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ABSTRACT

The normal inverted gamma mixture or generalized Student t and the symmetric
double Weibull, as well as their logarithmic counterparts, are proposed for mod-
eling some loss distributions in non-life insurance and daily index return distrib-
utions in financial markets. For three specific data sets, the overall goodness-of-
fit from these models, as measured simultaneously by the negative log-likelihood,
chi-square and minimum distance statistics, is found to be superior to that of
various "good" competitive models including the log-normal, the Burr, and
the symmetric a-stable distribution. Furthermore, the study justifies on a sta-
tistical basis different important models of financial returns like the model of
Black-Scholes (1973), the log-Laplace model of Hurlimann (1995), the nor-
mal mixture by Praetz (1972), the symmetric a-stable model by Mandelbrot
(1963) and Fama (1965), and the recent double Weibull as limiting geomet-
ric-multiplication stable scheme in Mittnik and Rachev (1993). As an appli-
cation, the prediction of one-year index returns from daily index returns is
discussed.
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1. INTRODUCTION

The fitting of probability distributions to financial data is a statistical subject
with a long tradition in both actuarial and financial literature. The detailed
analysis of the available models leads to many unsolved problems of theoret-
ical and practical importance, and this field of research always generates new
challenges. The present contribution is a further piece of this big puzzle.

The proposed models belong, after appropriate transformation, to the class
of symmetric distributions. Let us argue in favor of such a seemingly severe
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restriction. First of all, applying an adequate transform T(X) to a random
variable X often reveals approximate symmetry in the sense that

T(X) = /l + cZ, (1.1)

where (p., c) are location and scale parameters, and Z is a symmetric random
variable with mean zero. The ubiquitous transform in this respect is the loga-
rithmic transform T{X) - ln(X). Another motivation for considering sym-
metric distributions for Z in (1.1) is the desire to measure the departure from
a normal random variable. Besides its practical appeal, the latter working
hypothesis finds some theoretical foundation (e.g. Efron (1982)). Empirical
arguments are also available. Important financial data for which this approach
has been considered adequate include in particular daily returns in equity
markets (e.g. Taylor (1992), p. 45). Furthermore, the logarithm of non-life
claim sizes has often a low skewness, and can therefore be modeled using the
device (1.1). A short outline of our study follows.

Section 2 presents the method applied to determine the unknown parameters
and the goodness-of-fit statistics used to assess the overall fit of an estimated
distribution. Sections 3 and 4 introduce the proposed symmetric distributions.
The required formulas to do all calculations for the comparative distributions
used in our study are summarized in the Appendix. The results of our exten-
sive data analysis are exposed in Sections 5 and 6. Finally, to illustrate the
potential use of the proposed models, we show in Section 7 how one-year index
returns can be predicted from the distributions of daily index returns.

2. ESTIMATION METHOD AND GOODNESS-OF-FIT STATISTICS

Given a restriction to two and three parameter distributions, the distribution
of Z in (1.1) is either parameter-free or contains one shape parameter. The
location and scale parameters /u and c in (1.1) are throughout estimated with
the maximum likelihood method. The theoretical justification of this proce-
dure lies in asymptotic statistics, and is explained in many of the modern
statistical textbooks. A recent unification result about the maximum likelihood
estimation of location and scale parameters is presented in Hurlimann (1998a).
A remaining shape parameter a is either included in a three parameter maxi-
mum likelihood estimation or it is treated as nuisance parameter. In the latter
case, it is chosen to minimize individually or simultaneously some of the
goodness-of-fit statistics presented below. Maximum likelihood estimators are
denoted ju, c, a. The value of a nuisance parameter is simply denoted by a
(without a "hat"). The estimation procedure for the shape parameter is moti-
vated as follows. As our experience has shown, a simultaneous three parame-
ter maximum likelihood estimation often causes numerical difficulties, and
does not always lead to an overall best fit. The latter point is illustrated in the
text with the NIG ranked 5 in Table 6.3.

In the practical analysis, it is assumed that the data sets consisting of n
observations are grouped into m classes with boundaries £0, £u ..., £m. The
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only available information are the frequencies Ab X2, •-., Xmof the correspond-
ing classes (£0, £,], (£b £2], ..., (£m-i> £„,]• Financial results are supposed to occur
at the average values in (£,_!, £,]> say at m£,b i=l, ..., m. Often, in particular in
case the average value is not known, we set by convention m£, - \ (£r_i + £,-)
/ = 1, ..., m. Suppose that the data are observations from a random variable X
with a survival distribution S{x) = Sx (x;6), 9 - {6X, ..., 9p) an unknown para-
meter vector, and that the data are truncated at <j;0. Of interest is thus the
truncated random variable Xo = (X\X > £0) with survival distribution

l, x<U

^ (2.1)

In case the data is not truncated at £0, we assume that S(£o) = 1 and our sub-
sequent analysis remains valid with S0(x) = S(x).

