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The maximal ring of quotients (in the sense of Johnson [4] and
Utumi [5]) of the ring C(X) of real valued continuous functions on a
completely regular Hausdorff space X has been studied in [1] and [2].
The aim of the present paper is to provide some additional results to
those, and to study the relevant extensions on the absence of the real
maximal ideals.

In the first part of this paper, it will be shown that, for the set @
of rational numbers, C(£) is not a ring of quotients of C(R) with
respect to the natural restriction homomorphism. In the second part of
this paper, it is shown that, for a separable metric space X without
isolated points, the maximal ring of quotients of C(X) is totally unreal;
i.e., it does not have any real maximal ideal.

1. Direct limit. Let 8 be a filter base of dense subsets of X .
For each D ¢ 8, let CD(X) denote the ring of all real valued functions
f on X which have continuous restriction fID to D, and ZD(X) the
subset of CD(X) consisting of f with fID = 0. Put CQ(X)
= U {CD(X) : De®} and ZN(X) = U {ZD(X) : De#®}. Evidently
Cﬂ(X) is a ring of functions on X containing ZQ(X) as an ideal. Denote
Q@(X) = CQ(X)/ZQ(X), and, by a straightforward checking, one proves

the following lemma.

LEMMA 1. 1) CD(X) M ZQ(X) = ZD(X) for each D e 0.

2) The restriction @, defined by ?D(f) = f|D,

induces an isomorphism CD(X)/ZD(X) -+ C(D) for each D ¢ 8.
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3) The natural homomorphism v : CAQ(X) - Qs(X)

determines, for each D ¢ &, an embedding jD : C(D) - %(X) such
that v(f) = jD(fID) for each f e CL(X).

4) For any D, E ¢ & with D C E, jD(fID) = gl
for all f ¢ C(E).

5) C(X) M ZS(X) = 0.

The following is the immediate consequence of the above lemma.

PROPOSITION 2. QAQ(X) is the direct limit of the direct system

(C(D)) (D ¢ ®), with respect to the restriction homomorphisms
f > f|D, fe C(E), DC E in ®, with (ip) (D e ®) as a family of the

limit homomorphisms, in the category of all rings with unit and unitary
ring homomorphisms.

Now suppose a ring A is a subring of a ring B, then we call B
a ring of quotients of A provided that for b, 0 # b'e B, there exists
a ¢ A such that ba ¢ A and b'a # 0. To say that a ring B is a ring
of quotients of A with respect to an embedding e : A - B means
that the ring B 1is a ring of quotients of the subring e(A) of B. Itis
evident that Qﬂ(X) is a ring of quotients of C(X) with respect to the

embedding v (in virtue of (5) of Lemma 1) if and only if each C(D), D ¢ 8,
is a ring of quotients of C(X) with respect to the embedding given by the
restriction f - f|D. By making use of [2, Theorem 1.5], we prove the
following:

PROPOSITION 3. A necessary and sufficient condition for %(X)

to be a ring of quotients of C(X) with respect to v is that: for each
D e¢®, for any f ¢ C(D) and open subset U of D, there exists an
open subset V of X such that V M D CU and flV N D has a

continuous extension to V.

Proof. Take any D ¢ 8. Put C(X)|D = {f|[D : fe C(X)} . It
suffices to show that C(D) is a ring of quotients of C(X)|D. Let
0 # f ¢ C(D). Put U = {xe¢D: f(x) # 0} . Then there is an open
subset V of X suchthat V() D C U, and f[V M D has a continuous
extension ¥ to V. Now for an element ¢ ¢ V () D we find an h ¢ C(X)
such that h(c) # 0 and h[X - V' = 0 for some neighborhood V' of c¢
whose closure is in V. Define a function u on X by u(x) = '\f(x)e h(x)
for x € V and u(x) = 0 for x ¢ X - V. Then u ¢ C(X), and clearly
0 # £f-h|D = u|D ¢ C(X)|D.

