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ABSTRACT. For accurate ice-sheet flow modelling, the anisotropic behaviour of ice must be taken fully
into account. However, physically based micro–macro (m–M) models for the behaviour of an anisotropic

ice polycrystal are too complex to be implemented easily in large-scale ice-sheet flow models. An easy

and efficient method to remedy this is presented. Polar ice is assumed to behave as a linearly viscous

orthotropic material whose general flow law (GOLF) depends on six parameters, and its orthotropic

fabric is described by an ‘orientation distribution function’ (ODF) depending on two parameters.
A method to pass from the ODF to a discrete description of the fabric, and vice versa, is presented.

Considering any available m–M model, the parameters of the GOLF that fit the response obtained by

running this m–M model are calculated for any set of ODF parameters. It is thus possible to tabulate the

GOLF over a grid in the space of the ODF parameters. This step is performed once and for all. Ice-sheet
flow models need the general form of the GOLF to be implemented in the available code (once), then,

during each individual run, to retrieve the GOLF parameters from the table by interpolation. As an

application example, the GOLF is tabulated using three different m–M models and used to derive the

rheological properties of ice along the Greenland Icecore Project (GRIP) ice core.

NOTATION
General
a Scalar
a Vector
A Tensor
AD Deviatoric part of A
AT Transpose of A
Afiijjg Series of components independent of indices order:

Afiijjg ¼ Aiijj ¼ Aijij ¼ Aijji ¼ Ajiij ¼ Ajiji ¼ Ajjii

�ij Kronecker symbol �ij ¼ 1 if i = j, �ij ¼ 0 if i 6¼ j
� Tensorial (dyadic) product:

A ¼ b� c , Aij ¼ bicj
� Dot product (contracted product):

A ¼ B � C , Aik ¼ BijCjk

: Double contracted product:
A ¼ B : C , Aij ¼ BijklClk or
a ¼ A : A , a ¼ AijAji

:: Four times contracted product:
a ¼ A :: A , a ¼ AijklAIkji

tr () Trace of a tensor: tr (A) = Aii

h i Weighted average

Summation over repeated indices is implied.

Acronyms
GOLF General orthotropic linear flow law
HEM Homogeneous equivalent medium
ODF Orientation distribution function
SC Self-consistent
m–M Micro–macro

List of symbols

�Að2Þ Second-order orientation tensor
�Að4Þ Fourth-order orientation tensor

B1 Glen’s law parameter for linearly isotropic ice
(n ¼ 1)

c c-axis (unit) vector
�C Viscosity matrix in vector notation
D Strain-rate tensor (grain)
�D Strain-rate tensor (polycrystal)
�d Strain rates in vector notation
�ei Unit basis vectors of fRg ði ¼ 1,2,3Þ
gei Unit basis vectors of fgRg ði ¼ 1,2,3Þ
oei Unit basis vectors of foRg ði ¼ 1,2,3Þ
f Orientation distribution function (ODF)
fk Volume fraction of grain k
I Identity tensor
Jpq Moment of f
ki ODF (fabric) parameters (i ¼ 1,2,3)
M Grain structure tensor
�Mr Polycrystal structure tensors (r ¼ 1,2,3)
p Permutation vector
fRg Global fixed reference frame
foRg Material symmetry reference frame
fgRg Local frame attached to individual grain
S Deviatoric stress tensor (grain)
�S Deviatoric stress tensor (polycrystal)
�s Deviatoric stresses in vector notation
� Grain anisotropy parameter
� Grain anisotropy parameter
� Grain basal viscosity
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��0 Viscosity of linearly isotropic ice: ��0 ¼ 1=B1

��i GOLF relative (dimensionless) viscosities
(i ¼ 1,2, . . . ,6)

� Grain c-axis colatitude
’ Grain c-axis longitude
��d Dissipation potential

The overbar symbol denotes a macroscopic quantity (i.e.
related to the polycrystal): use of this notation is restricted to
situations when confusion needs to be avoided.

1. INTRODUCTION
Since Gow and Williamson (1976), the analyses of thin
sections cut from ice cores drilled in different parts of
Antarctica and Greenland have revealed that deep polar ice
exhibits strong fabrics, i.e. crystallographic preferred orien-
tations of the grains’ c axes. Owing to a combination of
compression and shear experienced by ice along its journey
from the ice-sheet surface towards the bedrock, most ice
cores display a fabric that evolves with depth towards a
single maximum along the direction close to the vertical
(Thorsteinsson and others, 1997; Wang and others, 2002).

Because the single crystal of ice deforms essentially by slip
on the basal plane normal to the hexagonal-symmetry c axis,
its visco-plastic behaviour is extremely anisotropic (Duval
and others, 1983). Consequently, marked crystallographic
textures confer anisotropic behaviour on polycrystalline ice.
As shown by Pimienta and others (1987), a polycrystal of ice
with all the c axes of its grains oriented in the same direction
deforms ten times faster than an isotropic polycrystal, whose
grain c axes are oriented at random, when it is sheared
parallel to the basal planes. Since the flow of ice sheets is
mainly governed by shearing near the bedrock, single-
maximum fabrics are certainly very influential.

Secondary creep of isotropic polycrystalline ice is well
described by Glen’s law, which relates the minimum strain
rate �D to the deviatoric stress �S as

2 �D ¼ Bn�
n�1 �S, ð1Þ

where �2 ¼ 1
2
�S: �S is the second invariant of �S, n is the power-

law exponent and Bn is a temperature-dependent parameter.
One method of dealing with single-maximum fabrics is to
adopt Lile’s (1978) enhancement-factor concept, that is to
multiply Bn in Equation (1) by a scalar factor greater than 1.
An argument for doing so, which is often put forward, is that
large-scale flow models based on the zeroth-order shallow-
ice approximation (SIA) (Hutter, 1983) involve only the shear
stresses; therefore, since only a scalar relationship is needed
as a constitutive law, anisotropy does not matter (Mangeney
and Califano, 1998). However, this argument no longer
holds if the axis of symmetry of the fabric deviates from the
vertical: in that case, taking into account a true anisotropic
flow law for ice leads to zero-order stress diagonal
components of the same order of magnitude as the shear
stress (Philip and Meyssonnier, 1999). Furthermore, Mange-
ney and Califano (1998) showed that when the longitudinal
stresses are taken into account (e.g. second-order SIA or
finite-element models), using an enhancement factor does
not lead to correct solutions for the flow of ice: since it does
not change the isotropic nature of relation (1), the
directional effects of textural anisotropy are not accounted
for (yet, according to Castelnau and others (1998), these

directional effects could be the origin of stratigraphic
disturbances observed at the bottom of deep ice cores).

In recent years many models have been proposed to
describe the anisotropy of polar ice in a more consistent
way. Morland and Staroszczyk (1998) propose an aniso-
tropic flow law that depends on a ‘fabric response function’
(a function of the current strain) fitted to laboratory and field
data. This approach has the major quality of being easy to
implement into an ice-sheet model (Staroszczyk and Mor-
land, 2000), it is, however, essentially phenomenological.