The quality of fit of the various models will be measured using 5 good-
ness-of-fit statistics, the first 3 of which have a well-known theoretical justifi-
cation. The other 2 ad hoc statistics are based on reliability measures, and
have been used and motivated by some actuaries (see e.g. Hogg and Klugman
(1984), pp. 108-111). To assess the overall goodness-of-fit, a decision under
multiple criteria is necessary. Our simple overall rank is based on the first
3 theoretical criteria. A fitted distribution is ranked before another one if two
of the negative log-likelihood, chi-square and minimum distance statistics
have a smaller value. One should emphasize that the defined criterion is
merely another decision rule, which helps to select good models. It cannot
replace a formal statistical test like the chi-square goodness-of-fit test or the
Kolmogorov-Smirnov test for the ultimate validation or rejection of a model
(consult Klugman et al. (1998), Section 2.9, for further discussion on this). In
particular, any informal decision rule is necessarily a subjective judgement,
which may lead to inappropriate conclusions. A significant illustration of this
phenomenon is provided in Section 6. We do not include the other empirical
measures in our overall goodness-of-fit criterion. There are two reasons for
this. First, our examples show that the LE- and ME-statistics defined below
are quite sensitive to changes in parameter values. Second, it is possible to
find low LE- and ME-values even if the 3 theoretical criteria do not attain at
all their minimal values (e.g. the lnNIG ranked 5 in Table 5.3, the NIG ranked
5 and the log-normal in Table 6.3). A decision including the LE- and ME-sta-
tistics appears thus inconsistent with our estimation method, at least with respect
to the negative log-likelihood and chi-square criteria.

2.1. The negative log-likelihood statistic

The negative log-likelihood of Xo reads
m

-lnL = n • lnS(£0)- E V ln[5(4_1}- Sgk)\ (2.2)
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and the goal is to minimize this quantity. This is achieved through application
of the scoring method (e.g. Hogg and Klugman (1984), chap. 3.7 and 4.3, or
Klugman et al. (1998)). Define

—, /= \,...,m, (2.3)

and consider the information matrix A = A(9) with elements

m CS p T^P 1
a = n • V ••- • ' • — r ? = 1 n O \ \

and the score vector S=S(9) with elements

,-. _ 91nL _ yi i _ dPj . J_ _ i (2 <\

Given a preliminary estimate 90, then an iterative method to get the maximum
likelihood estimate 9 of 9 is described by the recursion

9k = 0k.1 + A(9k.ly
l-S(9k.l), £=1,2,... (2.6)

In case this sequence converges to 9, insertion in (2.2) will yield a numerical
approximation to the desired minimum value of -lnL. Even if the sequence
does not converge, it is possible to obtain with this method estimates 9 with a
comparatively small practical value of -lnL.

2.2. The chi-square statistic

With grouped data the quality of fit is often measured using Pearsons goodness-
of-fit statistic

^ (2.7)

A comparatively small value %2 of is an indicator of an acceptable fit according
to the following elegant theory (e.g. Hogg and Klugman (1984), p. 107). Sup-
pose 9min solves the minimization problem

[] (2.8)

Then the statistic ;^in has an approximate chi-square distribution with m -1
-p degrees of freedom (e.g. Cramer (1946), Fisz (1973), p. 512-513). If x2

mm

is sufficiently small, then one accepts S0(x;8min) as a reasonable model. However,

https://doi.org/10.2143/AST.31.1.1002 Published online by Cambridge University Press

https://doi.org/10.2143/AST.31.1.1002


FINANCIAL DATA ANALYSIS WITH TWO SYMMETRIC DISTRIBUTIONS 191

if x2
mm-zu, where Pr(y2(m-\-p)> za) = a, then one rejects the model S0(x;

9min) at the a significance level. Even if the minimum chi-square estimate 0min
is actually too tough to be calculated, the #2-statistic is very useful. For exam-
ple, if the maximum likelihood estimate or another estimate 6 is substituted
into x2(0) instead of 6min, then X2(9)>x2

min- Therefore, using x20) instead of
X2

min, a model will be rejected at a somewhat larger significance level as that
required. Another justification for this substitution is the fact that the maxi-
mum likelihood and the minimum chi-square estimators are asymptotically
equal in case the same class boundaries £0, £b ..., £,m are used (e.g. Cramer
(1946)).

2.3. The minimum distance statistic

With grouped data, another important measure of the quality of fit is the weighted
Cramer-von Mises statistic

with Fi- ^2^ /< ' - l,...,m, the empirical distribution function (e.g. Hogg and
7-1

Klugman (1984), p. 135). For the "true" parameter vector 0, each term has
a chi-square distribution with one degree of freedom, which justifies this
statistic for empirical testing. Though substitution of an estimate 6 for 6
will destroy the chi-square property, the K-statistic is an appealing measure.
Each term makes an equal contribution to the total, and the weights w(£,) =
m'[Fodi)• So(£,)] ' are largest at the ends of the distribution. In particular,
the K-statistic is useful for the analysis of long-tailed data.

2.4. The mean excess distance statistic

Consider the mean excess function of Xo= (X\X> £0), that is

e (x) = E \X0 - x\X0 >x] = ^ £ | , x > ̂  ,where (2.10)

nx(x)= f°°Sx(i)dt (2.11)

is the stop-loss transform of X, and its empirical counterpart

— Tn , i=\,...,m-\. (2.12)
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In general, the mean excess plot of (2.12) exhibits an increasing slope for
long-tailed data, a constant plot for exponential distributions, and a decreas-
ing slope for short-tailed data. As our financial market data sets have shown,
a convex plot may also occur quite frequently. Due to scarce observations in
the tails, there may be a large uncertainty about the true behavior of e(x),
especially in the tails of the distribution. The best fit in this respect might
not always lead to the best actuarial decision (Hogg and Klugman (1984),
chap. 4). Despite of these and other shortcomings (lack in sampling distribu-
tion theory, see however Carriere (1992)), it seems useful to consider the mean
excess distance statistic

m-\

(2.13)

which should be as small as possible for a good fit.

