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Abstract

Although the application of CRISPR/Cas9 genome engineering approaches was first reported
in apicomplexan parasites only 3 years ago, this technology has rapidly become an essential
component of research on apicomplexan parasites. This review briefly describes the history
of CRISPR/Cas9 and the principles behind its use along with documenting its implementation
in apicomplexan parasites, especially Plasmodium spp. and Toxoplasma gondii. We also dis-
cuss the recent use of CRISPR/Cas9 for whole genome screening of gene knockout mutants in
T. gondii and highlight its use for seminal genetic manipulations of Cryptosporidium spp.
Finally, we consider new variations of CRISPR/Cas9 that have yet to be implemented in api-
complexans. Whereas CRISPR/Cas9 has already accelerated rapid interrogation of gene func-
tion in apicomplexans, the full potential of this technology is yet to be realized as new
variations and innovations are integrated into the field.

Introduction

The history of the CRISPR revolution represents one of the most significant examples of basic
research leading to techniques with enormous translational potential. In fact, one of the most
revolutionary discoveries of the last decade took more than 25 years from the first evidence of
its existence before becoming the most powerful technology for genome manipulation.
CRISPR is an adaptive immune system used by several bacteria to defend themselves from
infection by viruses or exogenous DNA, such as bacteriophages and plasmids, respectively.
Identifying basic mechanisms underlying a viral evasion strategy may appear to be an aca-
demic interest confined to the field of microbiology. This perception, which brought frustra-
tion to many early CRISPR researchers, starting from Mojica (who first observed the presence
of the CRISPR array), caused a shortage of funds, lab space and editorial rejections from lead-
ing journals (Lander, 2016). The CRISPR odyssey parallels in some ways the discovery of
another technology that radically changed molecular biology research in all organisms, the
polymerase chain reaction (PCR). Description of this discovery by Kary Mullis was rejected
by elite journals that missed the importance of this revolutionary finding (Campanario,
2009). The lesson to the non-scientific community is that basic knowledge may lead to discov-
eries with virtually limitless utility such as CRISPR and PCR. The biological role of CRISPR in
bacterial adaptive immunity has been comprehensively described (Karginov and Hannon,
2010; Wright et al. 2016; Hryhorowicz et al. 2017; Koonin et al. 2017; Patterson et al.
2017). The basis of CRISPR technology, its different applications, and its potential have
also been well described (Hsu et al. 2014; Barrangou et al. 2015; Barrangou and Horvath,
2017; Jackson et al. 2017; Jiang and Doudna, 2017; Kick et al. 2017; Pineda et al. 2017;
Salsman and Dellaire, 2017). This review instead aims to highlight the power of CRISPR tech-
nology in parasitology, principally concentrating on new advancements in apicomplexan para-
sites where considerable recent progress has been made.

The availability of genetic tools to manipulate genomes is crucial to understanding the biol-
ogy of any organism. Within the phylum Apicomplexa, such tools have been most extensively
applied to Plasmodium spp., Toxoplasma gondii and more recently Babesia spp. Research on
other medically important apicomplexans such as Cryptosporidium spp., a leading cause of
pathogen-induced diarrhea (Checkley et al. 2015), has been constrained due to the lack of a
long-term in vitro culture system, animal models, and molecular genetic tools, but is now sur-
ging forward with CRISPR/Cas9 technology (Vinayak et al. 2015). Recent applications of
CRISPR/Cas9 are creating exciting new opportunities to interrogate gene function and reveal
important biological insight.

Adaptation of CRISPR in apicomplexan parasites has paralleled that of higher eukaryotes.
The approach is based on initial generation of a double-strand DNA break (DSB) by the Cas9
nuclease in a site-specific manner driven by a single guide RNA (sgRNA) targeting an exact
DNA sequence within the genome. The generation of a specific DSB activates DNA repair sys-
tems including non-homologous end joining (NHEJ), homologous repair (HR), or other alter-
native repair pathways, depending on the organism. NHEJ is active throughout the cell cycle,
but is dominant in most organisms during G1-phase when HR is absent. NHEJ low fidelity
repair of CRISPR/Cas9 induced DSBs causes deletions or insertions (indels), resulting in