The other types of model are the physically based ‘micro–
macro’ (m–M) models (e.g. Lliboutry, 1993; Azuma, 1994;
Castelnau and others, 1996; Svendsen and Hutter, 1996;
Gödert and Hutter, 1998; Gagliardini and Meyssonnier,
1999a). By definition, a m–M model considers a representa-
tive volume of ice as an aggregate of grains (i.e. a
polycrystal) and, assuming that the grain behaviour is
known (at the ‘micro’ scale), calculates the ‘macroscopic’
behaviour of the aggregate by a homogenization procedure.
To date, most of them are too complex and time-consuming
to be included readily in an ice-sheet flow model. Only the
simple ‘static’ model that assumes a uniform state of stress in
the polycrystal has been implemented into a two-dimen-
sional finite-element code to model the local flow of an ice
sheet at the scale of a few ice thicknesses (Gagliardini and
Meyssonnier, 1999b, 2000).

The present paper proposes an easy and efficient method
for implementing an anisotropic constitutive law for ice
derived from a m–M model into a pre-existing ice-sheet flow
model. The basic ingredients are a general expression for the
so-called ‘general orthotropic linear flow law’ for ice
(GOLF), which provides the instantaneous response of the
ice polycrystal as a function of its fabric described by an
‘orientation distribution function’ (ODF). Then, in what
follows, the ice fabric is an input of the GOLF. Modelling its
evolution is left for future work.

This paper has two main sections. In section 2, the
derivation of the GOLF and that of the ODF are presented
together with the method to compute the GOLF parameters
that correspond to using any given m–M model. The
procedure of implementing GOLF into an ice-sheet model
is explained. In section 3, the method is applied to three dif-
ferent m–M models, among which the self-consistent model
(SC) is the most realistic. In section 4, the GOLF resulting
from the SC model is used to model the rheology of ice along
the Greenland Icecore Project (GRIP) ice core and the results
are compared with those given directly by the SC model.

2. USER-FRIENDLY FLOW-LAW IMPLEMENTATION
SCHEME

2.1. General orthotropic linear flow law (GOLF)

The main assumption of the chosen flow law is that polar ice
behaves as a linearly viscous orthotropic material (i.e. its
mechanical properties are symmetrical with respect to three
orthogonal planes, the intersections of which define the
three axes of orthotropy, also called axes of the material
symmetry reference frame in the following). Since the order
of magnitude of the deviatoric stress in large parts of ice
sheets is very low, there are indications from laboratory tests
and field measurements of a stress exponent n in Equation (1)
of less than 2, and possibly close to 1 (Doake and Wolff,
1985; Lliboutry and Duval, 1985; Lipenkov and others,
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1997), so that the hypothesis of linear behaviour is sound. As
shown by texture measurements in deep ice cores (Lipenkov
and others, 1989; Thorsteinsson and others, 1997; Wang
and others, 2002), the orthotropic assumption is not very
crude for polycrystalline ice since most observed ice fabrics
are very close to orthotropic patterns, i.e. they present three
orthogonal planes of symmetry. Although orthotropy is but a
simple form of the most general anisotropy, it is thought to
constitute a good compromise. Commonly observed polar
ice fabrics have a single maximum (e.g. the GRIP ice core)
or the c axes randomly oriented in a vertical plane (as in the
Vostok (Antarctica) ice core). These two forms correspond to
transverse isotropy, which is a special form of orthotropy.
Considering orthotropic ice keeps the rheological modelling
simple while allowing us to pass from one typical observed
fabric to the other in an approximate manner.

In what follows, the overbar symbol denotes a ‘macro-
scopic’ quantity related to the ice polycrystal seen as a
homogeneous representative volume of ice. Since we deal
with an orthotropic medium, a natural reference frame is the
material symmetry reference frame, denoted foRg, whose oei
unit vectors are along the intersections of the three
orthogonal planes of symmetry.

The expression for GOLF derives from Boehler’s (1987)
general expression for a linearly orthotropic medium. Since
ice is incompressible, i.e.

trð �DÞ ¼ 0, ð2Þ
the relation between the deviatoric stress tensor �S and the
strain-rate tensor �D is taken as

�S ¼ ��0
X3
r¼1

��r trð �Mr � �DÞ �MD
r þ ��rþ3ð �D � �Mr þ �Mr � �DÞD

h i
, ð3Þ

where ��0 is a reference viscosity; the GOLF parameters, ��r
and ��rþ3, ðr ¼ 1, 2, 3Þ, are six dimensionless viscosities
relative to ��0, which depend on the fabric strength and on
the m–M model used; and �Mr are the three structure tensors
oer � oer , ðr ¼ 1, 2, 3Þ.

The interest of Equation (3) lies in the fact that it is a
tensorial relation, i.e. its form is conserved by any change of
reference frame and, as we shall see in the following, this is
very convenient when using particular homogenization
schemes. Details of how to write relation (3) in the more
usual form using vector notation, which is best suited for
finite-element computations, are given in the Appendix.

For randomly distributed c-axis orientations the poly-
crystal behaviour is isotropic and its constitutive relation is
obtained by letting ��1 ¼ ��2 ¼ ��3 ¼ 0 and ��4 ¼ ��5 ¼ ��6 ¼ 1
in Equation (3). Then, taking into account that, owing to
Equation (2),

X3
r¼1

ð �D � �Mr þ �Mr � �DÞD ¼ 2 �D, ð4Þ

Equation (3) reduces to:

�S ¼ 2��0 �D: ð5Þ
In the following, ��0 is conveniently chosen as ��0 ¼ 1=B1,
where B1 is the temperature-dependent fluidity parameter in
Glen’s law (1) with a stress exponent n ¼ 1.

2.2. Fabric description
The six GOLF viscosity parameters ��i are fabric-dependent.
We aim to adjust these parameters so that relation (3) (or

relation (A1) in the Appendix) matches the behaviour
resulting from a given m–M model, that requires the fabric
of the representative polycrystal as an input, as closely as
possible.

In the following we will characterize the grain crystal-
lographic orientations by the distribution of the grains’
c axes only. This is justified by the fact that (i) basal slip
provides an almost transversely isotropic behaviour (see,
e.g., Kamb, 1961) and (ii) the orientation of a axes is rarely
measured in practice on ice thin sections.

The c-axis direction is connected with foRg by two Euler
angles: the co-latitude � and the longitude ’. The unit vector
along the c axis, denoted by c, is expressed in the grain
reference frame fgRg as c ¼ ð0, 0, 1ÞT and in foRg as

c ¼ ðcos’ sin �, sin’ sin �, cos �ÞT: ð6Þ

2.2.1. Discrete description of the fabric
The most natural and straightforward way of describing the
fabric is to consider the polycrystal as an assembly of a finite
number of grains, Ng, each grain being indexed by subscript
k ðk ¼ 1, 2, . . . ,NgÞ. Fabric description is then simply a list
of the two Euler angles ð�k ,’kÞ that define the crystal-
lographic orientation of each grain’s c axis, and of the
volume fraction fk occupied by each grain.

The weighted average of a quantity kY (scalar, vector or
tensor) on all the grains is then defined as

hkY i ¼
XNg

k¼1

fk
kY : ð7Þ

2.2.2. Continuum description of the fabric
To reduce the number of input variables, the fabric can be
described by an ODF that represents the density (volume
average) of grains with a given crystallographic orientation.
The ODF is then a function f ð�,’Þ that gives the density of c
axes with orientation ð�,’Þ. Following Staroszczyk and
Gagliardini (1999), we adopt a parameterized form for the
ODF, derived from analytical calculations, that accounts for
the orthotropic symmetries. Its expression in the material
symmetry reference frame foRg is

f ð�,’Þ ¼ sin2� k2
1 cos

2’þ k2
2 sin

2’
� �þ k2

3 cos
2�

� ��3=2
: ð8Þ

This parameterized ODF exhibits the following orthotropic
symmetries:

f ð�,’Þ ¼ f ð�, �’Þ ¼ f ð�,’� �Þ ¼ f ð�� �,’Þ: ð9Þ
By definition,

1
2�

Z 2�

0

Z �=2

0
f ð�,’Þ sin � d� d’ ¼ 1, ð10Þ

and using this normalization condition one can show that

k1k2k3 ¼ 1, ð11Þ
so that the ODF depends in fact on only two independent
‘fabric’ parameters (e.g. k1 and k2).

