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Abstract

We study weak and strong peripheral 1-acyclicity, a homology version of D. R. McMillan, Jr.'s weak
cellularity criterion and cellularity criterion, for embeddings of compacta in 3-manifolds. In contrast
with the two cellularity criteria we prove that the two peripheral acyclicities are equivalent and
moreover, for compacta of dimension at most 1, independent of the embedding. We also give some
results concerning regular neighborhoods of compact polyhedra in 3-manifolds.

1980 Mathematics subject classification (Amer. Math. Soc): 57 N 60, 57 N 40, 57 Q 40.

1. Introduction

Let K be a subset of an ANR X. We say that the inclusion K c X satisfies the
weak cellularity criterion (WCC) (respectively, cellularity criterion (CC)) if for
each neighborhood U c X of K there exists a neighborhood V c U of K such
that any loop in V — K is contractible in U (respectively, U — K). We say that K
has property 1-UV if for each neighborhood U c X of K there exists a neighbor-
hood V c U of K such that any loop in V is contractible in U. Conditions WCC
and CC are concepts due to D. R. McMillan, Jr. [7], [8], while property 1-UV has
been studied by many; see for example [5].

In this paper we shall study homology versions of these three loop conditions.
So let K be a subset of an ANR X and let R be a principal ideal domain (PID).
We say that the inclusion K c X is strongly (respectively, weakly peripherally,
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[2 ] Peripheral acyclicity in 3-manifolds 313

strongly peripherally) 1-acyclic over R (SA, (respectively, WPA, SPA)) if, for each
neighborhood U c X of K, there exists a neighborhood V a U of K such that
the inclusion-induced homomorphism H^V; R) -* H^U; R) (respectively,
H^V - K; * ) - H^U; R), H^V - K; R) -> HX(U - K; R)) is trivial.

It is well known that SA does not depend upon the embedding of K into X
(provided A' is an ANR) and that, furthermore, for R a field, SA is equivalent to
the condition H\K; R) = 0 [5, Proposition 2.2], where H*(-; R) is the Cech
cohomology with coefficients in R. The following example due to R. C. Lacher [4]
shows that WPA and SPA may depend upon the embedding. Let X = S2 X S1,
let K = S2 v S1, and let <p: K -» R3 and i|/: R3 - » I be arbitrary PL embed-
dings. Then K c X is SPA over every PID .R (since X-K is an open 3-cell) while
(t o <p)(AT) c X is not even WPA over any PID R (just let U = ^(R3)). It is not
a coincidence that dim K = 2 in our example, for we shall prove that, for
dim K < 1 and X an i?-orientable 3-manifold, all three acyclicities are equivalent,
and hence, in particular, independent of the embedding (Theorem 2.3). This result
is an analogue of [4, p. 139], where it is shown that if A" is a compact subset of a
PL M-manifold M of codimension at least 2, n ¥= 4 (this condition can now be
omitted by [1]), then WCC is equivalent to the property 1-UV, and thus
independent of the embedding [5, Proposition 2.1].

Another result is Theorem 2.1, which asserts that in a 3-manifold SPA is the
same as WPA (over Z2 or Z). This is in contrast with the fact that WCC is a
strictly weaker property than CC (just consider any noncellular arc).

In 3-manifolds, compacta which are WPA (Z2) have some nice geometric
properties, for example (i) in a nonorientable closed 3-manifold M there is an
upper bound on the number of pairwise disjoint compacta that fail to have a
neighborhood in M embeddable in R3, provided these compacta are WPA(Z2)
embedded in M (this extends T. E. Knoblauch's finiteness theorem [3] to
nonorientable 3-manifolds) [9, Proposition 2.1]; and (ii) in 3-manifolds every
WPA (Z2) embedded compact connected set K which doesn't separate its
connected neighborhoods has arbitrarily small neighborhoods of the type
Q + (orientable 1-handles), where the compact 3-manifold Q with dQ = S2

captures the "nonorientability" of K, while the handles describe the "wildness"
of the embedding of K into M [9, Proposition 2.2].

As an application of these results one can improve acyclic maps on 3-manifolds
to yield cell-like resolutions [9, Theorem 1.1].

Our investigations of the three peripheral acyclicities were inspired by our joint
work with R. C. Lacher on acyclic images of nonorientable 3-manifolds [9] and
also by the following question (to our knowledge still open) raised by Lacher in
1975: suppose that / : K -* N is an embedding of a compact set K into an
n-manifold N, f homotopic to the inclusion K c N, and suppose that K c N
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has WCC. Does f(K) c N also have WCC [4, p. 139]?. In this paper we shall give
an affirmative answer for the case when K is a polyhedron, N is a 3-manifold,
and / is PL (Theorem 3.1).