https://doi.org/10.1017/S003118201800001X Published online by Cambridge University Press

https://www.cambridge.org/par
https://doi.org/10.1017/S003118201800001X
mailto:manlio.dicristina@unipg.it
mailto:vcarruth@umich.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S003118201800001X&domain=pdf
https://doi.org/10.1017/S003118201800001X


frame-shift mutations that typically inactivate the target gene. HR
is instead an S-phase and high fidelity DNA repair pathway that
can be exploited using CRISPR/Cas9 technology coupled with a
‘donor DNA’ that contains homologous sequences flanking the
DSB. This HR donor DNA can be exploited to precisely insert
mutations or sequences such as epitope tags, or for a complete
gene knock out. Some parasites, such as Plasmodium spp. and
Cryptosporidium spp. lack NHEJ and thus predominately use
HR. In the absence of donor DNA Plasmodium resorts to
microhomology-mediated end joining (MMEJ) where DSB is
repaired using short homologous regions corresponding to as little
as 4 bp flanking the lesion (Kirkman et al. 2014; Singer et al. 2015).
Although it usually results in a small deletion, the low frequency of
MMEJ likely renders CRISPR/Cas9-mediated gene disruption in
the absence of a donor DNA template highly inefficient.

This review will focus on recent applications of CRISPR/
Cas9 genetic manipulation of apicomplexans, with a particular
emphasis on Plasmodium spp., T. gondii and Cryptosporidium
spp. Other excellent recent reviews that discuss genetic manipula-
tion of apicomplexans in general (Suarez et al. 2017) and
CRISPR/Cas9 genome editing of protists (Lander, 2016) also illus-
trate various strategies for using CRISPR/Cas9.

Plasmodium: new tools advance genetic tractability

Massive efforts have been made to develop tools to study
Plasmodium spp., and particularly P. falciparum, due to the
impact these parasites have on society. Malaria causes severe mor-
bidity and mortality that is sustained by the lack of an effective
malaria vaccine and the ability of the parasite to develop drug
resistance. In vitro cultivation and genetic manipulation have
been available to study P. falciparum for decades, but these
approaches have been inefficient and time-consuming.
Conventional gene knockout in P. falciparum takes months to
obtain a null mutant and relies on spontaneous single- or double-
crossover recombination using plasmids containing homologous
sequences to the target region. Since P. falciparum lacks the machin-
ery for NHEJ, genome integration is not random and occurs mainly
in the region of homology between parasite chromosomes and plas-
mid DNA maintained episomally. Unfortunately, integration is a
stochastic event that occurs at very low frequency and thus gene
disruption in P. falciparum requires 1–3 months of continuous cul-
ture, protracted on–off cycling of drug selection, and/or negative-
selection procedures. Zinc finger nuclease technology (ZFN) has
been successfully used in P. falciparum to improve the generation
of knockout parasites (Straimer et al. 2012; Singer et al. 2015;
Veiga et al. 2016), but is limited by its targeting capability, arduous
design and implementation, and high cost. ZFN vectors are also
often very large and thus not suitable for genome-wide screening.

Successful establishment of CRISPR/Cas9 technology to edit
Plasmodium spp. genomes has provided a powerful tool to allow
rapid and efficient genetic manipulation of these parasites. Several
adaptations of CRISPR/Cas9 have been developed in Plasmodium
spp. based on the use of either one- or two-vector strategies, depend-
ing on whether the donor DNA is in the same or a separate plasmid
as Cas9 and the sgRNA, and if different selectable markers are used
to maintain the plasmids in transformed parasites. Two seminal
studies in 2014 independently reported adaptingCRISPR/Cas9 tech-
nology to genetically manipulate P. falciparum using different
approaches to express the sgRNA (Ghorbal et al. 2014; Wagner
et al. 2014). In the first study, Ghorbal et al. developed a two-plasmid
system expressing Cas9, under the HSP86 promoter, in one vector
and the sgRNA, driven by the U6 promoter, along with the HR
donor DNA flanking a selectable marker hDHFR (human
dihydrofolate reductase) in a second vector. After co-transfecting