The parameterized form of the ODF allows us to describe
the different fabric patterns that are observed. Examination
of Equation (8) shows that

k1 ¼ k2 ¼ k3 ¼ 1 characterizes an isotropic fabric
(f � 1),

k1 � k2 ¼ k3 corresponds to a single-maximum fabric in
the oe1 direction,

Gillet-Chaulet and others: A user-friendly anisotropic flow law for ice-sheet modelling 5

https://doi.org/10.3189/172756505781829584 Published online by Cambridge University Press

https://doi.org/10.3189/172756505781829584


k1 � k2 ¼ k3 corresponds to a girdle fabric around the
oe1 axis,

k1 < k2 < k3 represents an orthotropic fabric with more
grain c axes close to oe1 than to the other directions.

With the parameterized ODF (8) the averaging formula used
by homogenization schemes for a quantity Y (scalar, vector
or tensor) is

hYð�,’Þi ¼ 2
�

Z �=2

0

Z �=2

0
Y ð�,’Þf ð�,’Þ sin � d� d’: ð12Þ

2.2.3. Tensorial description of the fabric
The use of tensors to describe fabrics was introduced by
Advani and Tucker (1987) to predict the mechanical
properties of composites containing rigid fibres.

The fabric is described by an infinite set of orientation
tensors, defined as the averages of the dyadic products of

vector c. The second-order orientation tensor �Að2Þ is defined
as the average of the structure tensors M 3 ¼ M ¼ c � c
attached to individual grains:

�Að2Þ ¼ hM i ¼ hc � ci, ð13Þ
and the fourth-order orientation tensor �Að4Þ is defined as

�Að4Þ ¼ hM �M i ¼ hc � c � c � ci: ð14Þ
The two tensors (Equations (13) and (14)) can be calculated
either for a discrete fabric description, using the averaging
formula (7), or for an ODF description using Equation (12),
allowing objective comparisons of these two descriptions.

Because ODF (8) is an even function, by construction the
odd-order orientation tensors calculated from a continuum
fabric description using Equation (12) are null. This result
reflects the fact that there is no physical justification to give a
grain the orientation c rather than �c.

Advani and Tucker (1987) showed that the mechanical
properties of a macroscopic medium containing transversely
isotropic constituents with a linear behaviour depend only
on the second- and fourth-order orientation tensors, when
the interaction between the constituents is not taken into
account. This is supported by analytical calculations with
the ‘uniform-stress’ and ‘uniform strain-rate’ m–M models
(see section 3.2), and numerically verified with the self-
consistent model. This implies that, since fabrics are
described as an average, two different polycrystals whose
discrete grain distributions have the same second- and
fourth-order orientation tensors will have the same homo-
genized macroscopic behaviour.

2.2.4. Passage from continuum to discrete descriptions
Since most m–M models work with a discrete description of
the fabric, we need a method to construct the discrete fabric
that corresponds to that represented by the ODF for any set
of fabric parameters ðk1, k2Þ. We also need to pass from
texture measurements (on a finite number of grains) to the
ODF representation. The method to pass from the ODF to
the discrete fabric description is based on the use of the
second- and fourth-order orientation tensors only.

For an orthotropic fabric described by ODF (8), the

orientation tensors denoted by �Að2Þ cont and �Að4Þ cont (calcu-
lated from Equations (13) and (14) using Equations (12)
and (6)) have a number of null components when ex-
pressed in the material symmetry reference frame foRg. The

24 non-null components of these two tensors are

�Að2Þ
11 ¼ J30 � J32,

�Að2Þ
22 ¼ J32,

�Að2Þ
33 ¼ 1� �Að2Þ

11 � �Að2Þ
22 ,

ð15Þ

and

�Að4Þ
f1122g ¼ J52 � J54,

�Að4Þ
f1133g ¼ J30 � J32 � J50 þ J52,

�Að4Þ
f2233g ¼ J32 � J52,

�Að4Þ
1111 ¼ �Að2Þ

11 � �Að4Þ
1122 � �Að4Þ

1133 ,

�Að4Þ
2222 ¼ �Að2Þ

22 � �Að4Þ
2211 � �Að4Þ

2233 ,

�Að4Þ
3333 ¼ �Að2Þ

33 � �Að4Þ
3311 � �Að4Þ

3322 ,

ð16Þ

where Afiijjg denotes the series of components independent
of the indices order fAiijj ¼ Aijij ¼ Aijji ¼ Ajiij ¼ Ajiji ¼ Ajjiig,
and the five moments Jpq, given by

Jpq ¼ 2
�

Z �=2

0

Z �=2

0
f ð�,’Þ sinp� sinq’ d� d’, ð17Þ

are deduced from the definitions of the second- and fourth-
order orientation tensors (Equations (13) and (14)).

For an isotropic polycrystal f � 1, therefore, the orienta-
tion tensors are simply

�Að2Þ
ij ¼ 1

3
�ij

�Að4Þ
ijkl ¼

1
15

ð�ij�kl þ �ik�jl þ �il�jkÞ, ði, j, k, l ¼ 1, 2, 3Þ: ð18Þ

2.2.5. A method to build discrete fabrics from the ODF
Using �AðnÞdisc ðn ¼ 2, 4Þ to denote the orientation tensors for
a discrete distribution of Ng grains (calculated with
averaging formula (7) in which a constant volume fraction

fk ¼ 1=Ng is assumed), and �AðnÞ cont ðn ¼ 2, 4Þ to denote their
respective continuous counterparts (calculated from Equa-
tions (15) and (16)), the discrete fabric associated with a
given set of fabric parameters ðk1, k2Þ is sought as the
distribution of c axes {kc}, expressed in foRg as {kcð�k ,’kÞ}
according to Equation (6), that minimizes

U ð1c, 2c, . . . ,NgcÞ ¼ ��
ð2Þ : ��

ð2Þ þ ��
ð4Þ : : ��

ð4Þ , ð19Þ
where ��

ðnÞ ¼ �AðnÞ disc � �AðnÞ cont for n ¼ 2, 4.
The minimization of U with respect to all possible

orientations for the kc is done by the conjugate gradient
method. For a given set of fabric parameters k1 and k2 and
for a given number Ng of grains, the resulting discrete fabric
is then not unique, but depends on the choice of the initial
distribution of the c axes. However, if the number of grains is
large enough, the method converges towards a discrete
fabric which has the same second- and fourth-order
orientation tensors as the ODF (and therefore the same
macroscopic behaviour). In terms of computation time, the
more efficient choice for the initial fabric seems to be a
uniform distribution obtained by discretizing the surface of
the half unit sphere in Ng elements with the same area,
delimited by parallels and meridians, then by assigning to
each kc the ð�,’Þ coordinates of the centre of each element.

