. Morse theory is the study of the relationships between functions
defined on a space and the shape of this space. More precisely, these relations can
be settled by obtaining information of the shape of the space from the information
about the critical points of the function. Therefore, the main goal of this theory lies
in how the critical points of a function defined on a space affect the topological shape
of such space and, conversely, how the shape of a space controls the distribution
of the critical points of a function. One way of achieving this goal consists of
setting equalities and inequalities between Betti numbers of a given manifold and
the numbers of critical points of a Morse function defined on it, the so called Morse
inequalities.

R. Forman [4, 5] introduced the notion of discrete Morse function defined on a
finite cw-complex and, in this combinatorial context, he developed a discrete Morse
theory as a purely combinatorial tool for studying the topology of the considered
complex by means of its homotopy type or homology, for example. In this sense,
he proved the corresponding Morse inequalities, analogous to the classical ones
obtained in the smooth case. One important application of this result is to define,
in a computational way, optimal discrete Morse functions on finite surfaces [6]. In
this sense, not only does this discrete Morse theory allow us to check how certain
topological theorems are easily accessible via this combinatorial tool, but also the study
of the critical points of Morse functions in the context of Combinatorial Differential
Topology will provide for us the linkage between discrete gradient fields and the
topology of the domain.
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The authors have got a generalized version of discrete Morse inequalities for
infinite 1-complexes [1] and this paper is its natural continuation focused on establishing
the extension of these inequalities to the infinite 2-dimensional case. As we could expect,
for the development of discrete Morse theory on infinite complexes it is necessary to
introduce a certain notion of critical element in the infinite, which in some sense will
be given by the number of decreasing rays.

Such extension of the discrete Morse inequalities to the non-compact surfaces is
interesting for two reasons. First, it reflects homological aspects of such surfaces related
to its ends, expressed in terms of its combinatorial structure, but not explicitly linked
to its compactification. On the other hand, the obtained inequalities are a non-trivial
generalization of the corresponding ones in the finite case because the behaviour of
the discrete Morse functions in the infinite is taken into account.

We begin presenting in Section 2 the basic notions concerning infinite discrete
Morse theory for later use, following the definitions introduced by R. Forman [4],
namely discrete Morse functions, critical simplices and Morse inequalities for the
finite case. Moreover, we include in this section some examples which show that Morse
inequalities for the finite case do not hold for the infinite case and that some new
situations arise when we consider infinite complexes. Section 3 is devoted to the study
of discrete Morse functions on infinite 2-complexes. In particular, we introduce the
notion of decreasing i-rays (i = 1, 2) which, as we have remarked above, shall play
a central role in the main result of this paper. Finally, we shall prove the main
result of this paper, Morse inequalities for certain infinite 2-complexes, namely for
non-compact triangulated 2-manifolds (surfaces) without boundary and with finite
homology, and we extend it to the case of infinite 2-pseudo-manifolds with a finite
number of singularities.

2. Preliminaries. As we have announced, we are going to present the notion of
discrete Morse function defined on an infinite simplicial complex. It was introduced
for the finite case by R. Forman in [3, 4, 5]. Essentially, we shall use the same definition
but, since the usual maps between infinite complexes are the proper maps, we shall deal
with proper discrete Morse functions, that is, those verifying f −1([a, b]) is a finite set
for any a, b ∈ R, a ≤ b.

Through all this paper, we consider infinite simplicial complexes which are locally
finite. For terminology and background concerning these objects, we refer to [7].
However, for later use we recall that given such a simplicial complex M and a simplex
σ ∈ M, the star of σ in M is defined as the following subcomplex:

st(σ ; M) = {τ ∈ M/∃ρ ∈ M with τ, σ ≤ ρ}.