P. falciparum-infected erythrocytes with both vectors, drug selection
for integration of hDHFR at the target locus was applied. The
sgRNA/HR donor vector also carried the negative selectable marker
yfcu (yeast cytosine deaminase and uridyl phosphoribosyl transfer-
ase) to subsequently eliminate parasites carrying copies of this plas-
mid. This study also found that transfection of linear HR donor
plasmid DNA is a viable alternative to negative selection since linear
DNA can mediate recombination but does not persist (Deitsch et al.
2001). The authors used this system to disrupt a reporter transgene
(EGFP) and an endogenous gene (PfKAHRP) with hDHFR, along
with introducing a point mutation in two genes (PfORC1 and
PfKELCH-13) without drug selection. A possible limitation of
expressing sgRNAs from the U6 promoter is that guanosine is pre-
ferred at the sgRNA 5′ position for efficient RNA polymerase III
transcription. Nevertheless, the authors reported that the P. falcip-
arum U6 promoter was able to drive expression of gRNAs in the
parasite without the functional requirement for the initial guanosine
nucleotide, thus expanding inP. falciparum the ability of Cas9 to tar-
get any sequence with the -NGG PAM motif. We have similarly
observed in T. gondii that expression from the U6 promoter seems
to be free of this initial guanosine nucleotide restriction, having suc-
cessfully used sgRNAs starting with one of the other three nucleo-
tides, although efficiency has not been determined (Di Cristina
et al. 2017).

In the second study, Wagner et al. also used a two-plasmid sys-
tem, wherein Cas9 and the sgRNA were placed in the same vector
along with a BSD (blasticidin-S deaminase) selection marker.
In this system, expression of the sgRNA was driven by the T7 pro-
moter, thus requiring expression of the T7 RNA polymerase from
a second plasmid. This second plasmid also carried the HR donor
and a NEO (neomycin) resistance cassette to maintain this vector
episomally. The authors demonstrated disruption of two individ-
ual genes (PfKAHRP and PfEBA-175) without integration of a
selectable marker.

These studies were followed by several other reports utilizing
similar strategies, including some with new innovations. The
Ghorbal approach allowed Nacer et al. to identify PfVAP1
(virulence-associated protein 1) as a key factor involved in the
P. falciparum cytoadherence (Nacer et al. 2015). Using a similar
general strategy Lu et al. introduced the use of a suicide vector
approach (Lu et al. 2016). In this work, the authors designed a
suicide vector encoding Cas9 nuclease, sgRNA and a drug selec-
tion marker along with a second plasmid carrying the HR donor
for cotransfection. Parasites receiving only the Cas9/sgRNA sui-
cide vector die because of inefficient repair of the DSB by
MMEJ, whereas those receiving both plasmids survive via HR
repair from the donor plasmid. This approach avoids the need
for a selectable marker in the donor plasmid, thus freeing up
space to introduce larger knock-in tags. The system also has the
potential to efficiently mediate consecutive gene manipulations.
In another adaptation of the method developed by Ghorbal and
colleagues, Mogollon et al. (2016) generated marker-free P. falcip-
arum fluorescent reporter lines by redesigning the vector carrying
the sgRNA and HR donor to include a hybrid positive and nega-
tive selectable marker (hDHFR-yfcu) outside the homology arms
of the HR donor. In this new approach, positive selection is
applied initially to maintain the HR donor plasmid followed by
negative selection to eliminate parasites containing the episomal
plasmid. In very recent work, Bryant et al. used the Ghorbal sys-
tem to functionally interrogated an important conserved genetic
element of var genes, the var2csa intron, without the introduction
of a drug-selectable marker (Bryant et al. 2017). Also, the Wagner
approach based on the sgRNA expression driven by the T7
promoter was successfully used in two other studies to introduce
point mutations in either PfMDR1 (Ng et al. 2016) or PfCARL
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(LaMonte et al. 2016) to identify residues involved in drug
resistance.