Gillet-Chaulet and others: A user-friendly anisotropic flow law for ice-sheet modelling6

https://doi.org/10.3189/172756505781829584 Published online by Cambridge University Press

https://doi.org/10.3189/172756505781829584


By construction this fabric is orthotropic and the conver-
gence is faster than that obtained with an initial set of
randomly distributed orientations. Figure 1 shows examples
of isotropic and anisotropic discrete fabrics thus created.

2.2.6. Calculation of ODF parameters from (discrete)
measurements
To use data from texture measurements on thin sections of
ice as an input to the GOLF we need to pass from a discrete
to a continuum description of the fabric. The second- and

fourth-order orientation tensors �Að2Þ disc and �Að4Þ disc are
calculated from the data using relations (13), (14) and (7).
Since the parameterized ODF (8) is restrictive, in that it only
describes a particular set of orthotropic fabrics, we cannot
find, in general, a couple ðk1, k2Þ such that the ODF exhibits
the same second- and fourth-order orientation tensors as
�Að2Þ disc and �Að4Þ disc. Therefore, we choose to use only the
second-order orientation tensor to find the estimates of the
k1 and k2 parameters, since it contains the first-order
information about the fabric symmetries. Comparison

between the measured �Að4Þ disc and �Að4Þ cont calculated from
Equations (16) and (17) with the couple ðk1, k2Þ solution
of Equation (20), allows us to assess the ability of the ODF
(8) to describe the measured fabric, as explained for the
GRIP fabrics (see section 4). For a given set of discrete
orientations {kcð�k ,’kÞ} and a given set of associated
volume fractions ffkg for the Ng measured grains, the two
fabric parameters k1 and k2 are determined by solving the
following closed set of two non-linear equations derived
from relations (15):

J30ðk1, k2Þ � �Að2Þ disc
1 � �Að2Þ disc

2 ¼ 0,

J32ðk1, k2Þ � �Að2Þ disc
2 ¼ 0,

ð20Þ

where, for numerical convenience, �Að2Þ disc
1 and �Að2Þ disc

2 are

chosen as the two largest eigenvalues of �Að2Þ disc and the two
moments J30 and J32 are given by Equation (17). This set of
non-linear equations is solved using Newton’s method. The

reference frame defined by the three eigenvectors of �Að2Þdisc

is the best estimate for the material symmetry reference
frame foRg of the ice specimen analyzed. (The position of
foRg thus achieved is relative to the ice thin-section
reference frame, whose position relative to the global
reference frame fRg is assumed to be known.)

It should be noted that:

It is not possible to obtain analytical expressions for k1
and k2 as functions of �A

ð2Þ disc
1 and �Að2Þ disc

2 ; however, in the
limit case of a transversely isotropic fabric the eigen-
values can be derived analytically as functions of the
fabric parameters (Gagliardini and Meyssonnier, 1999a).

As suggested by Gagliardini and others (2004), in order
to get a better estimate of the actual volume of the grains,
the volume fraction fk of the grains should be calculated
from the measured cross-sectional area of the grains Ak

as fk ¼ A3=2
k =

PNg

i¼1 A3=2
i .

2.3. Customizing the GOLF
The six GOLF viscosity parameters ��i need to be fitted so
that relation (3) reproduces (as closely as possible) the ice
behaviour achieved with a m–M model designed for

calculating the response of a polycrystalline ice aggregate.
The first step is to derive the GOLF parameters for a given
fabric defined by ODF parameters k1 and k2.

2.3.1. Derivation of the GOLF parameters
To derive the GOLF parameters that correspond to a given
m–M model, it is convenient to use the dissipation potential
��d, which, by definition, obeys �S ¼ @ ��d=@ �D. For a linear
medium, and making use of Equation (3), the dissipation
potential is expressed as

��d ¼ 1
2
�S: �D ¼ ��dð��0 , ��i , �DÞ: ð21Þ

Except for the special case of a m–M model that can be
expressed analytically (see section 3.2), the general pro-
cedure to fit the six GOLF parameters ��i is as follows. For a
given fabric, each m–M model run provides the response �S to
a prescribed stretching �D. The m–Mmodel is thus runN times
for N different sets of stretching k �D, (k ¼ 1, 2, . . . ,N), while
keeping the fabric fixed, which provides N corresponding
values of the dissipation potential k ��d, (k ¼ 1, 2, . . . ,N ). The
optimal GOLF parameters ��i minimize

W ¼
XN
k¼1

k ��d � ��dð��0 , ��i , k �DÞ
h i2

: ð22Þ

Fig. 1. Schmid diagrams for discrete fabrics, on the sides of the
triangular domain defined by 10�3 < k1 < k2 < k3, created by
minimizing Equation (19) with Ng grains. (a) Isotropic fabric
(k1 ¼ k2 ¼ k3 ¼ 1, Ng ¼ 196); (b,c) single-maximum fabrics
(k1 ¼ 5� 10�2, k2 ¼ k3, Ng ¼ 900) and (k1 ¼ 1� 10�3, k2 ¼ k3,
Ng ¼ 4900), respectively; (d) intermediate fabric (k1 ¼ 10�3,
k2 ¼ 2� 10�1, k3 ¼ 5� 103, respectively, Ng ¼ 4900); (e,f) trans-
versely isotropic girdle fabrics (k1 ¼ k2 ¼ 10�3 (e) and 5� 10�2 (f)
Ng ¼ 196).
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2.3.2. Interpolation of the relative viscosities
Minimization of Equation (22) provides the six GOLF
viscosities ��i for a given set of fabric parameters (k1, k2). In
practice, we need these coefficients for any (k1, k2) that may
arise during an ice-sheet flow calculation. Since the adopted
m–M model is assumed to be too complex and time-
consuming to be directly implemented in an ice-sheet flow
model, its response and the corresponding GOLF parameters
are computed on a predefined set of fabric parameters.

Owing to the orthotropic symmetries, the six relative
viscosities in Equation (3) need to be calculated only on the
restricted range of fabric parameters such that k1 	 k2 	 k3.
Since each ��r and each ��rþ3 are associated with the
corresponding structure tensor �Mr ¼ oer � oer in Equa-
tion (3), for r ¼ 1, 2, 3, and since each kr characterizes the
strength of the fabric along the corresponding oer axis, the
values of the viscosities for any other ordering of the fabric
parameters can be deduced by permutation from the case
k1 	 k2 	 k3 (see Fig. 2).

This can be formalized by using the permutation vector
pðk1, k2, k3Þ defined by sorting the fabric parameters in
increasing order, that is:

ki 	 kj 	 km ) pðk1, k2, k3Þ ¼ ½i, j,m

ði 6¼ j 6¼ m ¼ 1, 2, 3Þ . ð23Þ

Using ���r and ���rþ3, (r ¼ 1, 2, 3), to denote the six viscosities
calculated for a set of fabric parameters {k�

1, k
�
2, k

�
3} sorted in

increasing order, the viscosities corresponding to the same
set of fabric parameters presented in a different order are
given by

��pr ¼ ���r and ��prþ3 ¼ ���rþ3 , ðr ¼ 1, 2, 3Þ: ð24Þ

The case k1 � 1 and k2 ¼ k3 corresponds to a single-
maximum fabric with the c axes in the direction oe1. For
such a fabric the polycrystal behaviour that results from the
m–M models considered up to now (see section 3.2) is very
close to that of a single grain. The numerical tests performed
with the m–M models show that an appropriate lower bound
for k1 is kmin ¼ 2� 10�3: the relative differences between
the viscosities of an isolated grain and that calculated for
k1 ¼ kmin and k2 ¼ k3 ¼ 1=k2

min are then <10�2. As a
consequence, the relative viscosities are calculated on the
restricted domain kmin 	 k1 	 k2 	 k3.