2.5. The limited expected value distance statistic

In some situations it is impossible to calculate the mean excess function, for
example when the mean of X does not exist, or it is impossible to compute
the empirical mean excess function, for example when the data are censored.
It is then useful to consider the limited expected value function of Xo at x
defined as the mean of Xo censored at x through the expression

[XS(t)dt
LE(x) = E [min(X0 ,*] = & + %(^) (2.14)

If the mean excess function exists, one has the relationship

LE(pc) = Z0+e(Zo)-S0(x)-e(x). (2.15)

The empirical counterpart of (2.15) is (e.g. Hogg and Klugman (1984), p. 151)

=7i'£h••mZj+Zr[l-F}], i=\,...,m. (2.16)

As a goodness-of-fit measure one uses the limited expected value distance sta-
tistic

(2.17)

which should be as small as possible.
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3. THE NORMAL INVERTED GAMMA MIXTURE OR GENERALIZED
STUDENT T DISTRIBUTION.

The following distribution has been proposed to model financial returns by
Praetz (1972) (see also Blattberg and Gonedes (1974), Kon (1984), Taylor (1992),
Section 2.8). Its potential usefulness in actuarial science has been pointed
out in Hurlimann (1995a).

If (X|0) is conditional on 6 normally distributed with mean ju and variance
I/O, and 9 follows a conjugate gamma prior T(jc2, a), a > 0, then X has the
unconditional density (e.g. Hogg and Klugman (1984), p. 52-53, Heilmann
(1989), example 3.7):

£
JlzY(a)

c2

(3-1)

with T(x) the gamma function. We say that X has a normal inverted gamma
mixture with parameters ft, c, a, abbreviated NIG(pi,c,a). The location-scale

transform Z = c has a Pearson type VII density (e.g. Johnson et al. (1995),
Section 28.6)

where B(a,b) = r , ,* is a beta coefficient. This can be viewed as a gener-
alized Student t distribution because if a = | , o= 1,2,3,... is an integer, the
random variable /v Z has a Student t with v degrees of freedom. In partic-
ular, a = 4 is a Cauchy and a = 1 is a Bowers distribution (for the latter see

2

Hiirlimann (1993/95a/97/98b) among others). The substitution t j shows
the integral identity

(3.3)

from which it follows that the survival distribution satisfies the equivalent expres-
sions

and

Mi>«;^). z-0'
{ (3-5)
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1 x

where p(a,b;x) = l-fi(b,a; l-x) = * b) f t"~'(l-tf'1 dt is a beta density. While
the mean and skewness of Z are zero, the variance (if a > 1) and kurtosis (if
a>2) are given by

^ ^ $ = 3 • {&]. 0.6)

The kurtos is takes values in [3,<x>), and is therefore capable to model lep-
tokurtic data. The scoring method for maximum likelihood estimation requires
the knowledge of the partial derivatives of the survival distribution found in
the Appendix.

The stop-loss transform of this statistical model reads (trivial exercise)

nx(d) = C +
2

(^_~//) -fx(d)-(d-fi)- Sx(d). (3.7)

Setting ta- j2(a-\) • Z if a > 1, a standardized NIG(0,l,a), one gets with c =
a • J2(a-V), a = ax, that

As a — oo one knows that ta is a standardized normal random variable, hence
(see also Hurlimann (1995a) for a special case)

(3-9)

with <5(;c) the standard normal distribution, <I> (x) = 1- O (x) and <p (x) = <$>' (x).
This is the stop-loss transform of a normal N(ju, a) random variable. Using
that the stop-loss transform uniquely determines the distribution function (e.g.
Gerber (1979), Miiller (1996), Hurlimann (2000)), one sees that a NIG(/i, c, a)
is asymptotically normally distributed as a — oo.

Of interest is also the logarithmic version of the above. The random variable
X such that ln(X) = /j. + c-Z, with Z a NIG(0, 1, a) random variable, defines
the logarithmic normal inverted gamma mixture, abbreviated \nNIG(ju, c, a). Its
density and survival distribution are given by

[^pi) (3.10)

Since E \ecz\ = oo the mean and stop-loss transform do not exist. However,
since NIG(0,1, a) converges asymptotically as a - oo to a normal distribu-
tion, the \nNIG{ji, c, a) is a valuable alternative to the log-normal. This situa-
tion occurs in case the mixture is used as a Bayesian prediction model as in
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Hiirlimann (1995a). Indeed, if Dn = (xu ..., xn) is a sample of n observa-
tions from X, then the up-dated parameters of the predictive distribution
\nNIG(fi,cn,an) are (see Hiirlimann (1995a), (2.2))

J f X i ) - ^ 2 , an=a + %. (3.11)

For n sufficiently large, the predictive distribution will be very close to a log-
normal.

4. THE DOUBLE WEIBULL DISTRIBUTION

Recently the Weibull distribution has received much attention in the modeling
of financial returns (e.g. Mittnik and Rachev (1993)). This is due both to
its theoretical capability to model the complexity of financial market data as
well as its competitiveness in empirical fitting.