Distinct from the two-plasmid CRISPR/Cas9 systems devel-
oped for P. falciparum, Zhang and colleagues developed a P. yoelii
system based on one-vector carrying all the products required for
cleavage and DNA repair (Zhang et al. 2014). The authors used
this system to generate targeted deletion, reporter knock-in, and
nucleotide replacement in multiple genes with high efficiency
and accuracy. In subsequent work, the same group improved
this single-vector system by introducing the yfcu negative selec-
tion marker to remove the episomal vector in transfected parasites
after the genomic editing was achieved (Zhang et al. 2017a, b).
The CRISPR/Cas9 system was also employed by Knuepfer et al.
to introduce a rapamycin-inducible DiCre recombinase for condi-
tional disruption of target genes engineered with flanking loxP
sites (Knuepfer et al. 2017). DiCre-mediated gene deletion was
also achieved using the Ghorbal CRISPR/Cas9 adaptation by
Volz et al. (2016) to demonstrate the essential role of PfRh5/
PfRipr/CyRPA complex during P. falciparum invasion of
erythrocytes.

Very recently, P. falciparum transfection of a purified CRISPR/
Cas9-guide RNA ribonucleoprotein complex and a 200-nucleotide
single-stranded oligodeoxynucleotide (ssODN) repair template
introduced drug resistance mutations without the use of plasmids
or the need for cloning homologous recombination templates
(Crawford et al. 2017). This approach is ideally suited for introdu-
cing mutations that confer a fitness advantage under selection
conditions. The efficacy of using ssODN as a repair template in
P. falciparum may greatly simplify future genome editing of these
parasites.

Toxoplasma gondii: higher throughput and genome-wide
screens

Contrary to Plasmodium spp., T. gondii is an apicomplexan para-
site offering relative ease of growth in culture and a wide array of
genetic tools that include chemical or insertional mutagenesis,
homologous gene replacement, conditional knockdown and tag-
ging techniques (Wang et al. 2016a). The availability of numerous
selectable markers for generation of stable Toxoplasma strains
(Roos et al. 1994, 1997; Donald and Roos, 1995, 1998; Fox
et al. 1999, 2001; Soete et al. 1999; Wang et al. 2016a) and the
rapid loss of exogenous non-integrated DNA, with no detectable
exogenous DNA 7 days post-transfection (Soldati and Boothroyd,
1993; Black and Boothroyd, 1998), makes the study of the biology
of T. gondii by genetic manipulations more manageable.
Integration of foreign DNA in T. gondii is relatively efficient,
with recombination rates of ∼0.1% without restriction enzyme-
mediated integration (REMI) and ∼5% with REMI (Black et al.
1995; Roos et al. 1997). The presence of a very active NHEJ path-
way in T. gondii is a limitation for generating strains with
homology-directed knockout or the precise insertion of tags or
mutations because of a high prevalence of random DNA integra-
tion. Due to this feature, conventional generation of knock out
strains for T. gondii is inefficient and requires homology flanks
of 2–3 kbp (Donald and Roos, 1994; Roos et al. 1997; Zhang
et al. 1999; Craver and Knoll, 2007). To overcome this, T. gondii
type I (e.g., RH) or type II (e.g., Prugniaud, Pru) strains were
modified to disrupt NHEJ-mediated insertion by deleting one
key component of this pathway, the gene encoding the Ku80 pro-
tein (Fox et al. 2009, 2011; Huynh and Carruthers, 2009). The
impact of these two strains, named RHΔku80 and PruΔku80, on
understanding Toxoplasma biology has been substantial, allowing
higher fidelity, rapid generation of knockout strains, and the
introduction of epitope tags. Although the generation of Δku80
strains minimized the problem of random DNA integration,

this approach, of course, limits the studies to these two strains
currently. Moreover, since the Ku80 protein is involved in DNA
repair, strains lacking this gene may be prone to accumulate gen-
etic mutations after prolonged culture.

