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Abstract

In this paper, we consider an insurance company whose surplus (reserve) is modeled
by a jump diffusion risk process. The insurance company can invest part of its surplus
in n risky assets and purchase proportional reinsurance for claims. Our main goal is
to find an optimal investment and proportional reinsurance policy which minimizes the
ruin probability. We apply stochastic control theory to solve this problem. We obtain
the closed form expression for the minimal ruin probability, optimal investment and
proportional reinsurance policy. We find that the minimal ruin probability satisfies the
Lundberg equality. We also investigate the effects of the diffusion volatility parameter,
the market price of risk and the correlation coefficient on the minimal ruin probability,
optimal investment and proportional reinsurance policy through numerical calculations.
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1. Introduction

The ruin probability, when an insurance company has the possibility to invest part of
its surplus into a financial market and to take proportional reinsurance for claims, has
recently attracted increasing attention in the risk theory literature. Browne [1–3] first
considers the approach where the surplus process is modelled by a Brownian motion
with drift, and the risky asset follows a geometric Brownian motion. Without a budget
constraint, the optimal investment strategy which minimizes the ruin probability
is the investment of a constant amount of money in the risky asset, irrespective
of the size of the surplus, and the corresponding minimal ruin probability is given
by an exponential function. Liang [9], Schmidli [17], Promislow and Young [16],

1School of Business, Central South University, Yuelu Mountain, Changsha 410083, Hunan, PR China.
2School of Mathematics, Central South University, No. 22 South Shaoshan Road, Changsha 410075,
Hunan, PR China; e-mail: xlin@csu.edu.cn.
c© Australian Mathematical Society 2010, Serial-fee code 1446-1811/2010 $16.00

34

https://doi.org/10.1017/S144618110900042X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110900042X


[2] Ruin probabilities under an optimal policy 35

Taksar and Markussen [20] and Luo et al. [14] reconsider the model in Browne [1]
with proportional reinsurance. They also derive a closed form expression for the
optimal policy and the optimal value function. Hipp and Plum [7, 8] consider the
classical risk model and assume that the surplus can be invested in a risky asset
which follows a geometric Brownian motion without risk-free rate. They analyze the
investment strategy to minimize the ruin probability, and then derive the Hamilton–
Jacobi–Bellman equation corresponding to the problem and prove the existence of a
solution and a verification theorem. Liu and Yang [13] and Yang and Zhang [22]
reconsider the model in Hipp and Plum [8] with risk-free rate. Gaier et al. [5] consider
the optimal investment problem for an insurance company under the framework of
the classical risk process, where the claims have exponential moments. They obtain
the Lundberg inequality for the minimal ruin probability. Lin [12] discusses ruin
probability in a jump diffusion risk model where the surplus is invested in a risk-free
asset and a risky asset. Schimidli [18] considers the model under which reinsurance
and investment are allowed, the surplus is modeled by the classical risk process and
a numerical procedure for solving the Hamilton–Jacobi–Bellman (HJB) equation is
given.

Since it is very difficult to obtain an explicit expression for the ruin probability9(x)
in the jump diffusion risk model, much of the literature focuses on the estimation of
the ruin probability, especially upper bound estimation. For example, in Hald and
Schmidli [6] and Liang and Guo [10, 11], the minimal ruin probability satisfies the
Lundberg inequality

9(x)≤ Ce−Rx ,

where C is a constant and R is the adjustment coefficient.
In this paper we reconsider the ruin probabilities, optimal investment and

proportional reinsurance policy of an insurance company whose surplus is modeled
by a jump diffusion risk process as in Liang and Guo [11]. In [11] the insurance
company can invest only in a risky asset whose price dynamics follows a geometric
Brownian motion, and they obtain only an upper bound estimation of the minimal
ruin probability. In this paper, the insurance company can invest in n risky assets. We
study a closed form expression for the minimal ruin probability, the optimal investment
and the proportional reinsurance policy of the insurance company. We study the
relationships between the minimal ruin probability and the investment, the reinsurance,
the diffusion volatility parameter, the correlation coefficient and the market price of
risk. We also investigate the effects of the diffusion volatility parameter, the correlation
coefficient and the market price of risk on the optimal investment and proportional
reinsurance policy through numerical calculations.

This paper is organized as follows. In Section 2, we give the model and some
definitions and notation needed in this paper. In Section 3, we give the HJB equation
and the verification theorem for the ruin probabilities and the optimal investment and
proportional reinsurance policy. In Section 4, we study a closed form expression for
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the minimal ruin probabilities and the optimal investment and proportional reinsurance
policy. In Section 5, we present some illustrative numerical results and economic
analysis.