2. Relations between WPA, SPA, and SA

It is clear that SPA implies WPA. We show that for compacta in 3-manifolds
the two peripheral acyclicities are equivalent over Z 2 and Z.

THEOREM 2.1. Let K be a compact set in the interior of a 3-manifold M. Suppose
that Kc M is WPA over Z2 (respectively, over Z). Then K c M is SPA over Z2

(respectively, over Z).

PROOF. We shall supress the coefficients. Using the hypothesis, we can express
K as the intersection of compact 3-manifolds Nt c int M with boundary such
that for each /, Ni+l c intJVJ, and for which the inclusion-induced homomor-
phisms H^Nj — K) -* H^N^J are trivial. We shall show that by choosing an
appropriate subsequence of {iV,}, each homomorphism /^(iV, — K) -*
HiW-i - K)is trivial, too.

Let a be a simple closed curve in Nt — K. Then there is an integer j > i such
that a c Nt — Nj. Let 2 c dNJ+1 be a component of dNJ+l. Since 2 is a closed
2-manifold, it contains a bouquet T of finitely many simple closed curves such
that 2 — T is a union of pairwise disjoint open 2-cells. Let fi c T be one of these
loops. Since ^1(3iV/+1) -» H^Nj) is trivial, fi bounds a surface Tp in A .̂ Also, a
bounds a surface Ta in Nj_v since /^(iV, - K) -* ^(A^-x) is trivial. Put the
surfaces Ta and Tfi in general position. Then Ttt n /} = {Pi,--.,p,} for some
points />, G p. We may assume that for each /, pt lies between pt_x and pi+1 on
j8 (where pl+1 = p{). Note also that each /?, lies in int Ta because fi n 9Fa = fi C\
a = 0 .

We now show how to modify Fa so that it will miss fi. Consider X = Ta n F .̂
Then .Y is a compact (possibly disconnected) 1-manifold with (possibly non-
empty) boundary, dX c 8FO U dTfi. Suppose t = 1. Then one of the components
of X must be an arc A (while others are then necessarily simple closed curves in
intF^). Let dA = {p,q}. Then, say, {p} = Ta n fi. Now, q <£ 9Fa because
r/s n 9 r a = r/s n « = 0 . smce r^ c -^ and a c TV,. - iVy. On the other hand,
? £ ar^ because (8F^ -{/>}) n Fa = (Fa n i8) - {/»j} = 0 . Therefore, q <£
9Fa U 9F/9. This contradiction shows that t = 1 is impossible.

Suppose t = 2. Change Fo to T* by removing the interiors of two small
disjoint disks Dl and D2 in int Fo, centered at px and p2, respectively, and by
adding to Fa — int(Dl U D2) an annulus A from the boundary of a small closed
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regular neighborhood of /} such that dA = d(D1 U D2). Clearly, /} n F * = 0 ,
where T* = (Ta - i n t ^ U D2)) U A is the new Ta.

At this point we make a remark concerning the orientability of T* if R = Z. In
this case we may assume that Fa and 1^ were orientable from the start. Since a
and /? don't link, the (integral) intersection number of ro and /? must be zero.
Therefore, if we choose orientations for Ta and I},, we can assign an index e, = 1
or — 1 to each point of intersection pt. We may then choose the arcs of j8 along
which we perform the described surgery in such a way that they connect adjacent
points />, and pj (i.e. \i — j \ = 1) with opposite indices: e, • ey = —1. In this case
T* will always remain orientable.

Another remark concerns other loops of the bouquet T: we may always choose
not to do the surgery along subarcs of /} which run through the "wedge" point of
T (i.e. the only point of T that all loops have in common). Therefore, when we
begin to disentangle Ta from /?' ¥= fi (after we have made Ta disjoint from /?), w e

never introduce intersections of Ttt with /?.
If t > 2, then we can perform the preceding operation on all pairs (/»2/-i> PnX

1 < i < [t/2]. The argument we gave to dismiss the case / = 1 shows that t must
be an even number, so this process yields a surface T* disjoint from /?.

It follows that a is null homologous in the complement of /?. Repeating this, if
necessary, we can find an .R-orientable surface T in JV,^ such that a = dT and
r n ( U { ) 8 | j 8 e r } ) = 0 . Thus, if T hits Nj+1 at all, it enters through open disks
in 3A//+1, and so it can be cut off at 3A^+1. Hence a is already null-homologous
over R in Nf - Nj+1 c N, - K.