Introduction of CRISPR/Cas9 into the Toxoplasma field has
revolutionized the capability to efficiently generate gene knock-
outs in any strain. Several CRISPR/Cas9-based approaches have
been developed in different laboratories to inactivate selected
gene function. For example, complete or partial deletion of the
target sequence was obtained through double crossover triggered
by a site-directed sgRNA/Cas9-mediated DSB and subsequent
DNA repair using a donor DNA comprised a drug resistance
expression cassette flanked by about 1 kbp of DNA homologous
to the target locus (Shen et al. 2014a). This approach also sub-
stantially increased the throughput of gene deletions, exemplified
by individual or sequential disruption of entire gene families
(Shen et al. 2014b). Gene inactivation was also obtained via
‘indels’ in the coding region generated by NHEJ repair of a
sgRNA/Cas9-mediated DSB (Sidik et al. 2014; Wang et al.
2016b). A ‘clean’ knockout with complete gene deletion is desir-
able because it avoids the potential expression of a truncated pro-
tein and precludes homologous reinsertion of the gene or cDNA
for genetic complementation. Nonetheless, template mediated
complete gene deletion is less efficient in non-Δku80 strains
because homologous recombination is active only when parasites
are in the S/G2 phase and thus NHEJ is the prevalent form of
DNA repair in T. gondii when extracellular, G0-phase parasites
are used for transfection. To enhance HR vs. NHEJ events,
Behnke and colleagues (Behnke et al. 2015) developed a new
CRISPR vector that expresses Cas9 and two sgRNAs. The two
sgRNAs direct Cas9 to generate two DSBs, one at each end of
the target gene or locus. This tactic not only improves efficiency,
but it also permits efficient disruption of large genes or tandem
gene arrays. In our hands, the two-sgRNA approach allowed suc-
cessful knock out of several genes individually including those
encoding TgCPL (cathepsin protease L) (Di Cristina et al. 2017)
and TgASP1 (aspartic protease 1) (Di Cristina and Carruthers,
unpublished) in the T. gondii type II strain ME49. In summary,
CRISPR/Cas9 is opening up genetic manipulation of any T. gondii
strain and allowing for large genetic disruptions to interrogate
gene function.

Although CRISPR/Cas9 is versatile for any strain, applying it
in a Δku80 strain provides the advantage of using short homology
sequences, thereby permitting convenient and precise gene
knockouts or knocking of tags or mutations. For example, Sidik
and co-authors (Sidik et al. 2014) introduced tags or mutations
in a Δku80 strain using synthetic oligonucleotide repair templates
with 40 bp of homology without the need for a selectable marker.
This strategy is based on co-transfecting a Cas9 + sgRNA expres-
sion plasmid with a synthetic double strand oligonucleotide
bearing the desired tag or mutation together with a silent muta-
tion to eliminate the PAM site NGG beside the 20 bp sequence
targeted by the gRNA. The efficiency of this approach was
enhanced by fluorescence-activated cell sorting (FACS) parasites
that received the Cas9/sgRNA vector, exploiting the fluorescence
emitted by the GFP fused to the Cas9 protein. Only ∼20–30%
of parasites obtain the Cas9/sgRNA vector after electroporation,
making it critical to remove the predominant fraction of non-
transfected parasites to enrich the population with edited
parasites. Since FACS is expensive and not available for all the
laboratories, we developed a protocol that allows the enrichment
of Cas9-expressing parasites with a Cas9/sgRNA vector bearing a
bleomycin resistance gene (Di Cristina and Carruthers, unpub-
lished). Parasites receiving this new plasmid, named pCas9/
sgRNA/Bleo, are subjected to phleomycin treatment 24 h after
transfection to eliminate parasites that have not received the
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plasmid and enrich for parasites expressing Cas9 and the sgRNA.
Treatment one day after transfection ensures that bleomycin
resistance is transiently expressed by the 20–30% of the popula-
tion that incorporate the plasmid. Stable integration is not
favoured due to the Cas9 toxicity, which works as a negative selec-
tion against vector integration. In our hands, this approach results
in about 30–80% efficiency of edited or tagged parasites, depend-
ing on the impact to parasite fitness of the mutation introduced,
allowing easy identification of single mutant clones. Beyond this
variation of the approach, the reader is referred to an excellent
how-to guide for using CRISPR/Cas9 for various applications in
Toxoplasma that was published recently (Shen et al. 2017).

