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Abstract. The Taylor formula is used directly in a method of numerical integration of the w-body 
problem of celestial mechanics; the derivatives in the expansion of the coordinates are calculated 
successively at each integration step according to the generalized Steffensen rule. The proposed 
method is the most precise of all numerical methods based on the predetermined part of the 
Taylor series. The method is used with a variable number of derivatives at each integration step 
and also with a variable step. The cumulative error in the coordinates increases more slowly in 
our method than in any other. We can apply the method to the study of the motion of a comet 
or minor planet, taking into account the perturbations by eight major planets; the method allows 
for the simultaneous integration of a great number of objects of zero mass. 

All the methods of numerical integration used at present in celestial mechanics, 
whether they be ones utilizing differences or those of the Runge-Kutta type, are 
ultimately based on part of a Taylor series in which the derivatives of the right-
hand sides of the integrated differential equations are replaced by linear combina
tions of the right-hand sides themselves, which greatly decreases the precision. We 
propose a method of numerical integration in which the Taylor series itself is used, 
with direct computation of all derivatives of the required coordinates by means of 
equations up to a specified order; the derivatives are computed successively accord
ing to the generalized Steffensen rule. We call this process the Taylor-Steffensen 
method. In so far as this method involves no interpolation, it is the most precise of 
all numerical methods based on Taylor series. Our method is applicable to any 
problem of n bodies in which only the forces of mutual Newtonian attraction are 
acting; all the equations of the system are integrated together in rectangular helio
centric coordinates. Unfortunately, in its present form the method cannot take care 
of nongravitational forces of a random or intermittent nature, since expansion in 
Taylor series of all functions included in the integrated system of equations is neces
sary. 

The type of numerical method described here was first suggested by Deprit and 
Price (1965) for a problem of three bodies with a constant number of derivatives and 
invariable integration step; our method was developed independently and in a some
what different form. 

The principal features of the method are briefly described below. 
(1) In all known numerical methods the coefficients of the differences diminish 

very slowly (they decrease the most rapidly in Cowell's method - in geometrical 
progression by factors of 1/4), which results, for each such method, in an optimum 
number of differences for obtaining (with a fixed step) the greatest accuracy possible. 
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In the Taylor-Steffensen method the coefficients of the derivatives diminish as l/n\, 
which gives an unlimited increase of precision with the increase in the number of 
derivatives used. We therefore use the method with a variable number of derivatives 
at each step, care being taken that the last computed member of the Taylor series is 
smaller than a given number e. In practice this is done very simply, since each member 
of the Taylor series is computed from the preceding ones in a recurrent manner. We 
may simultaneously provide for a variable step, which can be increased or diminished 
without additional difficulties any number of times and at any point in the integra
tion interval. This allows us to maintain the required precision of the computation 
formula without excessive division into more steps, and we can thus decrease the 
cumulative error in the computed coordinates and velocities. 

(2) It follows from the above, in particular, that when comparing the results of 
integration with the observations at any moment, it is not necessary to resort to 
interpolation; it will suffice to adjust the integration step to the moment of observa
tion. 

(3) Our method allows for greater precision in determining the initial velocities 
of objects for which two adjacent coordinate values are supplied. The velocities can 
be obtained without resorting to interpolation by using a special algorithm. This 
allows us to obtain velocities with the precision of the given coordinates, which is 
impossible in the conventional computation of initial velocities with the aid of 
interpolation formulae; and this is highly important, since errors in the initial velo
cities have an important effect on the total cumulative error in the computed coordi
nates. 

(4) Because of the high precision of the method and the large number of significant 
figures used in the computer, the total cumulative error in the coordinates over large 
intervals of time is almost entirely determined by the errors in the initial coordinates; 
after n integration steps the expected magnitude of the error will be 0(H) , instead of 
0(«3/2) that follows from Brouwer's (1937) law. Thus the error in the coordinates 
accumulates much more slowly in our method than in other numerical methods. 

We have a computer programme for applying the method to the motions of comets, 
with account taken of the perturbations by eight major planets, omitting Mercury 
or Pluto according as to the part of its orbit in which the comet is located. It is also 
possible to make a simultaneous integration of a large number (50 or more) of ob
jects of zero mass. 

Investigation of the motion of comets and minor planets by the Taylor-Steffensen 
method requires reliable initial data (coordinates and velocities), not only for the 
object studied but also for the perturbing bodies. Obtaining the latter with suffi
cient accuracy for any epoch t0 is a very labour-consuming task. It was for this pur
pose that combined integration was undertaken of the equations of motion of eight 
major planets (except Mercury) for the period JD 2428000.5 to 2431820.5. Perturba
tions caused by Mercury were partially allowed for by the addition of its mass to 
that of the Sun. For the initial epoch we chose t0 = 2430000.5, for which Schubart 
and Stumpff (1966) had obtained the values of coordinates and velocities with ten 
significant figures. 
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The principal arithmetical operations were made with double precision. The 
integration step was taken as a constant 10 days. With the accuracy adopted (10"15) 
in the development of coordinates, we took into account most of the derivatives up 
to the twelfth order. Heliocentric coordinates and velocities were printed at each 
step and punched on cards after every other step; these can be used directly as initial 
data for the major planets in the solution of any cometary problem, as well as for a 
check, if necessary. The results of the integration by means of our programme were 
compared with the published ephemerides of the planets; for Venus the departure 
never exceeded 4x 10 ~6, this being mainly attributable to the perturbations by Mer
cury. 

Integration over an interval of 100-150 yr is now in progress. 

References 

Brouwer, D.: 1937, Astron. J. 46, 149. 
Deprit, A. and Price, J. F.: 1965, Astron. J. 70, 836. 
Schubart, J. and Stumpff, P.: 1966, Veroeffentl Astron. Rechen-Inst. Heidelberg No. 18. 

https://doi.org/10.1017/S0074180900006306 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900006306