2. The model

To make a rigorous mathematical formulation of the problem, we assume that
all processes and random variables are defined on a filtered probability space
(�, F, F, P) satisfying the usual conditions, that is, F = {Ft , t ≥ 0} is right
continuous and P-complete.

We consider the classical compound Poisson risk process perturbed by a diffusion
or a jump diffusion process

R(t)= x + ct −
N (t)∑
k=1

Yi + βW̃ (t)= x + ct − S(t)+ βW̃ (t),

where x ≥ 0 denotes the initial capital, c > 0 is the rate of premium per unit
time; Y = {Yk, k = 1, 2, . . .} is a sequence of independent and identically distributed
nonnegative random variables with a common distribution F of finite mean m1, where
Yk denotes the amount of the kth claim; {N (t), t ≥ 0} is a Poisson process with rate
λ > 0, representing the number of claims up to time t ; {W̃ (t), t ≥ 0} is a standard
Brownian motion; β is a constant, representing the diffusion volatility parameter. R(t)
is the surplus of an insurance company at time t . In addition, {Yk, k = 1, 2, . . .},
{N (t), t ≥ 0} and {W̃ (t), t ≥ 0} are mutually independent. As pointed out in Dufresne
and Gerber [4], the perturbed compound Poisson risk process adds an uncertainty to
the premium income or an additional uncertainty to the aggregate claims.

In proportional reinsurance, the reinsurer is required to pay a certain fraction of
each claim, while in turn the insurer diverts the same or a larger fraction of all the
premiums to the reinsurer. If the safety loading of the reinsurer and the insurer are the
same, that is, if the fraction of the premium diverted to the reinsurer is the same as
the fraction of each claim covered by the reinsurer, then the contract is called a cheap
reinsurance; if the safety loading of the reinsurer is higher than that of the insurer, then
the contract is called a noncheap reinsurance.

The proportional reinsurance level is associated with the value 1− a, where 0≤
a ≤ 1 is called the risk exposure. If the risk exposure of the company is fixed, then the
insurer pays proportion a of each claim while the remaining proportion 1− a is paid
by the reinsurer. To this end, the insurer diverts part of the premiums to the reinsurer at
the rate c1(1− a) with c1 ≥ c. As noted, when c = c1, the reinsurance is cheap, while
if c1 > c, it is noncheap. The corresponding surplus process of the insurance company
becomes

R(t, a)= x + [c − (1− a)c1]t − aS(t)+ βW̃ (t).

In order for the net profit condition to be fulfilled, that is,

c − (1− a)c1 − aλm1 > 0,
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we need
a > ā =

c1 − c

c1 − λm1
.

Otherwise, the probability of ruin will be one for any initial surplus x ≥ 0.
In addition, there are n risky assets available for the insurance company in the

financial market. We use θ(t)= (θ1(t), . . . , θn(t))T to denote the amounts of money
of the surplus being invested in n risky assets at time t . Here as subsequently T denotes
transposition. The price processes are governed by the stochastic differential equation

d Si (t)= Si (t)

(
µi dt +

n∑
j=1

σi j dW j (t)

)
for i = 1, . . . , n,

where µi ≥ 0, σi j > 0 are constants representing the expected instantaneous rate
of return and the volatility of the risky asset i , respectively, and W (t)=
(W1(t), . . . , Wn(t))T is an n-dimensional standard Brownian motion.

We assume that {Yk, k = 1, 2, . . .}, {N (t), t ≥ 0} and {W (t), t ≥ 0} are mutually
independent, and the correlation coefficient of the Brownian motions W̃ , W j is ρ j ,
that is, E[W̃ (t)W j (t)] = ρ j t , for j = 1, 2, . . . , n. We also assume that σ = (σi j ) is
a nonsingular matrix, and write 6 = σσT, ρ = (ρ1, . . . , ρn)

T and the market price of
risk γ = σ−1µ, where µ= (µ1, . . . , µn)

T.
At any time t ≥ 0, a = a(t) and θ = θ(t) are chosen by the insurance company. We

denote π(·)= (a(·), θ(·)). Once the policy π(·) is chosen, the dynamics of the surplus
process becomes

d R(t, π)=
n∑

i=1

θi (t)
d Si (t)

Si (t)
+ d R(t, a)

or, more explicitly,

d R(t, π) = [c − (1− a(t))c1] dt − a(t) d S(t)+ β dW̃ (t)+
n∑

i=1

µiθi (t) dt

+

n∑
i=1

n∑
j=1

θi (t)σi j dW j (t),

R(0) = x .