High-throughput strategies to genetically engineer and screen
large numbers of mutants or populations are powerful weapons
in modern systems biology. To this end, the emergence of
CRISPR/Cas9 has prompted new screening approaches using
sgRNA libraries to perform genome-wide knockouts in a parasite
population. Such approaches allow measuring the fitness contri-
bution of every gene in the parasite genome. Exploiting the
high rates of NHEJ in T. gondii, Sebastian Lourido’s laboratory
efficiently created frame-shift mutations and insertions at the
DSBs generated by transfecting a Cas9-expressing RH strain
with a library of sgRNAs containing 10 guides against each of
the 8158 predicted T. gondii protein-coding genes (Sidik et al.
2016). The guide RNA library was cloned into the sgRNA expres-
sion vector and the integrated sgRNAs were exploited as barcodes
to measure the contribution of each gene to parasite fitness.
Generation of a Cas9-expressing RH strain was likely instrumen-
tal in obtaining high rates of gene disruption. Due to the toxicity
of Cas9 expression in T. gondii, as observed for other microorgan-
isms (Jiang et al. 2014; Peng et al. 2014), the authors developed a
strategy to obtain strains of T. gondii stably expressing this nucle-
ase by co-expressing a decoy sgRNA to prevent the detrimental
effect to parasites by unintended Cas9 activity directed by
endogenous RNAs. This work represents the first genome-wide
functional analysis of an apicomplexan, thus providing broad-
based functional information on T. gondii genes and their contri-
butions to parasite fitness during infection of human fibroblasts.
One initial limitation of this outstanding work is its restriction
to the tachyzoite stage of T. gondii, the rapidly growing form
responsible for the acute phase of the infection. Applying this
approach to other life stages will require improvements to the
transfection and integration efficiencies of strains that compe-
tently differentiate into other stages. The contribution to tachy-
zoite fitness of each predicted T. gondii protein-coding genes is
now available (www.toxodb.org).

Recently, David Sibley’s group developed an auxin-inducible
degron (AID) tagging system for conditional protein depletion
in T. gondii (Brown et al. 2017; Long et al. 2017). They exploited
a new combination of CRISPR/Cas9-mediated gene editing
and a plant-derived AID system to identify which cyclic GMP
(cGMP)-dependent protein kinase G (PKG) isoforms are neces-
sary for PKG-dependent cellular processes (Brown et al. 2017)
and to examine the roles of three apically localized calmodululin-
like proteins (Long et al. 2017). Adaptation of the AID system to
T. gondii adds a powerful new tool to identify the consequences of
rapidly down-regulating expression of cytosolic proteins to infer
function.

CRISPR technology has been adapted to apicomplexan para-
sites relatively recently and thus has not been fully exploited
and expanded. In mammals, evolution of this technology led to
the development of tissue or time-specific promoters to restrict
the genome editing to a precise cell type or developmental stage
(Harrison et al. 2014; Ablain et al. 2015; Bortesi and Fischer,
2015; Wang et al. 2015; Yoshioka et al. 2015; Lee et al. 2016;
Xu et al. 2017; Zhang et al. 2017b). In the classic CRISPR

technology, sgRNAs are usually transcribed under control of
RNA polymerase III promoters to obtain transcripts devoid of
both capping and poly(A) tails, thereby generating the correct
5′-end of the sgRNA and avoiding exportation of the sgRNA to
the cytoplasm, respectively. Tissue/developmental-specific
sgRNA expression requires using RNA polymerase II promoters
active exclusively in the desired cell type or stage. To generate
RNA polymerase II-driven functional sgRNAs, a strategy based
on the use of ribozymes was developed by several laboratories
(Yoshioka et al. 2015; Ng and Dean, 2017; Xu et al. 2017;
Zhang et al. 2017a, b). Hammerhead or hepatitis delta virus ribo-
zymes perform site-specific self-cleavage, resulting in mature
sgRNAs with correct 5′- and 3′-ends. This ribozyme-flanked
gRNA expression system can be exploited for the spatiotemporal
expression of gRNA employing cell type or developmental-
specific promoters. In Toxoplasma, this approach has not been
investigated yet but may allow programmed gene inactivation in
a stage-specific manner by exploiting promoters active at specific
phases of the parasite life cycle. For example expressing the
ribozyme-sgRNA and Cas9 under the control of a bradyzoite-
specific promoter could allow stage-specific inactivation of all
genes, even those that are essential for tachyzoites. This approach
would allow assessing the role of essential genes during the
chronic stage of T. gondii. Moreover, multiple sgRNAs linked
with self-cleaving ribozymes could be simultaneously expressed
from a single promoter to exert genome editing at different
sites. Alternatively, several new approaches permit conditional
expression of Cas9 via chemical or optical activation
(Nihongaki et al. 2015; Polstein and Gersbach, 2015; Wright
et al. 2015; Zetsche et al. 2015; Liu et al. 2016). In principle, it
should also be possible to append a destabilization domain to
Cas9 for ligand-dependent expression of Cas9 in any stage of
the parasite.