Moreover, the subcomplex of st(σ ; M) given by

lk(σ ; M) = {ρ ∈ st(σ ; M)/σ ∩ ρ = ∅}

is called the link of σ in M.
On the other hand, an end of M is an equivalence class [K, C] of pairs (K, C) where

K ⊂ M is compact, C is a component of M − K whose closure is not compact and
[K1, C1] = [K2, C2] if there exists (K, C) with K1 ∪ K2 ⊂ K and C ⊂ C1 ∪ C2.
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A discrete Morse function defined on M is a proper function f : M −→ R such
that, for any p-simplex σ (p) ∈ M:

(M1) card{τ (p+1) > σ/f (τ ) ≤ f (σ )} ≤ 1.
(M2) card{υ(p−1) < σ/f (υ) ≥ f (σ )} ≤ 1.

A p-simplex σ ∈ M is said to be critical with respect to f if:

(C1) card{τ (p+1) > σ/f (τ ) ≤ f (σ )} = 0.
(C2) card{υ(p−1) < σ/f (υ) ≥ f (σ )} = 0.

From the above definitions, it can be deduced that σ (p) is a non-critical simplex if
and only if it satisfies one of the following conditions:

(NC1) There exists a simplex τ (p+1) > σ (p) such that f (τ (p+1)) ≤ f (σ (p)).
(NC2) There exists a simplex υ(p−1) < σ (p) such that f (υ(p−1)) ≥ f (σ (p)).

It is important to point out that both conditions cannot be satisfied simultaneously
by a non-critical simplex.

Pictorially, we shall express these two situations as follows:

v

e′

means f (v) ≥ f (e′) and we say that v and e′ are matched; on the other hand,

e τ

means f (e) ≥ f (t) and we say that e and t are matched.
In the finite context, Forman proved the Morse inequalities for discrete Morse

functions defined on finite cw-complexes [4].

THEOREM 2.1. Let f be a discrete Morse function defined on a finite cw-complex M
and let bp be the p-th Betti number of M with p = 0, . . . , dim(M). Then

(I1) mp( f ) − mp−1( f ) + · · · ± m0( f ) ≥ bp − bp−1 + · · · ± b0,
(I2) mp( f ) ≥ bp,
(I3) m0( f ) − m1( f ) + m2( f ) − · · · ± mdim(M)( f ) = b0 − b1 + b2 − · · · ± bdim(M),

where mp( f ) denotes the number of critical p-simplices of f on M.

There are examples in which Morse inequalities for the finite case do not hold
on an infinite 2-complex (see [1] for examples concerning infinite 1-complexes). For
instance, from (I2) of Theorem 2.1 with p = 0, we get that every finite complex has at
least one critical simplex, more precisely, one critical 0-simplex. However this situation
can change when we consider an infinite 2-complex. In this case we can define discrete
Morse functions on some non-compact surfaces which do not have any critical simplex.
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Let us consider the following triangulation of the plane R2 and let us define the indicated
discrete Morse function on it as shown.

It can be easily checked that there is not any critical simplex for this function on
this surface.

These examples justify the necessity of obtaining extended versions of Morse
inequalities for infinite complexes. We did this work for the 1-dimensional case [1] and
now we are going to carry it out for non-compact 2-manifolds without boundary and
with b1 < ∞.

3. Generalized Morse inequalities on infinite pseudo surfaces. First, we need some
general results about discrete Morse functions on infinite complexes. Given an infinite
simplicial complex M, it is said that a (either finite or infinite) sequence of simplices of
M,

α
(i−1)
0 , β

(i)
0 , α

(i−1)
1 , β

(i)
1 , . . . , β(i)

r , α
(i−1)
r+1 , . . .

is a i-path (i = 1, 2) if the (i − 1)-simplices α
(i−1)
n−1 and α

(i−1)
n are faces of the i-simplex

β
(i)
n−1, for any n ∈ N. From now on, we always give the name i-ray to any infinite i-path.

Then, given two i-rays contained in the same complex, we say they are equivalent or
cofinal if they coincide from a common (i − 1)-simplex.
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Now, given a discrete Morse function defined on M, we say that an i-path (resp.,
i-ray),

α
(i−1)
0 , β

(i)
0 , α

(i−1)
1 , β

(i)
1 , . . . , β(i)

r , α
(i−1)
r+1 (, . . .)

is a decreasing i-path (resp., i-ray) if

f
(
α

(i−1)
0

) ≥ f
(
β

(i)
0

)
> f

(
α

(i−1)
1

) ≥ f
(
β

(i)
1

)
> · · · ≥ f

(
β(i)

r

)
> f

(
α

(i−1)
r+1

)
(≥ · · ·).