The control policy π(·) is said to be admissible if a(·) and θ(·) are predictable
with respect to F and, for each t ≥ 0, the processes a(·) and θ(·) satisfy the following
conditions:

(1) 0≤ a(t)≤ 1;
(2) P

{∫
∞

0 θ(t)T6θ(t) dt <∞
}
= 1.

The set of all admissible policies is denoted by 5.
The ruin time is defined as τ(π)= inf{t > 0 : R(t, π)≤ 0}; if R(t, π) > 0 for all

t > 0, then τ(π)=∞.

https://doi.org/10.1017/S144618110900042X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110900042X


38 Y. Qian and X. Lin [5]

We define the infinite time ruin probability under policy π when the initial surplus
is x by

9(x, π)= P{R(t, π)≤ 0 for some t ≥ 0 | R(0)= x} = P{τ(π) <∞ | R(0)= x}.

The objective is to find the optimal value function (the minimal ruin probability)

9(x)= inf
π∈5

9(x, π), (2.1)

and the optimal policy π∗ such that 9(x, π∗)=9(x).
Denote

h(r)= E[erY
] − 1=

∫
∞

0
er y d F(y)− 1

as the moment generating function of the claim size Y , and assume that there exists
r∞ > 0 such that h(r) ↑∞ when r ↑ r∞ (we allow for the possibility r∞ =∞). It is
easily seen that h(0)= 0 and that h is increasing, convex and continuous on [0, r∞).

REMARK 1. If n = 1, a = q , c = (1+ θ)λµ and c1 = (1+ η)λµ, this is the model of
Liang and Guo [11].

3. The Hamilton–Jacobi–Bellman equation and the verification theorem

We can express the compound Poisson process S(t) via

d S(t)=
∫
∞

0
yN (dt, dy).

The compensator of N , denoted by N̂ (dt, dy), is given by

N̂ (dt, dy)= E[N (dt, dy)] = λF(dy) dt.

Ñ (t, A)= N (t, A)− N̂ (t, A) is a martingale with respect to the filtration F for
A ∈ B0, where B0 is the family of Borel sets whose closure A ⊂ R does not contain 0.

We start with the associated HJB equation for the value function 9.

THEOREM 3.1. Assume that9(x) defined by (2.1) is twice continuously differentiable
on (0,∞). Then 9(x) satisfies the HJB equation

0 = inf
π∈5

{
[c − (1− a)c1 + θ

Tµ]9 ′(x)+
1
2

(
β2
+ 2βθTσρ + θT6θ

)
9 ′′(x)

+ λ

∫
∞

0
[9(x − ay)−9(x)]F(dy)

}
, x > 0. (3.1)

The proof of this theorem is standard (see Øksendal and Sulem [15, Chapter 3] or
Schmidli [19]).

First, we give a very important lemma to prove the verification theorem, whose
proof is identical to that of Lemma 6.1 in Taksar and Markussen [20].
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LEMMA 3.2. Let η(π, N )= inf{t > 0 : R(t, π)≥ N }, and

τ(π, N )=min(τ (π), η(π, N ))= inf{t > 0 : R(t, π) /∈ [0, N ]}.

Then, for any N > 0 and any policy π , we have that P{τ(π, N ) <∞} = 1.

The following verification theorem is essential in solving the associated stochastic
control problem. The proof is similar to that of Theorem 2.19 in Schmidli [19].

THEOREM 3.3. Suppose ψ ∈ C2 is a decreasing convex function satisfying the HJB
equation (3.1) subject to the boundary conditions

ψ(0)= 1, ψ(∞)= 0.

Then the minimal ruin probability9(x) given by (2.1) coincides with ψ . Furthermore,
if π∗ = (a∗, θ∗) satisfies

0 =
[
c − (1− a∗)c1 + (θ

∗)Tµ
]
ψ ′(x)+

1
2

(
β2
+ 2β(θ∗)Tσρ + (θ∗)T6θ∗

)
ψ ′′(x)

+ λ

∫
∞

0
[ψ(x − a∗y)− ψ(x)]F(dy) when 0≤ x <∞,

then the policy π∗ is an optimal policy, that is, ψ(x)=9(x)=9(x, π∗).