Cryptosporidium: introducing a new genetic era

Cryptosporidium spp. causes severe diarrhoea in young children,
with 10% mortality in such cases (Liu et al. 2012).
Cryptosporidiosis also causes life-threatening chronic disease in
immunocompromised individuals, including those afflicted by
HIV/AIDS. Infections occur worldwide in association with oocyst
contaminated water, with no vaccines available, and only a single
drug (nitazoxanide) has been approved with limited benefit for
malnourished children and immunocompromised patients
(Amadi et al. 2002, 2009). Progress in understanding
Cryptosporidium spp. biology and developing new treatments
have been hindered by the limited tractability of the parasite,
which includes a lack of systems for continuous culture, the
absence of facile animal models, and the dearth of molecular gen-
etic tools (Striepen, 2013; Checkley et al. 2015). Cryptosporidium
spp. cultures last a few days in vitro since parasites undergo one or
two rounds of replication at most, limiting experiments to small
numbers of parasites during a fraction of the life cycle. Species
that infect humans cannot be easily studied in standard model
hosts such as mice. Also, since Cryptosporidium spp. is intrinsic-
ally refractory to antifolate drugs, selection of genetically modified
parasites using these drugs, as for Toxoplasma and Plasmodium
spp., is not possible. Further hindering Cryptosporidium spp. gen-
omic manipulation, transient transfection is 10 000-fold less effi-
cient than that of T. gondii (Vinayak et al. 2015). Genetic
validation of potential drug targets for Cryptosporidium spp. is
a key unmet need.

Toward this goal, CRISPR/Cas9 technology has proven again
to be a powerful system even for Cryptosporidium spp. Boris
Striepen’s laboratory recently developed for the first time a proto-
col for transfecting C. parvum sporozoites in tissue culture and
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isolation of stable genetically modified parasites (Vinayak et al.
2015). Notwithstanding a 10-fold optimization of transfection,
the low efficiency still required the use of a highly sensitive nano-
luciferase (nLuc) reporter. Sporozoite expression of nLuc was
achieved using the strong enolase promoter, whilst the aminogly-
coside antibiotic paromomycin was used as selection marker since
it is effective in tissue culture and in immunocompromised mice
(Theodos et al. 1998). After electroporation, transfected sporo-
zoites were directly introduced into the mouse intestine by sur-
gery due to the low oral infection efficiency of this stage.
Expression of sgRNA and the Cas9 nuclease was achieved using
the C. parvum U6 and aldolase promoters, respectively. Since
Cryptosporidium spp. lack NHEJ, similar to Plasmodium species,
transgene integration is likely to require homologous recombin-
ation. Thus, in a series of elegant experiments, the Striepen
group restored a dead version of the nLuc carrying a stop
codon that ablated luciferase activity by using short double-
stranded templates for repair. This demonstrated that genome
editing through homologous recombination was also possible in
the recalcitrant Cryptosporidium spp. The authors also achieved
for the first time a gene knock out in this parasite by deleting
the gene encoding thymidine kinase (TK). This genetic manipu-
lation provided evidence of the non-essentiality of TK and its role
as an alternative route for thymidine monophosphate synthesis,
explaining why C. parvum tolerates high doses of antifolate
drugs. The Striepen group also recently published a how-to
guide for genetic manipulation of Cryptosporidium spp. that
will be invaluable to the field (Pawlowic et al. 2017). In summary,
an adaptation of CRISPR/Cas9 technology to this nearly intract-
able parasite allowed generation of the first Cryptosporidium
knock out strain and, at the same time, deletion of the TK gene
provided a new potential selection marker for genome manipula-
tion. Overcoming such barriers for Cryptosporidium spp. opens
new avenues to import the RNA- or protein-based regulatory
strategies developed from other apicomplexans.