THEOREM 2.2. Let R be a PID and let K be a compact set in the interior of an
R-orientable 3-manifoldM. Suppose that K is SA(JR). Then K c M is SPA(R).

PROOF. We shall supress the coefficients. Let V c U c M be neighborhoods of
K such that the inclusion-induced homomorphism HX(V) -* HX{U) is trivial.
Consider the following commutative diagram

H2(V,V-K)

H\K) J*

H2(U,U~K) •H.iU-K)

where the horizontal sequences are from the homology sequences of the pairs
(V, V - K) and (U, U - K), respectively, and where 9, <p' are duality isomor-
phisms [11, Theorem 6.2.17]. Now, by [5, Proposition 2.2], H\K) = 0; hence /„
is a monomorphism. By hypothesis, _/, = 0; hence j'm = 0.
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Note that the converse of Theorem 2.2 is false: let M = S2 X Sl and let
K = S2 V S\ Then M/K = S\ so K is SPA over every PID/?. On the other
hand, K is clearly not SA over any R. In this example dim K = 2. The next
theorem shows that there can be no counterexample with dim K < 1.

THEOREM 2.3. Let R be a PID and let K be a compact set in the interior of an
R-orientable 3-manifold M. Suppose that dimK < 1. Then the following statements
are equivalent:

(i) KisSA(R);
(ii) K is SPA(fl);

(iii) KisV/PA(R).

PROOF. We shall supress the coefficients. The implication (i) => (ii) follows by
Theorem 2.2, while (ii) => (iii) is obvious. We prove (iii) => (i). Thus, let V c U c
M be neighborhoods of K such that the inclusion-induced homomorphism
H^V - K) -> H^U) is trivial. Let a be any 1-cycle in V. By [4, Lemma 2.1]
a is homologous to a 1-cycle /? e ZX(F — K). By hypothesis /? is null-homolo-
gous in U; hence so is a.

THEOREM 2.4. Let K be a compact set in the interior of a 3-manifold M. Then the
following statements are equivalent {for R = Z2 or Z):

(i)K<zM is WPA(J?);
(ii) K c M is SPA(JR);
(iii) There exists a neighborhood W c M of K such that each simple closed curve

in W — K is R-homologous to zero in M — K.

REMARK 2.5. Let W c M be an open neighborhood of K as in (iii) above. Then
by [8, Lemma 1] K is SA(/?) if and only if, in addition, each simple closed curve
in W is ^-homologous to zero in M. This gives a good measure of the difference
between the two acyclicities (over R).

PROOF. We only need to prove (iii) => (ii) (because we have (i) => (ii) by
Theorem 2.1, while the other two implications are clear). Let U c M be a
neighborhood of K. We may assume that U c W, that U is a compact 3-manifold
with boundary, and that K c intU. Let 2 c dU be a component of dU. Then
there is a bouquet T c 2 of simple closed curves such that S-U{;8| jSG7'}isa
union of pairwise disjoint open 2-cells. By hypothesis each curve J5G71 bounds
an fl-orientable surface I), in M - K. Let V = intU - U{Tp\P e T) and let a
be a simple closed curve in V — K. Then a bounds an i?-orientable surface Fa in
M — K. Using the same arguments as in the proof of Theorem (2.1), we can show
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that a bounds an fl-orientable surface r * in M - (K U (U{0|0 e T})). Hence
a enters 2 through open disks and can thus be cut off at 2 . So we may assume
that Ta* c U — K, i.e., that every 1-cycle in V - K is null-homologous in U - K.

COROLLARY 2.6 (D. R. McMillan, Jr. [8]). Let K be a compact set in the interior
of a 3-manifold M and suppose that HX{M — K; R) = 0, where R = Z 2 or Z.
ThenK<z M is SPA(R).

PROOF. Apply Theorem 2.4 with W= M.

3. Regular neighborhoods of compact polyhedra

Throughout this section we work with Z 2 or Z coefficients. We study regular
neighborhoods of compact polyhedra in 3-manifolds. Our main result in this
section is Theorem 3.1, which also answers in the affirmative a question of
R. C. Lacher [4]: suppose that / is a PL embedding of a compact polyhedron K
in a 3-manifold M such that / is homotopic to the inclusion K c M, and
suppose that K c M satisfies WCC; does f(K) c M satisfy WCC? Note that by
Theorem 2.1, WPA = SPA for the class of compacta in 3-manifolds, so we may
drop the adverbs "weakly" and "strongly".