Applying the general location-scale transform T{X) = /i + a- Z with sym-
metric Z about zero, we are interested in the standardized double Weibull dis-
tribution with parameter a > 0, abbreviated SDW(a), whose density and sur-
vival distribution are given by

# , (4.1)

Observe that the value of the parameter Xa is chosen such that the variance is
one. The special case a = 1, X{ = fl defines the Laplace distribution, which
plays a central role in the geometric-multiplication stable scheme in Mittnik
and Rachev (1993). It appears also as limiting case of the simple logarithmic
modified double exponential model of financial returns in Hurlimann (1995b).
The skewness of Z is clearly zero, and the kurtosis is

Since ylz e [1,6] for a> 1 and y2,z
 G [6,oo) for a < 1, this distribution covers the

whole range of practical kurtosis values.
The logarithmic version of the above distribution is also considered. The

random variable X such that \n(X) = ju + a- Z, with Z a SDW{a), defines
the logarithmic double Weibull distribution with parameters fi, a, a, abbreviated
\nD W(jx, a, a). It is a simple alternative to the log-normal model with density
and survival distribution

https://doi.org/10.2143/AST.31.1.1002 Published online by Cambridge University Press

https://doi.org/10.2143/AST.31.1.1002


196 WERNER HURLIMANN

Though the stop-loss transform cannot be expressed in closed form, it can be
evaluated using series representations.

Proposition 4.1. The stop-loss transform exists if a > 1, or if a = 1 and a < Xx =
•fl, and is given by

nx{x) =
~7y C - / I A I ^ J I -j= I ^ KJ /\* I AlJjf l̂ v Ij V̂ _ C ?

(4.5)

where /(x; y) and /(x; j ) are the infinite series

£;*)]• TT, (4-6)

and F {fi; x) is a gamma distribution with shape parameter p.

Proof. Consider first the case x > eM. With the substitution z = (—„—)" one
obtains

f i\e^\ e~Az dz.

With a partial integration one gets

nx(x) = j / Jexp[CTA/M1] e~udu-xSx(x).

The expressions in (4.5) and (4.6) follow by noting that

If x < e'1 decompose nx(x) =nx(e
f')+ A(x) with

A(x)=

Proceed as above to get

i [e"oz"l • e~Kzdz
o
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A series expansion of the last integral uses that

r r »1 u ^ i k Vk r k u
J(x;y) = / e x p \ - y u a \ e a u = / , { - \ ) - 7 7 • / u a e du,

J TTn K\ J*=°
which is (4.7). Inserting further the expression nx(e'J)= \eli- /(0;o-A"°) - 1 , one
obtains (4.5). •

To obtain expressions for the moments, first note that the mean equals (if
a > 1, or if a = 1 and a < Xx = /I)

. -. CO I (TA " I

-. (4.8)

Since E [X] -e^-E \fZ\ the series in (4.8) is nothing else than the moment gen-
erating function Mz(t) = E\e'z] evaluated at t-a. From this observation one
gets the higher order moments of X as

[naA "
Vr(| + * . - ° > w - i 9 (4 91
k=o 'Ln"

In the attractive special case a - 1 (and a < kx= /2) of the log-Laplace distri-
bution, the relevant expressions can be given in closed form. One obtains

Sx(x) =
, x<e",

, x>e»,
(4.10)

nx(x)=\ 2~a \ J \ (4.11)

(4.12)

It is interesting to observe that the log-Laplace has Pareto tails with index -£-,
and thus this simple special model is consistent in the tail region with Man-
delbrot's Paretian hypothesis for financial returns (see Mandelbrot (1963),
Fama (1963/65)). In particular, the mean excess function is linear in the tails
and equals

_ /-A

Since this function is increasing, and in accordance with extreme value theory
(e.g. Embrechts et al. (1997)), the log-Laplace is thus susceptible to model
long-tailed data. Concerning further properties and motivation, the interested
reader is invited to have a look at Hiirlimann (1995b).
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5. FITTING NON-LIFE INSURANCE DATA

To start with, it appears attractive to test the goodness-of-fit of the proposed
models at data sets already examined in the actuarial literature. Our analy-
sis concentrates on the theft claim size data in Hogg and Klugman (1984),
Table 4.4, and on the industrial fire insurance claim statistics in Beard et al.
(1984), Table 3.5.1.

5.1. Theft loss insurance data

The n = 32451 observations are grouped into m = 18 classes with boundaries,
average losses and frequencies given in Table 5.1.

TABLE 5.1

THEFT LOSS DATA

2

3
4

5

6
7

8
9

10
11

12
13

14

15

16
17

18

100

125

150

156

175
200

211
250

300
350

400

500

600
850

1100
5100

10100

25100

50100

0

115
140

154

166
192

206

232

277

327

377
452

567
713

972

1997

6870
14354

30430

0

583

1368

280

1165
2082

631

2074

2285
1990

1646

2792

3271
4339

2379
5181

286
91

Apart the quite good log-gamma, two parameter distributions do not seem
to fit very well the present data. For example, Hogg and Klugman (1984) do
not consider the log-normal, Pareto, Weibull and gamma as reasonable
choices. The Benktander type I and II (see Benktander and Segerdahl (1960),
Benktander (1970), Beard et al. (1984) and Embrechts et al. (1997)) defined
uniquely by the mean excess functions

ej(x) =
l + 2a/?m(l + x)'

(5.1)
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are similar unreasonable choices with high values of the goodness-of-fit sta-
tistics (see Table 5.3). However, note that the Benktander distributions were
introduced to describe the excess losses over some higher threshold (for use in
reinsurance) rather than the entire range of losses (for use in direct insurance),
which is our main concern in the present study.