4. Ruin probability and optimal policy

In this section we discuss the ruin probability and optimal policy for the insurance
company.

By Theorem 3.1, we know that the minimal ruin probabilities and optimal policy
satisfy the HJB equation (3.1).

It is obvious that 9(0)= 1 due to the fluctuation property of the Brownian motion.
From Equation (3.1) we know the optimal investment policy is given by

θ∗(t)=−6−1µ
9 ′(x)

9 ′′(x)
− β(σ−1)Tρ.

For 9(0)= 1, we assume that the solution of Equation (3.1) is given by

9(x)= e−r x for x ≥ 0. (4.1)

The optimal investment policy is then given by

θ∗(t)=
1
r
6−1µ− β(σ−1)Tρ. (4.2)

On substitution from (4.1) and (4.2) into (3.1), we have after simplification

0= inf
a∈[ā,1]

{ f (a)}, (4.3)
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where

f (a) = −cr + (1− a)rc1 +
r

2
βρTσ−1µ−

1
2
µT(6−1)Tµ+

r2

2
β2(1− ρTρ)

+
r

2
βµT(σ−1)Tρ + λ

∫
∞

0
(eray

− 1)F(dy).

By setting d f (a)/da = 0, we have that

c1 = λ

∫
∞

0
yeray F(dy)= λh′(ar). (4.4)

Let η = ar . Then Equation (4.4) becomes

h′(η)=
c1

λ
. (4.5)

By the properties of h, we know that Equation (4.5) has a unique positive solution δ.

LEMMA 4.1. If δ is the unique positive solution of Equation (4.5), then c1δ ≥ λh(δ).

PROOF. Let g(r)= c1r − λh(r). Then we have g′(r)= c1 − λh′(r), and

g′′(r)=−λh′′(r)=−λE[Y 2erY
] ≤ 0.

By (4.5), we know that g′(δ)= 0, so we have g(δ)≥ g(0), that is, c1δ ≥ λh(δ). 2

Now let a be the root of the equation d f (a)/da = 0, so δ = ar . Substituting
r = δ/a into (4.3), we obtain(

1
2
γ Tγ − λh(δ)+ c1δ

)
a2
+

(
cδ − c1δ −

β

2
δρTγ −

β

2
δγ Tρ

)
a

−
β2

2
(1− ρTρ)δ2

= 0. (4.6)

By Lemma 4.1, the positive solution of Equation (4.6) is given by

a(δ) =
(c1 − c + 1

2βρ
Tγ + 1

2βγ
Tρ)δ

2(c1δ +
1
2γ

Tγ − λh(δ))

+

√(
c1 − c + 1

2βρ
Tγ + 1

2βγ
Tρ
)2
δ2 + 2β2δ2(1− ρTρ)

[
c1δ +

1
2γ

Tγ − λh(δ)
]

2
(

c1δ +
1
2γ

Tγ − λh(δ)
)

and the optimal proportional reinsurance policy is given by

a∗ = a(δ) ∧ 1. (4.7)
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On substituting (4.7) into (4.3) and simplifying, we have that r satisfies

β2

2
(1− ρTρ)r2

+

(
1
2
βγ Tρ +

1
2
βρTγ − c + c1

)
r − c1δ −

1
2
γ Tγ + λh(δ)= 0

for a∗ < 1 and

β2

2
(1− ρTρ)r2

+

(
1
2
βγ Tρ +

1
2
βρTγ − c

)
r −

1
2
γ Tγ + λh(r)= 0 for a∗ = 1.

From the above discussion, we obtain the following theorem.

THEOREM 4.2. Let δ be the positive solution of the equation h′(δ)= c1/λ, and

a(δ) =
(c1 − c + 1

2βρ
Tγ + 1

2βγ
Tρ)δ

2(c1δ +
1
2γ

Tγ − λh(δ))

+

√(
c1 − c + 1

2βρ
Tγ + 1

2βγ
Tρ
)2
δ2 + 2β2δ2(1− ρTρ)

[
c1δ +

1
2γ

Tγ − λh(δ)
]

2
(

c1δ +
1
2γ

Tγ − λh(δ)
) .

Then the optimal policy to minimize the ruin probability is

θ∗ =
1
R
6−1µ− β(σ−1)Tρ and a∗ = a(δ) ∧ 1,

and the minimal ruin probability is given by

9(x)= e−Rx ,

where R satisfies the following conditions.