For the proof of the converse, let f ¢ C(D) and U be a non-void
open subset of D. Then there is an open subset W of X with

U = W/ D. We may assume f|U # 0, for otherwise it is trivial.
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Now we show that f is continuous at each point q ¢ Q. Clearly,

lim () = f(q) ;

Xx=>q
on the other hand
. . 2
11m+ f(x) = inf = 1/x"(a)
x—>q x>q a<x
= inf J = 1/)\2(a) + z 'l/xz(a)
x> q l a<gq g<a<x
. 2
= f(q) + inf = 1/27(a)
x>qg g<a<gx

Let nO( > 1) be a given natural number, and take a point

1
a ¢ A M [q,q += ] suchthat x(a_) < a(a) forall aec A M [q,q +—1-];
no nO n() - nO

1
next, take ni( > no) such that a é A M [q.q + . 1. and pick a point
0 1

1
a eA M [q,q += ] suchthat x(a_ ) < A(a) forall a ¢ Al [q,q +1]
n n n,' = n

1 1 1 1
Now, inductively, take a natural number nk(> n, 1) such that

a éAm[q,q+i]anda eAm[q,q+1]suchthat
k-1 Tk "k “k
)\(::1n ) < aMa) forall a e AM [q.q +1 ]. Let P be the set of all
K P
n, (k = 0,1 2,...) defined by the above process. Then it is clear
that )\(an ) < )\(an ) for any n and n belonging to P with
k k!
n, < L Clearly
2
inf = 1/\ (a )1 =0
n>1 nkz n j
nk I3 P
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Let a ¢ U with f(a) # 0. Then there exists h ¢ C(X) such that
h(a) # 0 and h|X - W = 0. Clearly, 0 # f.h|D e C(D). Then,
by the assumption, there exists h' ¢ C(X) such that f. (h. h')'D

= u|D # 0 for some u ¢ C(X). Note thatif f(c)-h(c)-h'(c) # O,
then ¢ ¢ W. Hence there exists a neighborhood V of ¢ in W such

, - uIV ' D
that hh'|V # 0, and £|V M D B[V D - Consequently the
. uIV . . .
function (hh')IV is the desired extension of fIV M D to V.

Remark. It is known [1; 2] that if 8 is the set of all dense open
subsets of X, then QS(X) is the maximal ring of quotients of C(X)

with respect to v. Evidently the condition in Proposition 3 holds for
every dense open subset D of X.

LEMMA 4. Let A be a countable dense subset of irrational
numbers and let » : A - {1,2,3,...} be a one-to-one mapping.
For each x ¢ R, define a function f by

fx) = = Ah(a);
a<x
acA

then f is continuous at each point of ® but f(a+) > f(a) for each
aec A.

. +
Proof. First we show f(a ) > f(a) for each a ¢ A. Take

a, € A, then
. . 2
lim f(x) = lim = 1/7"(a)
x—»ao x—>a0 a<x

n

= ant@) = fay);

a < ao
on the other hand
. . 2 2
llnl+ f(x) = hm+ = 1/\"(a) = = 1/2\%(a) +
x—»ao x-»ao a<x a<a0
. 2
inf = 1/27(a) > f(ao) .
>
X ao aO*<— a< x
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Hence inf = '1/)\2(a) } = 0. This implies that the
x>q qg<ac<x
function f is continuous at the point q.

COROLLARY. C(®) is not a ring of quotients of C(R) with
respect to the embedding f - fl 0.

Proof. If f is the function defined in Lemma 4, then
g = f|@Q ¢ C(Q). Since every open set V in R contains a point of A,
the function gIV M @ cannot be continuously extended to V. By the
previous proposition, C(Q) is not a ring of quotients of C(R) with
respect to the restriction homomorphism.

2. Totally unreal rings.

Definition. A maximal ideal M in a ring A is said to be real
iff its quotient field A/M is isomorphic with R. A ring is said to be
totally unreal iff it does not have any real ideal.

It is of natural interest to know whether the maximal ring of
quotients of C(X) has real maximal ideals. We shall provide a
sufficient condition for the maximal ring of quotients of C(X) to be
totally unreal. In the following, A (QS(X)) denotes the set of unitary

ring homomorphisms from QQ(X) into R . Also note that each

b € A(Q‘@(X)) is onto. We prove the following result.