Owing to the large number of input variables, it is not
possible to achieve an analytical fit of the six relative
viscosities on the selected domain. Therefore the viscosities
are interpolated on a triangular regular grid in the
ðlog k1, log k2Þ plane, over the triangular domain limited by
the lines k1 ¼ kmin, k1 ¼ k2 and k2ð¼ k3Þ ¼ 1=

ffiffiffiffiffi
k1

p
. The six

GOLF viscosities are calculated at each gridpoint using the
m–M model, then stored as a table. The grid contains
813 points, so the number of viscosities to be stored is 4878.

This process of tabulating the GOLF parameters is
performed only once. During an ice-sheet flow computa-
tion, the six GOLF viscosities for a couple ðk1, k2Þ that is not
in the table are interpolated quadratically from the nine
nearest neighbours.

The dimension of the table (813 points) is a compromise
between the time needed to calculate the viscosities
(depending on the complexity of the m–M model) and the
error due to the interpolation procedure, discussed in
section 3.3.

3. APPLICATION
To assess the feasibility and the accuracy of the proposed
method, three different m–M models for describing the ice
polycrystal behaviour have been considered. Each of these is
based on an assumed constitutive law for the ice grain,
which is the elementary constituent of the polycrystal.

3.1. Grain behaviour
Following Meyssonnier and Philip (1996), a model that
allows analytical calculations is obtained by assuming that
the ice grain behaves as a linearly viscous and transversely
isotropic continuous medium. This is in agreement with
Kamb’s (1961) results on the isotropy of the basal plane for
stress exponent 1 or 3. In the material symmetry reference
frame of the grain fgRg the rotational symmetry axis ge3
coincides with the grain’s c axis (i.e. c ¼ ge3).

At this stage it is convenient to introduce three ‘grain
rheology parameters’ denoted by �, � and �:

� is the viscosity for shear parallel to the crystal basal
plane,

� is the ratio of the shear viscosity parallel to the basal
plane to the shear viscosity in the basal plane,

� is the ratio of the viscosity in compression or tension
along the c axis to that in the basal plane.

Fig. 2. Symmetries of the six GOLF relative viscosities in the plane
of the two fabric parameters k1 and k2. In each of the six domains,
the order of the fabric parameters and the components of the
permutation vector p are given by:

zone 1: k1 	 k2 	 k3, p ¼ ð1,2,3Þ;
zone 2: k1 	 k3 	 k2, p ¼ ð1,3,2Þ;
zone 3: k3 	 k1 	 k2, p ¼ ð3,1,2Þ;
zone 4: k3 	 k2 	 k1, p ¼ ð3,2,1Þ;
zone 5: k2 	 k3 	 k1, p ¼ ð2,3,1Þ;
zone 6: k2 	 k1 	 k3, p ¼ ð2,1,3Þ:

The six relative viscosities ���i ði ¼ 1,2, . . . ,6Þ are calculated inside
zone 1, and for the five other domains the relative viscosities ��i are
deduced from the ���i using the permutation vector p.
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According to Boehler (1987), the general relation for a linear
transversely isotropic medium is

S ¼ 2�
1
�
D þ 2

�

�
� 1

� �
tr ðM3 �DÞMD

3

�

þ 1� 1
�

� �
ðD �M3 þM3 �DÞD

	
, ð25Þ

where M3 ¼ c � c. The inverse form of Equation (25) is
obtained as

D ¼ 1
2�

�S þ 2 �
� þ 2
4� � 1

� 1
� �

tr ðM3 � SÞMD
3

�

þ ð1� �ÞðS �M3 þM3 � SÞD
i
: ð26Þ

According to Duval and others (1983), the ice single crystal
deforms mainly by shear parallel to its basal plane, thus �
must be significantly less than 1, and there is no evidence
that compression is easier or harder in a direction perpen-
dicular to the c axis than along the c axis, so we assume
� � 1. However, in the extreme case when all the grains
have the same orientation, m–M models give a polycrystal
response which is the same as that of a single isolated grain.
Therefore, in order to account for the influence of grain
boundaries, the grain behaviour should be derived from
mechanical tests performed on polycrystals with a marked
single-maximum fabric rather than from tests on single
crystals. According to Pimienta and others (1987), for the
same level of applied stress, shearing parallel to the basal
planes is 10 times faster on a polycrystal with aligned c axes
than for isotropic ice, and 100 times faster than shearing in
the basal planes, so that ��0 =� ’ 10 and � ’ 10�2.

Conveniently, the three ratios �, � and ��0 =� are assumed
temperature-independent so that � depends on the reference
viscosity ��0 and on the m–M model considered.

3.2. m–M models considered
The three m–M models considered in the following are the
‘uniform-stress’ model (also named ‘static’), the ‘uniform
stain-rate’ model (also referred to as the ‘Taylor’ model) and
the self-consistent (SC) model.

For these three models, the macroscopic stresses and
strain rates are defined as the weighted averages (see
Equations (7) and (12)) of the stresses and strain rates in
each grain, that is:

�S ¼ hSi and �D ¼ hDi: ð27Þ
3.2.1. Uniform-stress (or static) model
The static model assumes that the stress experienced by a
grain is the same as that experienced by the polycrystal
considered as a homogeneous medium. Therefore the basic
relation is

S ¼ �S, ð28Þ
where S and �S are the deviatoric stress tensors at the grain
and polycrystal scales, respectively.

This model has been often used with either a discrete
description of the fabric (Castelnau and Duval, 1994; Van
der Veen and Whillans, 1994) or a continuum description
(Lliboutry, 1993; Svendsen and Hutter, 1996; Gödert and
Hutter, 1998; Gagliardini and Meyssonnier, 1999a), mainly
because it allows analytical developments. For a given
applied strain rate it provides lower bounds for the
dissipation potential (Kocks and others, 1998).

The macroscopic strain rate �D is calculated as the average
hDi of the strain rates D experienced by the grains, using the

grain constitutive law (26) and averaging formula (12). From

the definitions (13) and (14) for the orientation tensors �Að2Þ

and �Að4Þ, and using the general relations

MD ¼ M � 1
3
I,

ðS �M þM � SÞD ¼ S �M þM � S � 2
3
tr ðM � SÞI,

ð29Þ

the constant deviatoric stress condition (28) leads to

�D ¼ hDi
¼ �

2�
�S þ �1 �Að4Þ: �S þ �2ð �S � �Að2Þ þ �Að2Þ� �S Þ
h

þ �3ð �Að2Þ : �SÞI
i
, ð30Þ

where

�1 ¼ 2
� þ 2
4� � 1

� 1
�

� �
, �2 ¼ 1

�
� 1

� �
, �3 ¼� 1

3
ð�1 þ 2�2Þ:

ð31Þ
Equation (30), which is the inverse form of the GOLF, allows
us to express the relative viscosities ��i in Equation (3) as
functions of the grain anisotropy parameters � and �, and of
the two fabric parameters k1 and k2 using Equations (15–17)
(see Gagliardini and Meyssonnier, 1999a for these relations).