Among the three parameter distributions they consider, Hogg and Klug-
man (1984) found that a Burr provides the best fit with respect to the limited
expected value criterion. The results of our parameter estimation are given in
Table 5.2 and our goodness-of-fit analysis is summarized in Table 5.3.

Our implementation of the scoring method did not yield in a straight-
forward way the maximum likelihood estimators p., c, a for the lnNIG(pi, c, a).
Instead, and for comparisons, several possible fits were made. Each of the
four lnNIG minimizes by varying a approximately one of the goodness-of-fit
statistics. More precisely, overall rank 2 corresponds to a minimum x2, rank 3
to a minimum K, rank 4 to a maximum lnL, and rank 5 to a minimum LE.
Since maximum likelihood estimation for the lnDW(ju, c, a) using the scoring
method has been successful, such a distinction appears superfluous. The over-
all ranks in Table 5.2 match those in Table 5.3.

TABLE 5.2

PARAMETER VALUES OF THEFT LOSS DISTRIBUTIONS

Overall rank Distribution Parameter values

1
2
3
4
5
6
7
8

inDWip, a, a)
\nNIGin, c, a)
lnJV/GCu, c, a)
\nNIG{ji, c, a)
\nNIG(fi, c, a)
Burr (a, fl, r)
Benktanderl(a, fi)
BenktanderII(a, B)

a = 1.270795, ft = 6.013325, £=1.020931
a = 5.3, ,£ = 6.044392, c = 2.966822
a = 5.1, /2 = 6.043941, c = 2.903233
a = 5.6, fi- 6.045009, c = 3.059974
a = 4.1, fi = 6.041057, c = 2.564565
f= 1.66932, a =1.09626, /? = 2.6691.02903
a = 0.00339, / = 146.813
a = 0.8745, ^= 364.6117

TABLE 5.3

GOODNESS-OF-FIT OF THEFT LOSS DISTRIBUTIONS

Overall
rank Distribution -InL 103 LE ME

1
2
3
4
5
6
7
8

lnDW
lnNIG
lnNIG
lnNIG
lnNIG
Burr
Benktanderl
Benktanderll

83551
83648.60
83649.20
83648.30
83660.33
83672
92902
83153

914
1142.79
1143.09
1143.33
1156.86
1186
18762
12.8-106

0.4702
0.4362
0.4359
0.4376
0.4480
0.4645
67.70
7304.57

8.94
3.00
2.57
3.67
1.29
1.04
1193
16.5

1.85
—
—
-

0.46
1006
2.78
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Though the fitted Burr has the lowest LE- and ME-statistics, it takes the
worst overall rank among the three parameter distributions. It is also beaten
by a non-optimal lnNIG with a similar LE-value. The preferred distribution
is a lnDW. As the ^-values are rather high, a formal chi-square test, which
would validate one or several of the models, is not undertaken. However, as
demonstrated in Section 6, such a validation is sometimes possible.

5.2. Industrial fire loss data

The n = 8324 observations are grouped into m = 29 classes with boundaries
and frequencies given in Table 5.4. The obtained parameter values and good-
ness-of-fit of four distributions are summarized in Table 5.5 and Table 5,6.
In this situation maximum likelihood estimation using the scoring method
has been successful, and a further distinction as in Section 5.1 appears
akward.

The fitted Burr, whose mean does not exist, is beaten by three distributions
and has here the highest LE-value. A simple two parameter log-normal fits
better than the Burr. The log-normal is beaten by both the lnDW and the lnNIG.
While the lnNIG has the lowest LE-value, the lnDW is the preferred distrib-
ution. No formal test is undertaken.

TABLE 5.4

INDUSTRIAL FIRE LOSS DATA

i

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0

10

16

25

40

63

100

158

251

398

631

1000

1585

2512

3981

h

0

283

280

157

464

710

781

530

446

491

673

779

741

520

425

i

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

6310

10000

15849

25119

39811

63096

100000

158489

251189

398107

630957

1000000

1584890

2511890

6309570

323

179

173

112

94

57

39

22

17

12

5

5

3

1

2
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TABLE 5.5

PARAMETER VALUES OF FIRE LOSS DISTRIBUTIONS

Overall rank Distribution Parameter values

1
2
3
4

lnDW(ft, a, a)
lnNIG(M, c, a)
\nN(v, a)
Burr (a,/?, T)

a= 1.41561,
a = 25.7746,
// = 5.90396,
T = 0.80607,

j "

fi
a
a

= 5.79645,
= 5.89543,
= 2.15982
= 0.98114,

<r = 2.16935
c= 15.23085

yff= 110.35718

TABLE 5.6

GOODNESS-OF-FIT OF FIRE LOSS DISTRIBUTIONS

Overall rank

1
2
3
4

Distribution

lnDW
lnNIG
lnN
Burr

-In/.