(i) If a∗ < 1, then R is the unique positive solution of the equation

β2

2
(1− ρTρ)r2

+

(
1
2
βγ Tρ +

1
2
βρTγ − c + c1

)
r − c1δ

−
1
2
γ Tγ + λh(δ)= 0.

(ii) If a∗ = 1, then R is the unique positive solution of the equation

β2

2
(1− ρTρ)r2

+

(
1
2
βγ Tρ +

1
2
βρTγ − c

)
r −

1
2
γ Tγ + λh(r)= 0.

REMARK 2. In Liang and Guo [11], the weaker result is obtained where the minimal
ruin probability is bounded above by 9(x)≤ e−RJ x .
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5. Numerical results and economic analysis

In this section, we present some illustrative numerical results. For simplicity, we
assume that there is only one risky asset, that is, n = 1. We study the relationships
between the minimal ruin probability and the investment, the reinsurance, the diffusion
volatility parameter, the correlation coefficient and the market price of risk. We also
investigate the effects of the diffusion volatility parameter, the correlation coefficient
and the market price of risk on the optimal investment and proportional reinsurance
policy through numerical calculations.

Suppose that the claim sizes are exponentially distributed with parameter α, that is,
the density function is f (y)= αe−yα , where y ≥ 0. Then,

h(r)= α
∫
∞

0
er ye−yα dy − 1=

r

α − r
.

Therefore, by h′(δ)= c1/λ, we get the unique positive solution δ = α −
√
αλ/c1 and

a(δ) =
(c1 − c + (βµρ/σ))δ

2
(
c1δ + (µ2/2σ 2)− (λδ/(α − δ))

)
+

√(
c1 − c + (βµρ/σ)

)2
δ2 + 2β2δ2(1− ρ2)

[
c1δ + (µ2/2σ 2)− (λδ/(α − δ))

]
2
(
c1δ + (µ2/2σ 2)− (λδ/(α − δ))

) .

The optimal policy to minimize the ruin probability is

θ∗ =
µ

Rσ 2 −
βρ

σ
(5.1)

and
a∗ = a(δ) ∧ 1, (5.2)

and the minimal ruin probability is given by

9(x)= e−Rx , (5.3)

where R is the unique positive solution of the equation

β2

2
(1− ρ2)r2

+

(
βµρ

σ
− c + c1

)
r − c1δ −

µ2

2σ 2 +
λδ

α − δ
= 0 for a∗ < 1

or
β2

2
(1− ρ2)r2

+

(
βµρ

σ
− c

)
r −

µ2

2σ 2 +
λr

α − r
= 0 for a∗ = 1.

For the classical compound Poisson risk model that is perturbed by diffusion,

R(t)= x + ct −
N (t)∑
k=1

Yi + βW̃ (t),

https://doi.org/10.1017/S144618110900042X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110900042X


[10] Ruin probabilities under an optimal policy 43

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Without investment and reinsurance

Cheap reinsurance

Noncheap reinsurance

Diffusion volatility

R
ui

n 
pr

ob
ab

ili
ty

FIGURE 1. Effects of investment and reinsurance on the ruin probability.

we know by Dufresne and Gerber [4] or Wang and Wu [21] that the ruin probability
satisfies

9̃(x)= C1e−r1x
+ C2e−r2x , (5.4)

where

C1 =
β2r2
− 2r2c

β2(r2
2 − r2

1 )− 2c(r2 − r1)
, C2 =−

β2r2
1 − 2r1c

β2(r2
2 − r2

1 )− 2c(r2 − r1)
,

r1 =
1

β2

1
2
αβ2
+ c −

√(
1
2
αβ2 − c

)2

+ 2λβ2

 and

r2 =
1

β2

1
2
αβ2
+ c +

√(
1
2
αβ2 − c

)2

+ 2λβ2

.
Some examples are considered below. Examples 1–6 have the common feature that

α = 0.5, c = 5 and λ= 2.

5.1. Examples with x = 10 and ρ = 0

EXAMPLE 1. We further assume that µ= 0.10 and σ = 0.20 for β ∈ [1, 5] and
calculate some ruin probabilities. We assume that c1 = 5 and calculate the value of
91(x) and 9̃(x) by (5.3) and (5.4), respectively, and assume that c1 = 10 to calculate
92(x) by (5.3). The results are presented in Figure 1.