For an isotropic polycrystal, using relations (18), Equa-
tion (30) reduces to Glen’s law (1) with n ¼ 1, if

�

��0
¼ 2

5
þ �

5
2þ 3

4� � 1

� �
: ð32Þ

Consequently the ratio of the viscosity ��0 of isotropic ice to
the viscosity � for shear parallel to the grain basal plane
reaches its maximum value of 2:5 when the grain anisotropy
is maximum, i.e. when � ¼ 0. This is less than Pimienta and
others’ (1987) value of 10, therefore the influence of
anisotropy as given by the static model is an underestimate
by a factor of about 4. This is the main disadvantage of using
the static model for ice-sheet flow modelling.

3.2.2. Uniform strain-rate model
The uniform strain-rate model assumes that the strain rate is
uniform over the whole polycrystal, i.e.

D ¼ �D: ð33Þ
Since ice is one of the most anisotropic natural materials this
model is not well suited to polycrystalline ice (Castelnau and
others, 1996). Nevertheless, since it provides upper bounds
for the dissipation potential (Kocks and others, 1998), it is
often used as a basic reference together with the uniform-
stress model.

Using the grain stress–strain-rate relation (25) and
relation (33) with homogenization formula (12), the macro-
scopic deviatoric stress �S is found as

�S ¼ hSi
¼ 2�

�
�D þ 	1 �A

ð4Þ: �D þ 	2ð �D � �Að2Þ þ �Að2Þ � �D Þ
h

þ 	3ð �Að2Þ: �DÞI
i
, ð34Þ

where

	1 ¼ 2ð� � �Þ, 	2 ¼ � � 1, 	3 ¼ � 1
3
ð	1 þ 2	2Þ: ð35Þ

Relation (34) can be written in the form of Equation (3) for
the GOLF, so that the six viscosities ��i can be expressed as

Gillet-Chaulet and others: A user-friendly anisotropic flow law for ice-sheet modelling 9

https://doi.org/10.3189/172756505781829584 Published online by Cambridge University Press

https://doi.org/10.3189/172756505781829584


functions of the grain anisotropy parameters and of the fabric
parameters (through relations (15–17)).

With this model the ratio of the viscosity ��0 of isotropic
ice to the viscosity � for shear parallel to the grain basal
plane is

��0
�

¼ 5þ 6� þ 4�
15�

, ð36Þ

so that ��0 =� tends towards infinity when the grain behaviour
is the most anisotropic (i.e. when � tends to 0).

3.2.3. Self-consistent model
The SC model used in this work is the restriction to the case
of a linearly viscous medium of Lebensohn and Tomé’s
(1993) visco-plastic self-consistent (VPSC) model for non-
linear visco-plasticity. The VPSC model has been adapted for
ice by Castelnau and others (1996). As shown by Castelnau
and others’ (1998) mechanical tests on GRIP ice specimens,
this model reproduces adequately the dependence of the ice
rheology on its fabric. The SC model is a so-called ‘one-site
approximation’ in which the influence of the neighbourhood
of each grain is accounted for by considering this grain as an
inclusion embedded in a homogeneous matrix, the so-called
‘homogeneous equivalent medium’ (HEM). The HEM
behaviour, which represents that of the polycrystal, is to be
determined.

The basis of the SC homogenization scheme is the local
‘interaction formula’ that provides a relation between the
local stress and the local strain rate acting on a grain (which
differs from grain to grain) and the corresponding macro-
scopic quantities. It is written as

D � �D ¼ � ~M: ðS � �SÞ, ð37Þ
where the interaction tensor ~M is a function of the grain and
of the (unknown) HEM mechanical properties (see equa-
tions 17–19 in Castelnau and others, 1996, for details). By

construction the stress sensitivity exponent is the same for
the grain and the HEM. The macroscopic behaviour of the
HEM is obtained by solving the equation �D ¼ hDi (strictly
equivalent to �S ¼ hSi in the linear case) using interaction
relation (37), averaging formula (7) and grain constitutive
law (25). Note that the grain behaviour model used by
Castelnau and others (1996) is strictly equivalent to
Equation (25) in the linear case (see Meyssonnier and Philip,
2000).
When using the SC model it is not possible to achieve the

HEM behaviour under closed analytical form, so the
determination of the six GOLF relative viscosities in
Equation (3) must be done numerically.

The ratio ��0 =� of the isotropic viscosity obtained with the
SC model (on an isotropic fabric) to the grain reference
viscosity � has been computed for different values of �
and �. As shown in Figure 3, ��0 =� depends strongly on �,
whereas � has only a small influence. With a self-consistent
model based on a continuum description of the fabric and
on grain constitutive law (25), Meyssonnier and Philip
(1996) derived the following relation when � ¼ 1:

��0
�

¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24�

p
6�

: ð38Þ

This relation, or Figure 3 in the more general case, can be
used to choose appropriate values of grain parameters �
and � in order to achieve a given ratio ��0 =�. As an example,
the expected experimental value of 10 is obtained for
� ¼ 0:04 and � ¼ 1 (Meyssonnier and Philip, 1996).

3.3. GOLF assessment
The method presented allows us, in principle, to use any
m–M model to describe the anisotropic behaviour of ice.
Since it is a matter of personal taste, the choice of the m–M
model is left to the user and will not be discussed here. We
present here only an overview of the intrinsic errors
introduced by the GOLF procedure. Assuming that the
chosen m–M model is appropriate, that is, it is capable of
correctly representing a linearly orthotropic behaviour,
fitting the GOLF parameters to its results does not constitute
a source of error. The two possible sources of error are linked
to the technical aspects of the GOLF derivation, namely, the
error from using a discrete fabric created from a continuum
description by an ODF, and the error due to the interpolation
procedure when seeking the GOLF parameters at (k1,k2)
points that are not gridpoints. The latter error is obviously a
function of the grid spacing in the (log k1,log k2) space. The
error due to the transition from the discrete to the continuum
fabric description arises only when using measured data,
because the parameterized ODF may be too restrictive to
allow a full description of the measured fabric. It is discussed
in the next section.

The method to build a discrete fabric, which involves the

second- and fourth-order orientation tensors �Að2Þ and �Að4Þ,
has been tested by comparing the outputs of the three m–M
models described above with their analytical counterparts.
Namely, for a given set of grain parameters (�,�) the
viscosities obtained by running each m–M model with a
discrete fabric, obtained by minimizing Equation (19) for
fabric parameters k1 ¼ k2 ¼ k3 ¼ 1, are compared to the
corresponding analytical relation (32), (36) or (38). The
proposed method proves to be very efficient in creating an
exactly isotropic fabric.Numerical resolution of Equation (19)

Fig. 3. Contours of constant ratio ��0 =� calculated with the
SC model, as a function of grain anisotropy parameters � and �.
The thick line is the ��0 =� ¼ 10 contour.
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and analytical calculations not reproduced here show that
the minimum number of grains required to satisfy relations
(18) is Ng ¼ 12. The macroscopic response of such a
12-grained polycrystal is found to be of the form of Equation
(1) with a relative error on the viscosity parameter ��0 smaller
than 10�5 for the three m–M models.