24128
24213
24216
24281

X1

442
637
663
758

K

2.46
1.86
2.33
1.71

LE

3.83"
2.53
3.60
9.09

ME

3.83
-

7.63
-

6. FITTING FINANCIAL MARKET DATA

The distribution of the daily cumulative returns on a stock market index has
been the subject of many past and current investigations. It is thus of great
importance to look at the overall goodness-of-fit of the proposed models
when compared with "good" competitors like the log-normal (justified by the
model of Black and Scholes (1973)) and the symmetric a-stable distribution
Gustified by the work of Mandelbrot (1963), Fama (1965), and Peters (1994)).
Our analysis is based on the SMI (Swiss Market Index) daily cumulative returns
between September 29, 1998 and September 24, 1999.

The n = 250 observations are grouped into m-26 classes with boundaries
and frequencies given in Table 6.1. The parameter estimation is provided in
Table 6.2 and the goodness-of-fit in Table 6.3. For the sake of comparisons,
we distinguish between two NIG fits. The NIG minimizes approximately x2

by varying a and maximum likelihood estimation of /JL, C while the NIG2 uses
maximum likelihood estimation of n, c, a.

The fitted log-normal, with high x2- and K-values, seems unreasonable at
first sight. The relative low LE- and ME-values in this example, which are
quite smaller than the corresponding values of the two overall best fitted dis-
tributions, illustrate the apparent irrelevance of the LE- and ME-criteria (see
however the comments to Figure 6.1). Also, the NIG2, whose three parameters
have been estimated with the maximum likelihood method, has high x2- and
K-values and takes only overall rank 5. By the way, it has the lowest LE-value
and a quite small ME-value. The other four distributions seem to fit quite well.
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It is remarkable that the two-parameter log-Laplace is not significantly beaten
by the lnDW. The preferred SMI distributions are a NIG followed by a sym-
metric a-stable distribution, abbreviated SaS, whose characterisitcs are sum-
marized in the Appendix. The ranked 3 lnDW and the log-Laplace have smaller
LE- and ME-values.

A quick look at the graphs of the empirical and fitted mean excess func-
tions in Figure 6.1 is very instructive (similar observations hold for the
non-life insurance data sets, an analysis which can be left to the reader). The
behavior of the empirical graph is quite erratic in the right tail. The simplest
fit for this is anticipated by a parabola or more generally a convex curve. In
contrast to this, in non-life insurance, an increasing and concave curve fitting
has been proposed, at least in the right tail (see Benktander and Segerdahl
(1960), and Benktander (1970) on this point). The two best fitting distributions
distinguish themselves from the others by a considerable slope in the right tail
(in accordance with extreme value theory). This is the reason for the high
ME- and LE-values of these fitted distributions. A suggestion for future work
might be the definition of more adequate weighted LE- and ME-statistics, which
take this phenomenon into account. This could perhaps also allow these sta-
tistics to enter into an extended goodness-of-fit test.

TABLE 6.1

S M I DAILY CUMULATIVE RETURNS

i

0
1
2
3
4
5
6
7
8
9
10
11

12
13

0.950
0.955
0.960
0.965
0.970
.0.975
0.980
0.985
0.990
0.995
1.000
1.005
1.010
1.015

K
0
1
4
0
1
1
11
14
15
43
31
36
25
30

i

14
15
16
17
18
19
20
21
22
23
24
25
26

Si

1.020
1.025
1.030
1.035
1.040
1.045
1.050
1.055
1.060
1.065
1.070
1.075
1.080

22
8
3
2

1
0
0
0
1
0
0
0
1
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TABLE 6.2

PARAMETER VALUES OF SMI DISTRIBUTIONS

Overall rank Distribution Parameter values

1
2

3
4
5
6

SaS({i, c, a)
lnDW(p, a, a)
\nLaplace(fi, a)
NIG2(jx,c,a)
lnN(/i, a)

a =1.875, /2 = 1.00063587, c = 0.022579
a =1.8, /i = 1.0006, c = 0.01012
a =1.005, ft = 0.00038779, a = 0.016489
fi= 0.00038277, IT = 0.016547
a = 6.71936, fi = 1.00063727, c = 0.049471
fi = 0.00058706, a = 0.0151181

TABLE 6.3

GOODNESS-OF-FIT OF SMI DISTRIBUTIONS

Overall rank Distribution -inL X2 K 107 LE ME

1
2
3
4
5
6

NIG,
Sas
lnDW
In Laplace
NIG2

lnN

623.47
623.14
629.40
629.64
625.64
633.07

46.51
49.53
58.25
58.26
241.47
4490

2.30
2.73
3.35
3.36
36.51
485

18.00
12.77
5.85
6.11
2.86
5.96

24.60
303
3.90
3.97
4.42
5.87

0.04 -

. 0.02 -

0.04 "

. 0.02 -

10 . 20

k

NIG2 (and others)

30

0.04 -

. 0.02 ~

0.04 "

. 0.02 "

30

FIGURE 6.1: graphs of mean excess functions
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An ultimate validation and selection among the above models must necessar-
ily be based on a formal statistical test and consider other alternative decision
rules for selection. To perform a correct formal chi-square test, the raw data
in Table 6.1 must be grouped in a different way. According to Moore (1978/86)
a number of rules are to be fulfilled (e.g. Klugman et al. (1998), p. 121).
Recommended is an expected frequency of at least 1% in each class and a
5% expected frequency in 80% of the classes. In view of this, the raw data is
regrouped as in Table 6.4.