Coming back to the last example of Section 2, we can point out that there is a unique
decreasing 1-ray and there is not any decreasing 2-ray. As we shall see later, decreasing
i-rays are closely related to the notion of critical simplices. In fact, roughly speaking,
we can say that decreasing rays play the role of critical simplices at the infinite.

It is convenient to point out that, when we consider 2-dimensional infinite
simplicial complexes, which are the subjects of this paper, a finite decreasing 1-path
always ends in a critical 0-simplex, since, from the definition of critical 0-simplex, this
is the only one which is not matched with any 1-simplex and hence, it has to be a
local minimum of f . However, the situation is more complicated for 2-paths. In fact,
a decreasing 2-path can either end in a critical 1-simplex, by reasoning in a similar
way, or can stop with no relationship with critical 1-simplices. This second option is
possible when the decreasing 2-path stops because its last 2-simplex is matched with
one of its bordering 1-simplices and its other two bordering 1-simplices are in the same
decreasing 1-path or 1-ray. Consequently, there are not cofinal decreasing 2-rays.

We now have the two following lemmas concerning critical simplices of a discrete
Morse function and its restrictions. They can be proved in a straightforward way from
the definitions of discrete Morse function and critical simplex.

LEMMA 3.1. Let M and N be simplicial complexes such that N ⊆ M and let f be a
discrete Morse function defined on M. Then the restriction of f to N is a discrete Morse
function. Moreover, every critical simplex of f on M is a critical simplex of the restriction
of f to N too.

LEMMA 3.2. Let M a 2-complex, N ⊆ M be a subcomplex of M and f be a discrete
Morse function defined on M. Then any critical 2-simplex of the restriction of f to N is
a critical 2-simplex of f on M.

It is interesting to note that Lemma 3.2 does not state anything about simplices
of dimensions 0 and 1. In fact, the number of critical 0-simplices or 1-simplices of
the restriction of f to N is greater or equal to the number of critical 0-simplices or
1-simplices of f on M.

We are now going to state and prove the main result of this paper: discrete Morse
inequalities on a non-compact triangulated surface without boundary and with finite
homology. To this end, we shall consider first the connected case. Thus, let M be a non-
compact connected triangulated 2-manifold without boundary. So, denoting as above
the Betti numbers of M by bi, i = 0, 1, 2, we have that b0 = 1 and b2 = 0. Moreover,
we suppose that b1 < +∞. With these conditions, we deduce that the number of ends
of M is finite too. Notice that, since M is a 2-manifold, it admits a locally finite
triangulation.
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On the other hand, let f be a (proper) discrete Morse function with a finite number
of critical simplices defined on M which induces a finite number of decreasing i-rays,
i = 1, 2, on M.

Next, we consider a connected finite subcomplex of M, M̂, that contains all critical
simplices and all basic cycles (which generate the homology) of M. Furthermore, since
the number of decreasing i-rays in M by f is finite, it follows that the number of
bifurcations of decreasing 2-rays is finite too, so we can select M̂ verifying that there is
not any bifurcation of a decreasing 2-ray in M − M̂. Consequently, since M has a finite
number of ends, we can express it as the union of M̂ and a finite number of infinite
cylinders, that is,

M = M̂ ∪
n⋃

j=1

Cj,

where Cj denotes an infinite cylinder. It is convenient to point out that Cj = Kj × [0,∞)
where Kj is a 1-cycle and hence, Cj ∩ Ck = ∅, for all j �= k. Moreover, since M has a finite
number of ends, the boundary of M̂, denoted by ∂M̂, is a finite union of triangulations
of S1 or, equivalently, a finite union of 1-cycles, each of them being the intersection of
M̂ with one of the cylinders Cj.