The error caused by the passage from a continuum
description of the fabric by ODF (8) to a discrete fabric has
been estimated using the analytical solution (30) and a
discrete numerical version of the static model. The
comparison of the results is made on the six terms �Cii

given by

�Crr ¼ ð��r þ2 ��rþ3Þ=3,
�Crþ3, rþ3 ¼ ��kþ3 þ ��lþ3 ðk 6¼ l 6¼ r, r ¼ 1, 2, 3Þ , ð39Þ

which are the coefficients of the symmetrized relative
viscosity matrix �C (see Appendix, Equations (A7)) expressed
in the material symmetry reference frame foRg. The relative
errors are estimated as

� �Cii
�Cii

¼ j �C cont
ii � �Cdisc

ii j
j �C cont

ii j
, ði ¼ 1, 2, . . . , 6Þ , ð40Þ

where superscripts cont and disc refer to the values of �Cii in
Equations (39) calculated (i) with the relative viscosities
derived from Equation (30) and (ii) by running the discrete
version of the model using averaging formula (7), respec-
tively. The calculation of the six � �Cii = �Cii has been done
for all the points of the (k1, k2) grid, in the zone
kmin 	 k1 	 k2 	 k2, where the viscosities ��i are computed
and then stored. The maximum error is a decreasing function
of the number Ng of grains chosen to create the discrete
fabric: it is 0:14 for Ng ¼ 784, 0:06 for Ng ¼ 2916 and 0:03
for Ng ¼ 4900. It occurs for the smallest values of k1
corresponding to concentrated fabrics (i.e. with k2 ’ k3).
Given a set of grain parameters ð�, �Þ and a choice of m–M
model, the calculation of the GOLF viscosities has to be
done only once, so that using a large number of grains Ng is

not inconvenient. For the calculation of the viscosity files the
number of grains has been fixed at 4900.

The error due to the interpolation of the viscosities over
the (k1, k2) grid has been estimated with the static model, for
a fixed set of grain parameters ð�, �Þ, by comparing the
analytical solution with that obtained following the GOLF
procedure (i.e. interpolated values) for 1000 randomly
selected couples ðk1, k2Þ. The maximum relative error was
found to be <0:02.

4. PROPERTIES OF ICE FROM THE GRIP ICE CORE

As an application the GOLF procedure has been used to
estimate the mechanical properties of ice samples from the
GRIP ice core. First, the fabric parameters calculated from
the (discrete) fabric measurements by Thorsteinsson and
others (1997) are analyzed. Second, the results of the GOLF,
tabulated using the SC model as an input, are compared to
those obtained by running the SC model directly on the
measured fabrics.

Schmid diagrams of measured GRIP fabrics are shown in
Figure 4e. Each thin section is cut perpendicular to the axis
of the core, which is assumed to be along the in situ vertical
direction �e2 at the drilling site (i.e. the projection is made
on the ( �e1 , �e3) horizontal plane). For each thin section

considered, the second-order orientation tensor �Að2Þdisc has
been calculated from relations (7) and (13), and the
eigenvalues and eigenvectors determined. Figure 4a shows
the evolution with depth of the angle �0 between the

principal direction 2 of �Að2Þdisc and the vertical. The
misorientations of a few degrees between the core axis
and the in situ vertical direction, and between the core axis
and the direction perpendicular to the thin section (this last
being a random error), may be responsible for the
oscillations in �0 with depth. However, since �0 appears
to decrease steadily from the surface down to 2000m (i.e.

the principal direction 2 of �Að2Þdisc tends towards the
vertical) this deviation of the material symmetry axis from

Fig. 4.Distribution with depth (x2) in the GRIP ice core of: (a) �0, the angle between the vertical direction and principal direction 2 of �Að2Þdisc;

(b) the relative error k ��
ð4Þ k=k �Að4Þ k (Equation (41)), due to passing from the measured fabric to the continuum fabric description; (c) the

three eigenvalues �Að2Þdisc
i of �Að2Þdisc ( �Að2Þdisc

1 : solid line; �Að2Þdisc
2 : dotted line; �Að2Þdisc

3 : dashed line); (d) the three fabric parameters k1 (solid line),
k2 (dotted line), k3 (dashed line); and (e) a selection of measured fabrics (Schmid projection on horizontal plane ð �e1, �e3ÞÞ.
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the vertical can be attributed to the influence of ice flow
itself. Figure 4c presents the evolution of the three

eigenvalues �Að2Þdisc
i of �Að2Þdisc and Figure 4d shows the

corresponding three fabric parameters calculated by solving
Equations (20). These results correspond to what could be
expected from the observation of the measured fabrics: near
the surface where the fabrics are nearly isotropic the fabric
parameters are such that k1 ’ k2 ’ k3 ’ 1, then k2
decreases continuously to 5� 10�2 at 2500m, where
k1 ’ k3, which corresponds to the concentration of the
grains’ c axes around the vertical. From 2800 to 3028m
(bedrock), the fabrics are less pronounced owing to the
effects of migration recrystallization.

The ability of the ODF to describe the measured fabric is
shown in Figure 4b. The error in passing from the discrete to
the continuum fabric description is quantified using the
relative error

k ��
ð4Þ k

k �Að4Þ k
¼

��
ð4Þ : : ��

ð4Þ

�Að4Þdisc : : �Að4Þdisc

 !1=2

, ð41Þ

where ��
ð4Þ ¼ �Að4Þcont � �Að4Þdisc, �Að4Þdisc is the fourth-order

orientation tensor calculated from the measured fabric

through Equation (14) using Equation (7) and �Að4Þcont is the
fourth-order orientation tensor calculated through Equa-
tion (14) using Equation (12) from the values of k1 and k2
given in Figure 4d. This error is approximately 10% in a
large part of the core, with a minimum of 2% for the most
concentrated fabric. However, an error of 10% on the
fourth-order orientation tensor does not imply an error of
10% on the homogenized macroscopic behaviour because

the most important information about the symmetries of the
fabric is contained in the second-order orientation tensor
�Að2Þ and this information is conserved when passing from the
discrete to the continuum fabric description during the
GOLF procedure.

To assess the ability of the GOLF to reproduce the results
of the SC model, two numerical tests were performed based
on the GRIP fabrics. The grain rheological parameters in
Equation (25) were chosen as � ¼ 0:02 and � ¼ 0:7. For
these values the ratio ��0 =� is equal to 15:5 (see Fig. 3). The
boundary conditions, prescribed in terms of the applied
strain rate (expressed in the symmetry axes of the ice core)
were as follows: test A: prescribed shear strain rate �D12 6¼ 0
(other components null); test B: biaxial compression
�D11 ¼ � �D22 6¼ 0 (other components null).
The resulting deviatoric stresses were calculated on the

one hand by the SC model using the measured discrete
GRIP fabrics, and on the other hand, using the GOLF
tabulated with the SC model and using the fabric
parameters calculated from the measured fabrics by solving
Equations (20).

The results are plotted in Figure 5a and b, respectively.
They agree qualitatively with what is expected.

Test A: close to the surface, where the fabric is almost
isotropic, �S12 is close to 2 ��0 �D12; in agreement with the
linear restriction of Glen’s law (1). Then the shear stress
decreases with increasing depth as shear becomes easier
owing to the grains’ c axes concentration around the
vertical.

Test B: close to the surface, �S11 and �S22 are close to
2 ��0 �D11 and �2 ��0 �D11, respectively (with �S33 � 0), in
agreement with Glen’s law (1) with n ¼ 1. Owing to the
increasing anisotropy with depth, the �S33 component
decreases (i.e. becomes more and more compressive)
almost linearly with depth although �D33 remains fixed to
0. Since grain parameter � has been taken to be <1 and
the grains’ c axes tend to gather about the vertical, ice
becomes harder to compress in the horizontal plane than
along the vertical so that �S11 increases more than �S22
with depth.