THEOREM 3.1. Suppose that f: K -» M is a PL embedding of a compact
polyhedron K in the interior of a 3-manifold M. Suppose that f is homotopic to the
inclusion K c M and that K c M is peripherically 1-acyclic or satisfies WCC. Then
f(K) c M is peripherically 1-acyclic and satisfies WCC.

We shall first prove two lemmas.

LEMMA 3.2. Let fx,f2: K-^'vaiM be homotopic PL embeddings of a compact
polyhedron K in a PL m-manifold. Let Nt c int M be a regular neighborhood of
fi(K) in M. Then dNl and dN2 have the same Euler characteristics.

PROOF. Let r # 0 be any even natural number satisfying r > 2k — m + 3,
where k = dim K and m = dim M. Choose a triangulation of M X W consistent
with the one on M and define PL embeddings Ft: K -» M X Rr by F,, = /; X 0,
/ = 1,2. Since the f,'s are homotopic, there is a homotopy H: K X / -» M X W
from Fx to F2. Define a map H *: A " X / - > M x R r X / by H*(x, t) = (H,(x), t)
for each (x, t) e K X /. We may assume that H* is PL. Since 2k - m + 2 < r,
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it foUows that 2(k + 1) - (m + r + 1) < 2k + 2 - m - (2k - m + 2) - 1 =
— 1 < 0, so by general position we may assume that H * is a PL embedding and
hence a concordance [2, p. 182]. Now (m + r) — 3 3s m + (2k — m + 3) — 3 =
2k > k, so by [2, Corollary 1.4], Fx and F2 are ambient PL isotopic.

Let Nt* = AT X fir, i = 1,2. Then by [10, Corollary 3.29], Nt* is a regular
neighborhood of Ft(K) in M X Rr, so AV = PL iV2*. In particular, 3AV = 3^* .
Now, 9A/,* = (3A .̂ X Br) U (AT. X S1"""1), and (9AT X fir) n (Nt X S^1) =
BAT X S1"1. Therefore the Euler characteristics of dNf and dNt are equal. Now
we have

X{dN*) = X(3AT x Br) + X{N, X 5'-1) - xiW X 5'"1)

The second equality follows by the product formula for the Euler characteristic,
and the third equality by the fact that r was chosen to be even (hence x(S'~x)
= 0). Consequently X(3A^) = x W ) = X(3AT2*) =

LEMMA 3.3. Let K be a compact polyhedron in the interior of a 3-manifold M.
Then the following statements are equivalent

(i) K c M is peripherally 1-acyclic;
(ii) K c M satisfies WCC;

(iii)/or every regular neighborhood N c M of K, dN is a collection of 2-spheres.

PROOF, (i) =» (iii). Let J V c M b e a regular neighborhood of K, where K c M
is peripherally 1-acyclic. Then there exists a regular neighborhood N * c int N of
K in M such that the inclusion-induced homomorphism H^(N* — K) -* HX(N)
is trivial; hence so is H^dN*) -» H^N*), since N - N* = dN* X I, and
N* — K = dN* X [0,1) = 3Af*. Consider the following exact homology se-
quence (over Z2) for the pair (N*,dN*):

0 -> H3(N*,dN*) - H2(dN*) -> H2(N*) -* H2(N*,dN*) -> H^dN*) -> 0
i = i = i = 1 =

0 «- H0(N*) - H0(dN*) <- Hx(N*,dN*) <- ^ ( iV*) <- 0

where the vertical isomorphisms are valid by Poincare duality plus the universal
coefficients theorem. Due to the exactness, the alternating sum of the ranks is
zero; hence rankH^dN*) = 0. Since by [6, Lemma 4.1] 3Af* is orientable, it
follows that dN* is a collection of 2-spheres.

(iii) => (ii). This is clear.
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(ii) =» (i). Let V c U c M be neighborhoods of K such that the inclusion i:
V — K -> U induces a zero homomorphism /# on the fundamental groups.
Consider the following commutative diagram

H^V-K) $

where h and h' are the Hurewicz epimorphisms. Since i# = 0, it follows that
/'» = 0, too.

PROOF OF THEOREM 3.1. We may assume that K and M are connected. Let
N c int M be a regular neighborhood of K and N * c int M a regular neighbor-
hood of f(K). By [6, Lemma 4.1], 3iV is orientable; hence, by Lemma 3.3, dN is
a collection of n 2-spheres for some n. Therefore, by Lemma 3.2, x(<W) =
x(3iV) = In. According to Lemma 3.3, the proof will be completed as soon as we
demonstrate that the following assertion holds.

ASSERTION. dN* consists ofn 2-spheres.