Using Lemmas 3.1 and 3.2, we have that m̂0 ≥ m0, m̂1 ≥ m1 and m̂2 = m2, where mi

(resp., m̂i) denotes the number of critical i-simplices of f on M (resp., of the restriction
of f to M̂), i = 0, 1, 2. So there can be some critical i-simplices of the restriction of f
to M̂ which are not critical i-simplices of f on M, i = 0, 1. These two possibilities can
be found in the example 3.4.

We are now going to study these particularly interesting situations. Actually, we
have that a critical i-simplex of the restriction of f to M̂ which is not critical of f
on M is either the starting i-simplex of a unique decreasing (i + 1)-path (possibly
a decreasing (i + 1)-ray) contained in M − M̂ or it is the starting i-simplex of a
decreasing (i + 1)-path which has a (finite) number of simplices contained in M − M̂
and finally returns to M̂. Note that, in both cases, the starting i-simplex has to be in
the boundary of M̂, by using the definition of critical simplex we now argue more
precisely.

Let v0 be a critical 0-simplex (vertex) of the restriction of f to M̂ which is not a
critical 0-simplex of f on M. Then, from the definition of discrete Morse function, there
exists a unique 1-simplex (edge) e0 in M − M̂ containing v0 and such that f (v0) ≥ f (e0).
Let v1 be the other vertex of e0. It can be either in ∂M̂ or in M − M̂. In the first case,
the decreasing 1-path {v0, e0, v1} linked to v0 comes back to M̂ at v1. However, this
decreasing 1-path continues in M − M̂ in the second case and so, since there is no
critical simplex of f on M contained in M − M̂, there exists a unique edge e1 containing
v1 in M − M̂ such that f (v1) ≥ f (e1). Let v2 be the other vertex of e1. We have two cases
again: v2 is either in ∂M̂ (and hence we obtain a decreasing 1-path linked to v0 which
returns to M̂) or in M − M̂ and we can continue the process. If the decreasing 1-path
linked to v0 so constructed never comes back to M̂, then it has to be a decreasing 1-ray,
because it cannot end in a vertex of M − M̂ since, as we have pointed out above, the
final 0-simplex of this decreasing 1-path is a critical vertex and, from the construction
of M̂, we know that there are no critical simplices in M − M̂.

A similar process can be described when we consider a critical edge of the restriction
of f to M̂ which is not a critical edge of f on M. As above, this edge is in ∂M̂ and it
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is the starting 1-simplex of a unique decreasing 2-path. The only difference is that if
this 2-path does not come back to M̂, that is, if it is totally contained in M − M̂, then
either it is a 2-ray or it can end in a 2-simplex of M − M̂.

Observe that, since ∂M̂ is a finite union of finite 1-cycles, there can be only a
finite number of critical i-simplices (i = 0, 1) of the restriction of f to M̂ which are not
critical simplices of f on M.

Next, under the stated conditions and notations concerning M, f and M̂, we have
the following lemma.

LEMMA 3.3. There exists a connected finite subcomplex M of M containing all
critical simplices of f on M, all basic cycles of M, such that there are not bifurcations of
decreasing 2-rays in M − M and such that if there is a critical i-simplex of the restriction
of f to M which is not a critical i-simplex of f on M, then it is linked to a unique decreasing
(i + 1)-ray totally contained in M − M, for i = 0, 1.

Proof. In order to reduce the terminology, given a subcomplex N of M, we call
any non-critical i-simplex of f on M distinguished with respect to N, if:
(i) it is a critical i-simplex of f on N;

(ii) it is not linked to a decreasing (i + 1)-ray.
Then the objective of the lemma is to find a finite subcomplex of M containing

all critical simplices of f on M, all basic cycles of M, verifying that there are
not bifurcations of decreasing 2-rays in M − M and such that it does not contain
distinguished i-simplices, i = 0, 1.