The GOLF results are in good agreement with those obtained
by running the SC model directly on the measured fabrics.
The differences can be attributed, on the one hand, to the
two sources of error linked to the technical aspects of the
GOLF derivation discussed previously (a few per cent) and,
on the other hand, to the description of the measured fabric
by the parameterized ODF (8) (real fabrics are not exactly
orthotropic). Results in Figure 5a and b show that the stresses
�S12 and �S22 are always underestimated with the GOLF
procedure. This difference comes from the fact that fabric
concentration of the c axes along the vertical is a little
overestimated when using the parameterized ODF (8).

5. CONCLUSION
Accurate modelling of ice-sheet flow requires full account to
be taken of the anisotropy of polar ice. A considerable effort
has been made by the ice rheology community to build
models for the anisotropic behaviour of ice; however, up to
now only the ‘uniform stress’ model has been simple enough
to be implemented in a small spatial scale ice-sheet model
(Gagliardini and Meyssonnier, 1999b, 2000).

Fig. 5. Distribution of the deviatoric stress components with
depth (x2) in the GRIP ice core, assuming � ¼ 0:02 and � ¼ 0:7.
(a) Test A: component �S12 = ��0 �D12 in response to a shear strain rate
�D12 6¼ 0. (b) Test B: �S11 = ��0 �D11 (dotted line), �S22 = ��0 �D11 (solid
line) and �S33 = ��0 �D11 (dashed line) in response to a biaxial
compression along the vertical axis 2 ( �D11 ¼ � �D22 6¼ 0,
�D33 ¼ 0). The curves represent stresses calculated using the GOLF
procedure. The cross symbols are stresses calculated directly with
the SC model.
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The GOLF procedure that has been presented here allows
us to make use of any m–M model for anisotropic ice to
provide the parameters of a constitutive flow law whose
form is general enough to be easily implemented into a
finite-element code. It can be summarized as follows. The
ice fabric is described by means of an ODF that depends on
two independent parameters k1 and k2. By running the m–M
model, chosen by the user, over a set of fabric parameters (a
regular grid in the (log k1, log k2) space), and fitting the
GOLF viscosity parameters ��i for each couple (k1, k2) on the
grid, it is possible to build a table from which the GOLF
parameters can be interpolated for any value of (k1, k2). In
addition to the description of the GOLF general expression
and of the procedure to tabulate the GOLF parameters, two
methods to pass from a continuum (ODF) description of the
fabric to a discrete description and vice versa have been
presented. This provides the indispensable complement to
any m–M model (since in general such models deal with a
representative polycrystal considered as an aggregate of
grains and not as a continuous medium), and data from ice-
core thin sections (which by definition are discrete fabrics).

An assessment of the errors that arise from each step of
the GOLF procedure has been performed. The main source
of error is due to the passage from the ODF to the discrete
fabric description, which is shown to require a large number
of grains (as the tabulation of the GOLF needs to be
performed only once, it is not a limiting factor). The GOLF
procedure has been applied to three different m–M models,
two of which can be solved analytically, thus providing
objective comparisons. Since the SC model is physically
more sound than the two other models tested, in that it takes
into account to some extent the grain-to-grain interaction in
the polycrystal through the HEM, it should be preferred to
model anisotropic ice behaviour. However, a better fit of its
parameters requires us to compare field data from ice cores
with ice-sheet flow simulations performed using the GOLF
procedure.

The presented GOLF provides the instantaneous response
of the polycrystal of ice as a function of the fabric. However,
fabric evolution is not taken into account, i.e. the two fabric
parameters are a given input of the flow law. Work is
currently ongoing to solve this problem in terms of the
evolution of fabric parameters k1 and k2 and thus to allow a
complete treatment of anisotropic ice-sheet flow modelling.
A first step in that direction, using the static model and for a
2-D plane-strain flow, has been presented in Gagliardini and
Meyssonnier (2002).

Note: the computer codes for deriving the GOLF
parameters can be obtained from the authors at
gagliar@lgge.obs.ujf-grenoble.fr.
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Gödert, G. and K. Hutter. 1998. Induced anisotropy in large ice
shields: theory and its homogenization. Continuum Mech.
Thermodyn., 10(5), 293–318.

Gow, A.J. and T. Williamson. 1976. Rheological implications of the
internal structure and crystal fabrics of the West Antarctic ice
sheet as revealed by deep core drilling at Byrd Station. Geol.
Soc. Am. Bull., 87(12), 1665–1677.

Hutter, K. 1983. Theoretical glaciology: material science of ice and
the mechanics of glaciers and ice sheets. Dordrecht, etc.,
D. Reidel Publishing Co.; Tokyo, Terra Scientific Publishing Co.

Kamb, W.B. 1961. The glide direction in ice. J. Glaciol., 3(30),
1097–1106.
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APPENDIX
Relation (3) can be written in the alternative form

�s ¼ ��0
�C � �d , ðA1Þ

where �s and �d are the six-component vectors

�S11 , �S22 , �S33 , �S23 , �S31 , �S12
� �T

and

�D11, �D22, �D33 , �D23 , �D31 , �D12½ 
T,
respectively, which is best suited for finite-element compu-
tations. Note that the expression of the relative viscosity
matrix �C in Equation (A1) depends on the reference frame
and is not unique due to the incompressibility condition (2).
Owing to Equation (2), the three null terms

tr ð �DÞ �Mr , ðr ¼ 1, 2, 3Þ, ðA2Þ
may be added to Equation (3) which is then rewritten as

�S ¼ ��0
X3
r¼1

½��r tr ð �Mr � �DÞ �MD
r þ ��rþ3ð �D � �Mr þ �Mr � �DÞD

þ ��r tr ð �DÞ �Mr 
, ðA3Þ
where the ��r are three arbitrary parameters. Note that the
behaviour is independent of the ��r . When expressed in the
orthotropic frame foRg the structure tensors �Mr have the
simple forms

�M1¼
1 0 0
0 0 0
0 0 0

2
4

3
5, �M2¼

0 0 0
0 1 0
0 0 0

2
4

3
5, �M3¼

0 0 0
0 0 0
0 0 1

2
4

3
5,

ðA4Þ
and the elements of the kite-shaped relative viscosity matrix
�C are determined from Equation (A3), that is

�C ¼
��1 þ 2 ��1 þ4 ��4

3
��1 � ��2 þ2 ��5

3
��1 � ��3 þ2 ��6

3 0 0 0
��2 � ��1 þ2 ��4

3
��2 þ 2 ��2 þ4 ��5

3
��2 � ��3 þ2 ��6

3 0 0 0
��3 � ��1 þ2 ��4

3
��3 � ��2 þ2 ��5

3
��3 þ 2 ��3 þ4 ��6

3 0 0 0

0 0 0 ��5 þ ��6 0 0

0 0 0 0 ��4 þ ��6 0

0 0 0 0 0 ��4 þ ��5

2
6666666664

3
7777777775
:

ðA5Þ
If the three ��r are chosen as

��r ¼ � 1
3
ð��r þ2 ��rþ3Þ, ðA6Þ

then �C , expressed in foRg, is symmetric and its nine non-
zero coefficients are

�Cii ¼ ð��i þ2 ��iþ3Þ=3 ði ¼ 1, 2, 3Þ,
�Cij ¼ �ð �Cii þ �CjjÞ ði 6¼ j; i, j ¼ 1, 2, 3Þ,
�Cii ¼ ð��j þ ��kÞ ði 6¼ j 6¼ k; i, j, k ¼ 4, 5, 6Þ:

ðA7Þ

Expressed in the reference frame fRg, �C is a full non-
symmetric matrix with 36 coefficients.
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