Future directions

Another key aspect of CRISPR is the impact of off-target effects
that may introduce breaks in genomic sites other than the specific
sgRNA target. Cas9 tolerates mismatches between guide RNA and
target DNA differently depending on the position of the mis-
matches. Mismatches are tolerated at the 5′-end of the target
site, but not at the 3′-end ‘seed’ sequence beside the PAM
(Semenova et al. 2011; Cho et al. 2013; Cong et al. 2013; Ma
et al. 2014; Farboud and Meyer, 2015; Port and Bullock, 2016).
Although the introduction of unwanted changes in sequences of
the genome may cause unpredictable consequences for the para-
site phenotype, this might not be a major concern for apicom-
plexans because their small genomes make off-target mutations
less likely. No evidence of off-target mutations introduced by
Cas9 was seen in both P. falciparum (Ghorbal et al. 2014;
Wagner et al. 2014) and P. yoelii (Zhang et al. 2014), suggesting
that this system is very specific in these parasites lacking NHEJ.
Off-target effects have not been fully explored in other apicom-
plexan parasites, such as T. gondii, that have an active NHEJ sys-
tem and thus may also repair DSBs in off-target positions.
Regardless, the recent development of high-fidelity Cas9 variants
may be useful in apicomplexans to minimize off-target effects
(Kleinstiver et al. 2016; Slaymaker et al. 2016).

Recently, the potential of the CRISPR/Cas9 system has been
further expanded to regulate transcription or introduce epigenetic
modification in target genes. Activation (CRISPRa) or Repression
(CRISPRi) of transcription of target genes has been achieved with
a catalytically inactive Cas9 protein (dCas9) lacking endonuclease
activity fused to activating or repressive effectors. These systems

have the advantage of controlling gene expression in an inducible
and reversible manner (Qi et al. 2013). CRISPR/Cas9-directed
epigenetic modifications were achieved by fusing the dCas9 pro-
tein to epigenetic effectors (e.g., DNA demethylase, histone acet-
yltransferase and others) for epigenomic engineering (Hilton et al.
2015; Kearns et al. 2015). The CRISPR/Cas9 system has also been
adapted to cleave single-stranded RNA at specific target sites by
providing a PAM as part of an oligonucleotide (PAMmer) that
hybridizes to the target RNA. In this way, an RNA-targeting
Cas9 protein (RCas9) was directed to bind and cleave target
RNAs at specific sites using specially designed PAMmers, enab-
ling specific RNA degradation (O’Connell et al. 2014). Since api-
complexans lack or have an incomplete system for RNA
interference, this strategy might represent an alternative to RNA
silencing. A further application of the CRISPR/Cas9 technology
has been recently developed to study topologically associated
domains (TADs), i.e. genome organization of chromatin into
ordered and hierarchical topological structures in interphase
nuclei (Bouwman and de Laat, 2015; Sexton and Cavalli, 2015;
Bonev and Cavalli, 2016). TADs play important roles in various
nuclear processes such as gene regulation since distal elements
regulate their gene targets through specific chromatin-looping
contacts such as long-distance enhancer–promoter interactions.
CRISPR/Cas9 technology provides great opportunities to study
TADs by probing spatial DNA–looping interactions and perturb
higher-order chromatin organization (Huang and Wu, 2016).
TADs have been poorly characterized in apicomplexan parasites
and thus this new CRISPR/Cas9 approach offers fresh tools to
better understand chromatin organization, opening new avenues
to understanding the evolution of chromatin organization from
unicellular to multicellular organisms.
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