TABLE 6.4

S M I DAILY CUMULATIVE RETURNS FOR CHI-SQUARE TEST

i ft ^
0 0.95 0
1 0.97 6
2 0.985 26
3 1.00 89
4 1.015 91
5 1.03 33
6 1.08 5

Based on the parameter values in Table 6.2, the up-dated goodness-of-fit
statistics, together with the p-value of the test, are found in Table 6.5, which
order the distributions according to the new overall rank.

Overall rank

1
2
3
4
5
6

Distribution

NIG2

SaS
NIG,
lnN
lnDW
lnLaplace

TABLE 6

GOODNESS-OF-FIT UNDER

-lnZ.

351.87
352.85
353.28
353.11
354.33
354.42

x1

0.75
1.34
2.63
3.08
4.85
5.00

.5

CHI-SQUARE

p-value

0.69
0.51
0.27
0.38
0.09
0.17

TEST

K

0.014
0.056
0.055
0.061
0.082
0.084

\tf-LE

7.76075
5.82119
11.14234
2.67507
5.44844
5.45984

ME

0.9382
0.5710
0.6414
0.9077
0.6345
0.6275

With critical values of 5.99 (by 2 degrees of freedom for 3 parameters) and 7.82
(by 3 degrees of freedom for 2 parameters) for a 5% significance level, it is
remarkable that all models are validated through this test. In view of the high
X2- and K-values in Table 6.3, this could not be expected a priori for the NIG2
and the lnN. This shows once more that informal decision rules are to be
applied very carefully. The dramatic change in the proposed overall ranking
coincides exactly with the brute #2-ranking a n d almost with the negative like-
lihood and K-ranking. The LE- and ME-values behave still quite erratically.
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Since there are different number of parameters, the p-value ranking differs.
This is a reason for considering further alternative selection rules.

If parsimony is a concern, the best three parameter NIG2 needs to be
compared with the log-normal and log-Laplace. For this it is usual to apply
a likelihood ratio test (though this is here only an informal decision rule). The
test statistics are 2 • (353.11 - 351.87) = 1.24 (lnN versus NIG2) and 2 • (354.42 -
351.87) = 2.55 (lnLaplace versus NIG2). With one degree of freedom, the
critical value is 3.84, and the log-normal and log-Laplace are selected first.
A perhaps more appropriate alternative to this informal hypothesis test is a
penalized likelihood scoring method, called Schwartz Bayesian Criterion (SBC)
and introduced by Schwartz (1978) (see Klugman et al. (1998)). To the negative
likelihood one adds the penalty/* • [ln(«)-ln(2;r)], wherep is the number of esti-
mated parameters and n is the sample size, to obtain the SBC-score, which
decides upon ranking. The result of this SBC selection is reported in Table 6.6.

TABLE 6.6

SBC RANKING OF SMI DISTRIBUTIONS

SBC rank

1
2
3
4
5
6

Distribution

lnN
lnLaplace
NIG2

SaS
NIG,
lnDW

-lnL

353.11
354.42
351.87
352.85
353.28
354.33

penalty

7.37
7.37
11.05
11.05
11.05
11.05

SBC score

360.48
361.79
362.92
363.90
364.73
365.38

To the knowledge of the author, the above study should be a unique first one,
which justifies statistically several different and important models of financial
returns motivated through financial economic and other principles. It places
Black-Scholes (1973) model at the top rank, and justifies also the simple lim-
iting log-Laplace model in Hurlimann (1995b). Furthermore, it does not
reject other good alternative choices like the normal inverted gamma mixture
by Praetz (1972) (used by J.P. Morgan Stanley), the prominent symmetric
a-stable distribution by Mandelbrot (1963) and Fama (1965), and the more
recent double Weibull as geometric-multiplication stable scheme in Mittnik
and Rachev (1993).

7. ON THE PREDICTION OF ONE-YEAR INDEX RETURNS
FROM DAILY INDEX RETURNS

To conclude the present study with a practical illustration of the results in
Section 6, it is interesting to compare the actual SMI index of 6966 at the end
of the observation period with the SMI index resulting from a fitted distribution
under a strict white noise assumption (independent and identically distributed
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daily returns). The obtained 250 days return for the fitted lnN, lnLaplace,
NIG2, SaS, NIG! and lnDW are respectively 19.19%, 13.94%, 17.26%, 16.18%,
17.22% and 14.05%. The average between the two extremes is 16.565%, which
is quite close to the observed 100 • (|g§§ -l) = 15.71%. The range of variation
for the SMI index at the end of the period is [7017 ± 158], where the midpoint is
quite close to the actual index of 6966. The closest value to the actual index is
6994 for the SaS. Whether these extremely good fits are mere coincidence or of
a deeper nature requires further investigations. Used as naive prediction value, if
the index performs similarly in the next period, then the SMI index at the end of
September 2000 should stay between 7945 and 8166. This corresponds approxi-
mately to the expected SMI index of 8200 at the end of year 2000 as predicted
by a model of the Credit Suisse First Boston (see Tages-Anzeiger (1999)).