PROOF. We shall work with Z2 coefficients. Consider the Mayer-Vietoris
sequence of the triple (M,N,M - N):

0 -> H3(M) -^ H2(dN) 1* H2(N) © H2(M - N) -^ H2(M) -» • • •

Then g = gl + g2, where g l : H2(N) -• H2(M) and g2: E2(M - N) -» //2(M)
are the inclusion-induced homomorphisms [11, Chapter 4.6]. Clearly,

(1) dim#2(8A0 = 1 + dim(Kerg).

Let A = {x e H2(M)\x • i(y) = 0 for every;' e ^(AT)}, where • isthe(mod2)
intersection number, and where /: H^K) -> HX(M) is the inclusion-induced
homomorphism.

Consider the following diagram

••• H 3 ( M , M - K ) -> H2(M - K ) -̂  H 2 ( M ) -^ H 2 ( M , M - K ) •••

= J.<p = 4. <p
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where the horizontal line represents the homology sequence of the pair (M,M -
K), and where <p is the duality isomorphism [11, Theorem 6.2.17]. Since A = 0, it
follows that j is one-to-one; hence H2(M — K) can be naturally identified with
Ker[#2(M) -> H2{M, M - K)] = Ker[H2(M) ^ H\K)] = A. Consequently,
Im g2 = A, and we conclude that

(2) g2: H2 ( M-N ) ^ A <z H2(M) is one-to-one.

Define now a map a: Kerg -• gf X(A) by a(a1; a2) = ax, for every (ax, a2) G
Kerg. Then a is surjective: Let ax G g{\A). Then g^aj e A = Img2 (by (2)).
Hence g^aO = g2(a2) f o r some a2 <= /?2(M - JV), and so g(au a2) = g ^ a j +
g2(a2) = 2 • gxicii) = 0. Thus (a1, a2) G Kerg. Also, a is injective: suppose that
a(ax, a2) — 0 for some (a1; a2) G Kerg. Then ax = 0. Hence g2(a2) = gi(fli) =
gjCO) = 0, and so by (2), a2 = 0.

Therefore a is an isomorphism, and we have the following relationship:

(3) dim(Kerg) = dim gx~\A).

Now gx and A are obviously invariant under homotopic reembeddings of K
into M; hence dim (Kerg) is invariant as well. Therefore, by (1), dimi/2(3iV) =
dim J/2(3iV*), and so, in particular, N and N* must have the same number of
boundary components. This proves our assertion and hence completes the proof
of the theorem.

Acknowledgements

This work was completed during my stay at the Institut des Hautes Etudes
Scientifiques (Bures-sur-Yvette, France) in 1984. I wish to acknowledge J. Cerf
for making this visit possible. I should also like to thank F. Bonahon, and the
referee for their helpful remarks.

References

[1] M. H. Freedman, "The topology of four-dimensional manifolds', / . Differential Geom. 17
(1982), 357-453.

[2] J. F. P. Hudson, 'Concordance, isotopy, and diffeotopy', Ann. of Math. (2) 91 (1970), 425-448.
[3] T. E. Knoblauch, 'Imbedding compact 3-manifolds in E3', Proc. Amer. Math. Soc. 48 (1975),

447-453.
[4] R. C. Lacher, 'A cellularity criterion based on codimension', Glasnik Mat. (2) 11 (1976),

135-140.
[5] R. C. Lacher, 'Cell-like mappings and their generalizations', Bull. Amer. Math. Soc. 83 (1977),

495-552.

https://doi.org/10.1017/S1446788700028597 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028597


[10] Peripheral acyclicity in 3-manifolds 321

[6] R. C. Lacher and D. R. McMillan, Jr., 'Partially acyclic mappings between manifolds', Amer.
J. Math. 94 (r972), 246-266.

[7] D. R. McMillan, Jr., 'A criterion for cellularity in a manifold', Ann. of Math. (2) 79 (1964),
327-337.

[8] D. R. McMillan, Jr., 'Acyclicity in three-manifolds', Bull. Amer. Math. Soc. 76 (1970),
942-964.

[9] D. Repovs and R. C. Lacher, 'Resolving acyclic images of nonorientable three-manifolds', Proc.
Amer. Math. Soc. 90(1984), 157-161.

[10] C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-Linear Topology (Ergeb. der Math.
Vol. 69, Springer-Verlag, Berlin, Heidelberg, New York, 1972).

[11] E. H. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966).

Department of Mathematics
University of Texas
Austin, Texas 78712
U. S. A.

https://doi.org/10.1017/S1446788700028597 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028597