THEOREM 5. I x ¢ M 9, then there exists a unique
¢x € A(Q@(X)) such that (¢X o jD) (f) = f(x) for all f ¢ C(D) and for

each D e 0, and x - ¢é is a one-to-one correspondence from My
e — b

into A(Q‘Q(X)). Moreover, if each D ¢ § is realcompact, then x —~ ¢x

is onto.

Proof. Let x ¢ () {D : D e ®} be a fixed point. .For each
D ¢ 9, define a mapping ¢D : C(D) - R by ¢D(f) = f(x), then ¢D

is a unitary ring homomorphism, and, for each pair D, E in 8 with
D C E and f ¢ C(E), we have ¢E(f) = f(x) = ({|D)(x) = ¢D(le).

This implies that the family (¢D) (D ¢ ®) is compatible with respect

to the direct system (C(D))(D ¢ 8). Hence there exists a unique ring

homomorphism cpx : QQ(X) - R such that ¢x °ojp = ¢D for each
D ¢ 8 ‘(see Prop. 2). Since, for each D ¢ 8, C(D) separates the
points of D, ¢x = ¢Y implies x = y; i.e., x — ¢x is one-to-one.

Finally, let each D ¢ ® be real-compact, and ¢ ¢ A(QQ(X)). Then
clearly ¢ o jD is a unitary ring homomorphism from C(D) into R

for each D ¢ 8. Since each D is realcompact, to the homomorphism
b0 jD, there corresponds a point xq) of D such that
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(bo jD)(f) = f(xd)) for all f ¢ C(D) [3]. We claim that x, belongs to

each member of . Let E be a member of 8. Then there exists a
member D' in 0 such that D' C D() E; and hence jD(f) = jD'(le')

for all f ¢ C(D). Similarly, ¢o jD" is a unitary ring homomorphism

from C(D') into R. Hence there exists y ¢ D' such that
(do jD,)(f') = f'(y) for all f' ¢ C(D'"). In particular (¢o jD')(fID’)

= (fID')(y) = f(y) for all f ¢ C(D); i.e., f(x¢) = (po jD) (f)
= oG = cb(jD,(le')) = (¢po jD,)(fID‘) = f(y) for all f ¢ C(D).
This implies that X = ye E; i.e., %, € M{D : De®} . Since,

for each D ¢ 9, q)x oj. = ¢o jD (= q>1')) and the family (cb'D) (D e 9)

5 D
is compatible with respect to the direct system (C(D))(D ¢ 8), and
¢X¢ is unique, hence ¢X¢) = . Q.E.D.

COROLLARY 1. If Q@(X) is totally unreal, then () 8 = ¢ , and

the converse holds, provided each member of Q is realcompact.

COROLLARY 2. Let X be a separable realcompact space without
isolated points such that every closed subset is a G6 -set; then the

maximal ring of quotients of G(X) is totally unreal.

Proof. Note that if X is realcompact, and each point of X is a
G then every subspace of X is realcompact [3]. Let A be a

6 ’
countable dense subset of X, say A = U {a,} where the index set
iel !
I ={1,2,3,...} . Foreach i eI, let J be a countable index set;
i
then {ai} = M Vi ., where V, . is an open set containing a.
je Ji ) ) 1,) 1
for each j. Then A = U M V. .\ = M U V. ()
. . 1, 3 ?
iel JeJi J ¢e¥ iel Lol

where <£ is the set of all functions ¢ with domain I such that &(i) € Ji

for each i ¢ I. Hence A itself is an intersection of dense open sets.

On the other hand, the set X—{ai,az,...,a}, a, e Ai =1,2,...,n)
n i
) )
is a dense open subset of X. () (X-{a1,...,a.}) =X- U {ai,...,ai}
i
i=1 i=1

= X - A; thus X - A is an intersection of dense open subsets of X.
Let 8 be the set of all dense open subsets of X. Then clearly M8 = ¢.
Hence the maximal ring of quotients of C(X) is totally unreal.

COROLLARY 3. For a separable metric space X without isolated
points, the maximal ring of quotients of C(X) is totally unreal.
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