First we consider M̂, constructed as above. If all the critical i-simplices (i = 0, 1)
of the restriction of f to M̂ which are not critical i-simplices of f on M (we know
that they are in in ∂M̂) are linked to decreasing (i + 1)-rays, then we take M = M̂.
Otherwise, we are going to construct M from M̂ by using the following procedure. Let
v0 be a distinguished 0-simplex with respect to M̂, if there is any. Then v0 is the starting
0-simplex of a unique finite decreasing 1-path contained in M − M̂ which comes back
to M̂. Thus, let v1 be the last vertex of this decreasing 1-path. It is clear that v1 is in
∂M̂. So, we consider the 1-cycle made up by the union of such decreasing 1-path with
the 1-path contained in ∂M̂ which joins v0 and v1 and such that such a 1-cycle is the
boundary of a triangulated closed disk. We add to M̂ this disk and we denote this new
subcomplex by M̂v0 . Observe that, now, v0 is not a distinguished vertex with respect
to M̂v0 . Moreover, this procedure does not introduce new distinguished simplices with
respect to M̂v0 , since the part of the boundary of the added triangulated disk contained
in ∂M̂v0 is a decreasing 1-path and, hence, all its simplices are matched, in particular
v1.

We repeat this process with all the remaining distinguished vertices with respect to
M̂v0 (a finite number, in any case) and we get a finite subcomplex M̂v in which there is
no distinguished 0-simplex.

Now let e0 be a distinguished 1-simplex with respect to M̂v, if there is any. Then
e0 is the starting edge of a unique decreasing finite 2-path which either comes back to
M̂v or is totally contained in M − M̂v.

In the first case, we construct a new subcomplex, denoted by M̂e0 , by adding to M̂v

such decreasing 2-path (including all the boundary 1-simplices of its 2-simplices) and
the finite subcomplex bounded by that 2-path and ∂M̂v. Then, e0 is not a distinguished
edge with respect to M̂e0 . Moreover, none of the added simplices is distinguished with
respect to M̂e0 because the boundary of any decreasing 2-path in M − M̂v is made up
by decreasing 1-paths, and hence all the new simplices are matched.
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On the other hand, if e0 is the starting 1-simplex of a decreasing finite 2-path
totally contained in M − M̂v, we construct M̂e0 in a similar way by adding this 2-
path (including all its boundary 1-simplices) to M̂. Again, e0 is not distinguished with
respect to M̂e0 . Moreover, by using the same argument as above, all the added simplices
cannot be distinguished with respect to M̂e0 .

We repeat this process with all the remaining distinguished edges with respect to
M̂e0 (a finite number, in any case) and, finally, we get a finite subcomplex M in which
there is not any distinguished simplex. �

In order to clarify the process described in the above lemma, we are going to work
it out in the following examples:

EXAMPLE 3.4. Let us consider the following triangulation of an infinite cylinder
Cj, in which we mark ∂M̂ by dotted lines and decreasing 1-paths by thicker lines.

eo

It is convenient to point out that in this example there is not any distinguished
vertex with respect to M̂. Notice that e0 is the starting edge of a decreasing 2-path
totally contained in M − M̂ and hence it is a distinguished edge with respect to M̂.
So we add this 2-path to M̂ to get a new subcomplex M in which the edge e0 is not
distinguished.

EXAMPLE 3.5. Again, let us consider a triangulation of an infinite cylinder Cj, in
which we mark ∂M̂ by dotted lines and decreasing 1-paths by thicker lines.

Since v0 is the starting vertex of a decreasing 1-path which comes back to M̂ at v1,
v0 is a distinguished vertex with respect to M̂. By the procedure described in the proof
of Lemma 3.3, we add to M̂ this finite decreasing 1-path and all simplices contained
in the subcomplex bounded by this 1-path and the edge e0. So we get a new finite
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subcomplex M in which v0 is not distinguished with respect to M. Notice that in this
construction, the edge e0, which is distinguished with respect to M̂, is replaced by the
1-path joining v0 and v1, and hence, is not a distinguished edge with respect to M.

v1

     eo

   v0

At this point we can prove the main result of this paper.