The above naive calculation is done under the strict white noise assump-
tion, which is easy to test and refute from a pure statistical point of view (e.g.
Taylor (1992), p. 19). However, it yields an acceptable value of the one-year
return from a pure investment point of view. Must the independence hypothesis
be rejected or can it be used for the present purpose? This well-known dilemma
has been noted and studied in detail by Fama (1965), which states:

"Dependence that is important from the trader's point of view need not be impor-
tant from a statistical point of view, and conversely dependence which is impor-
tant for statistical purposes need not be important for investment purposes."

Recall that Fama's tests did not reveal any evidence of important dependence
from either an investment or a statistical point of view.

There exist some more formal mathematical calculations, which can justify
the prediction of a one-year index return based on the distribution of the
daily index returns. Under the made strict white noise assumption and for the
distributions of Table 6.6 (except the SaS, for which more complex calcu-
lations are required), we have computed the four main characteristics of a dis-
tribution, namely the mean, standard deviation, skewness and kurtosis. For
the NIG(ji, c, a) distributions, we have additionally calculated these characteris-
tics for the Bayesian prediction models NIG(ju, cn, an) with up-dated parameters

cn = \c2+y\\xl-n\2, an=a + #, as well as for the normal approximation to this

prediction model as a —• oo, where these models have been discussed in Section 3.
The obtained results are summarized in Table 7.2. The required formulas for
the first four moments mk,k= 1,2,3,4, are straightforward and listed below in
Table 7.1 for the convenience of the reader. The one-year return corresponds
here to T= 250 days. The mean of the one-year return is then /uT = m], the
standard deviation is aT= Jm2- m2, while the skewness yT and kurtosis y2j are
calculated using the formulas

_m3-3m1m2+2m1
3

yT- j (/A)
aT

m4 - 4m, m3 + 6m, m2 - 3m,
Y2,T= 4—! L (7-2)
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TABLE 7.1

MOMENT FORMULAS FOR ONE-YEAR INDEX RETURN PREDICTION MODELS

k= 1,2,3,4

\nLaplace(fi,a)

mk~ \-\{kafr
\nDW(fi,a,a)

J=0

(far)2 r , A: =1,2,3,4 (this is formula (4.11))

BNIGQx,cn,an) (Bayesian NIG prediction model)

The same formulas as for the NIG hold with c, a replaced by the up-dated
parameters cn, an calculated with the n = 250 daily observations.

NNIGin,oa) (normal approximation to Bayesian NIG prediction model)

I2{an-l)

TABLE 7.2

ONE-YEAR RETURN PREDICTION FROM DAILY RETURN DISTRIBUTIONS

Distribution

LnN
LnLaplace
LnDW
NIG,
BNIG,
NNIG,
NIG2

BNIG,
NNIG2

HT

19.19%
13.94%
14.05%
17.22%
17.22%
17.22%
17.27%
17.27%
17.27%

aT

29.03%
32.36%
32.21%
32.20%
28.70%
28.70%
27.47%
28.63%
28.63%

7T

0.75
2.61
2.54
0.84
0.75
0.75
0.71
0.74
0.74

72.T

4.003
30.717
28.686
4.144
4.004
4.004
3.918
3.998
3.998
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The comparison of the figures in Table 7.2 are quite instructive. The Bayesian
NIG models and their normal approximations have skewness and kurtosis
parameters very close to the best SBC ranked log-normal model in Section 6,
and these values are also closest to empirical values obtained from long-term
one-year returns. The skewness and kurtosis parameters are overestimated by
the log-Laplace and log-double Weibull models. From this perspective, only the
log-normal and normal inverted gamma mixtures are selected for practical pur-
poses. For a cautious prediction, the Bayesian normal inverted gamma mixture
and its normal approximation should be the preferred models for prediction.

Appendix: comparative distributions

The formulas for the scoring method and the stop-loss transforms for the
evaluation of the LE- and ME-statistics are listed.

Normal inverted gamma mixture

X with defined in (3.4)

fx(x)•%Sx(x) =fx(x), £Sx(pc) =

where y/(x)=-^ lnF(x) is the digamma function or psi function.

Double Weibull distribution

SAx)= Sz\^~\ with Sz(z) defined in (4.2)

X-fl

a
X-fi

a
•exp

X-fl

a

r (l + hK\d\"\- d • Sz(d),

where T(J3; x) is a gamma distribution with shape parameter /?.
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Benktanderl

- a • [ln(l + x)]2}

Benktanderll

S(x) = (1 + xT 1 • exp | - ^ [(1 + x)a -1]}

7i(x)=5(x)e(x),

,a-c;-^r)|-ji;-5(x), with the mean

« a+/r{,;)

L£(x) = 4 + -FTFl—' {y"~c~xQ-y)c~Xdy, a<c (case of infinite mean)
•MCoJ'T ^
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Log-normal

S(x)=\-N

3S(x) _ i

n (x) = exp (w + j a2) • 1 - N

WERNER HURLIMANN

\nx-

\nx-fi) dS(x) _lnx-f

-a\-xS(x)

Symmetric a-stable distribution

Explicit expressions exist only in the special cases a - 1 (Cauchy) and a = 2
(normal). Bergstrom (1952) developed series expansions that Fama and Roll
(1968/71) and other authors applied in case a> 1. The density and distribution
of the normalized case n = 0, c = 1 is first stated.

/z(z)=-
na (2k)\ ' \z\<5a-4,

The remainder satisfies \R(z)\ < C z o("+1) ', C a constant, and becomes smaller
than the previous term in the summation as z gets larger.

(2k-l)\
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