From Figure 1, we know that 91(x) < 9̃(x) and 92(x) < 9̃(x). That is, if
the insurance company invests part of the surplus in risky assets and purchases
proportional reinsurance for claims, no matter what the reinsurance policy (cheap or
noncheap), it is possible to decrease the risk of ruin of the insurance company. We also
observe that 91(x) < 92(x), that is, the greater the reinsurance premium, the larger
the minimal ruin probability, and as the cost of reinsurance increases it is natural to
increase the risk of ruin. If we consider the minimal ruin probability as a function of β,
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FIGURE 2. Effects of the market price of risk on the ruin probability.

then from Figure 1 we see that the minimal ruin probability is an increasing function
of β, no matter what the reinsurance policy. As β increases, the uncertainty risk of the
insurance company will increase, so the risk of ruin will increase.

EXAMPLE 2. We further assume that β = 3 for the market price of risk γ = µ/σ ∈
[0, 0.8]. We calculate the value of the ruin probability 9(x) by (5.3) for c1 = 5 and
c1 = 10 and present the results in Figure 2.

If we consider the minimal ruin probability as a function of the market price of risk
γ , then from Figure 2 we see that the minimal ruin probability is a decreasing function
of γ , no matter what the reinsurance policy. This simply states that as γ increases, the
risk of ruin of the insurance company will decrease. The reason for this is that as γ
increases, that is, the return of the unit risk is larger, the insurance company can obtain
a greater yield from investment, so the risk of ruin will decrease.

5.2. Examples with µ= 0.10, ρ =−0.5, 0, 0.5 and σ = 0.20

EXAMPLE 3. We assume that x = 10 and β ∈ [1.5, 3], and calculate the value of the
ruin probability 9(x) by (5.3) for c1 = 5 and c1 = 10. The results are presented in
Figure 3.

If we consider the minimal ruin probability as a function of the correlation
coefficient ρ, then from Figure 3 we observe that the minimal ruin probability is an
increasing function of ρ, no matter what the reinsurance policy. If ρ is positive, then
the risk of investment and the risk of the diffusion will aggregate; therefore, the total
risk of the insurance company will increase, so the risk of ruin will increase. If ρ
is negative, then the risk of investment and the risk of diffusion will change in the
opposite direction; therefore, the total risk of the insurance company will decrease, so
the risk of ruin will decrease.

EXAMPLE 4. We assume that β ∈ [0.5, 3] and calculate the optimal investment policy
θ∗ by (5.1) for c1 = 5 and c1 = 10. The results are presented in Figure 4.
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FIGURE 3. Effects of the diffusion volatility and the correlation coefficient on the ruin probability.
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FIGURE 4. Effects of the diffusion volatility on the optimal investment.

If we consider the optimal investment policy as a function of the diffusion volatility
parameter β, then from Figure 4 we observe that the optimal investment policy is an
increasing function of β, no matter what the reinsurance policy. If we consider the
optimal investment policy as a function of the correlation coefficient ρ, then from
Figure 4 we see that the optimal investment policy is an decreasing function of the
correlation coefficient ρ, no matter what the reinsurance policy. From Figure 4, we
also know that the optimal investment policy is a increasing function of the reinsurance
premium. This simply states that as the price of reinsurance increases, the insurer
should invest more money in risky assets.

EXAMPLE 5. We assume that β ∈ [1, 5] and calculate the optimal proportional
reinsurance policy a∗ by (5.2) for c1 = 5 and c1 = 10. The results are presented in
Figure 5.
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FIGURE 5. Effects of the diffusion volatility on the optimal retention level.
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FIGURE 6. Effects of the market price of risk on the optimal retention level.

If we consider the optimal retention level as a function of the diffusion volatility
parameter β, then from Figure 5 we observe that the optimal retention level is an
increasing function of β for any reinsurance policy. If we consider the optimal
retention level as a function of the correlation coefficient ρ then from Figure 5 we
see that the optimal retention level is an increasing function of ρ for any reinsurance
policy. At the same time, from Figure 5 we also know that the optimal retention level
is an increasing function of the reinsurance premium, and as the cost of reinsurance
increases it is natural for the insurer to retain a greater share of each claim.

EXAMPLE 6. We assume that β = 2 and γ ∈ [0, 0.8], and calculate the optimal
proportional reinsurance policy a∗ by (5.2) for c1 = 5 and c1 = 10. The results are
presented in Figure 6.
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From Figure 6, we see that as the market price of risk γ is large, then the optimal
retention level will decrease when γ increases for any reinsurance policy.
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