THEOREM 3.6. Let M be a non-compact connected triangulated 2-manifold without
boundary such that b1 < +∞. Let f be a discrete Morse function defined on M with
a finite number of critical simplices and a finite number of decreasing i-rays, i = 1, 2.
Then

(1) m0 + d0 ≥ 1; m1 + d1 ≥ b1;
(2) m1 + d1 − m0 − d0 ≥ b1 − 1; m2 − m1 − d1 + m0 + d0 ≥ 1 − b1;
(3) m0 + d0 − m1 − d1 + m2 = 1 − b1,

where di denotes the number of non equivalent decreasing (i + 1)-rays of f in M, i = 0, 1.

Proof. We consider a finite subcomplex M of M as described in Lemma 3.3. Then
every critical i-simplex of the restriction of f to M which is not critical of f on M is
linked to a decreasing (i + 1)-ray, for i = 0, 1 and all of them are contained in ∂M.

If there exist two different vertices in ∂M, say v0 and v1 which are linked to two
decreasing 1-rays which converge in M − M, that is, there exists another vertex v2

in M − M such that it is linked to a unique decreasing 1-ray and the 1-path from
v0 (resp., from v1) to v2 is a decreasing one. So these two 1-rays are cofinal. Then,
we proceed in a way similar to that used in Lemma 3.3 and we add to M the finite
subcomplex bounded by both decreasing 1-paths and the 1-path in ∂M joining v0 and
v1 (including these boundary 1-paths). Note that this process is finite due to the fact
that the original ∂M is finite and that the “new” M has the same properties as the “old”
one.
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Consequently, we have a one to one map between the set of critical i-simplices of
the restriction of f to M which are not critical of f on M and the set of decreasing
i + 1-rays in M. Hence, this map is expressed by the following equality,

mi + di = mi, (3.1)

with i = 0, 1, where mi denotes the number of critical i-simplices of the restriction of f
to M.

Finally, we get the result by applying Theorem 2.1 to M and by using (3.1). �
We are going to extend Theorem 3.6 to more general situations. First we suppose

that M has k connected components. Then b0 = k. Repeating the argument on each
connected component and taking M as the union of the finite subcomplexes obtained
in them, we have the following result.

THEOREM 3.7. Let M be a non-compact triangulated 2-manifold without boundary
such that b1 < +∞. Let f be a discrete Morse function defined on M with a finite number
of critical simplices and a finite number of decreasing i-rays, i = 1, 2. Then

(1) m0 + d0 ≥ b0; m1 + d1 ≥ b1;
(2) m1 + d1 − m0 − d0 ≥ b1 − b0; m2 − m1 − d1 + m0 + d0 ≥ b0 − b1;
(3) m0 + d0 − m1 − d1 + m2 = b0 − b1,

where di denotes the number of non equivalent decreasing (i + 1)-rays of f in M, i = 0, 1.

Finally, we consider the case when M is a non-compact 2-pseudo-manifold with
b1 < +∞ and with a finite number of singular simplices, that is, M has a finite number
of vertices whose link in M is not a 1-cycle and a finite number of edges e verifying
that card{lk(e; M)} > 2. In this case, 0 ≤ b2 < +∞. If we use a similar argument but
take M in such a way that, moreover, its Betti number b2 is equal to b2 or, equivalently,
that it contains all the homology of M, which is possible due to the fact that is is finite,
then we can prove the following theorem.

THEOREM 3.8. Let M be a non-compact triangulated 2-pseudo-manifold with a finite
number of singular simplices such that b1 < +∞. Let f be a discrete Morse function
defined on M with a finite number of critical simplices and a finite number of decreasing
i-rays, i = 1, 2. Then

(1) m0 + d0 ≥ b0; m1 + d1 ≥ b1; m2 ≥ b2;
(2) m1 + d1 − m0 − d0 ≥ b1 − b0; m2 − m1 − d1 + m0 + d0 ≥ b2 − b1 + b0;
(3) m0 + d0 − m1 − d1 + m2 = b2 − b1 + b0,

where di denotes the number of non equivalent decreasing (i + 1)-rays of f in M, i = 0, 1.

Observe that Theorem 3.8 is the natural generalization of Theorem 2.1 to the
infinite 2-dimensional case.
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