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Abstract. It is shown that electrostatic ion-cyclotron (EIC)-like modes can be ex-
cited by the pre-existing electron density ripple across the external magnetic field in
a dusty magnetoplasma. For this purpose, we use the ion continuity andmomentum
equations, together with the Boltzmann-distributed electrons, and derive the stand-
ard Mathieu equation. The latter admits unstable solutions, demonstrating that the
EIC-like modes in dusty magnetoplasmas can be driven due to the free energy in
the electron density ripple.

An electrostatic ion-cyclotron (EIC) wave [1] is supported by inertial magnetized
ions and inertialess Boltzmann-distributed electrons. The EIC wave propagates
almost perpendicular to the external magnetic field direction, and its frequency
is close to the ion gyrofrequency. The EIC wave dispersion comes from the per-
pendicular ion inertia. The perpendicular (to the external magnetic field direction)
phase speed of the EIC wave in a dusty magnetoplasma with immobile negative
dust grains is (Ni0/Ne0)1/2Cs [2], where Ni0 = Ne0 + ZdNd0, Nj0 is the equilibrium
number density of the particle species j (j equals e for electrons, i for ions, and d
for negative dust grains), Zd is the number of the electrons residing on the dust
grains, Cs = Zi(Te/mi)1/2 is the ion sound speed, Zi is the ion charge state, Te is
the electron temperature in energy units, and mi is the ion mass. The EIC wave
in low-temperature laboratory dusty magnetoplasmas has been excited [3, 4] by
the magnetic field-aligned electron current [5]. It is observed that a substantial
amount of negative dust grains makes the electron current driven EIC modes more
profound for lower values of the equilibrium electron streaming speed. A compre-
hensive account of numerous wave phenomena in weakly and strongly coupled
dusty plasmas appears in Refs. [6, 7].
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In this letter, we show that the pre-existing electron density ripple across the
magnetic field direction can excite EIC-like modes in a magnetized dusty plasma.
Physically, the excitation of the EIC-like modes is attributed to the parametric
interactions [8] in which a positive energy electron density ripple interacts with
the EIC-like modes to produce the EIC-like sidebands, which are negative-energy
modes. The energy exchange among the positive- and negative-energy modes leads
to the growth of the EIC-like modes, while conserving energy.
Let us consider a dusty magnetoplasma in the presence of inertialess hot

electrons, magnetized cold ions, and immobile negative dust grains. The external
magnetic field is ẑB0 , where ẑ is the unit vector along the z axis in a Cartesian co-
ordinate system, and B0 is the strength of the magnetic field. The equili-
brium electron number density in the presence of the pre-existing electron density
ripple is

ne0 = Ne0[1 + ε cos(kex)], (1)

where ε is the magnitude of the relative (with respect to the equilibrium electron
number density Ne0) electron density fluctuation, and ke is the wave number of the
electron density ripple.
Since the parallel (to ẑ) phase speed of the EIC-like modes is much smaller than

the electron thermal speed, we obtain from the balance of the parallel (to ẑ) electric
force and the parallel electron pressure gradient the Boltzmann law for the electron
number density perturbation

ne1 ≈ ne0
eφ

Te
, (2)

where e is the magnitude of the electron charge and φ is the EIC wave potential.
The ion density perturbation ni1 associated with the EIC modes is governed by

the ion continuity equation

∂ni1
∂t

+ Ni0∇ · ui = 0, (3)

where the ion fluid velocity ui is determined from the ion momentum equation

∂ui
∂t

+
Zie

mi

(
∇φ − B0

c
ui × ẑ

)
= 0. (4)

Here c is the speed of light in vacuum. The ions are assumed cold, which is a valid
approximation for the EIC wave whose phase velocity is much larger than the ion
thermal speed.
Considering the propagation of the EIC-like modes along the x axis, we obtain

from (4) (
∂2

∂t2
+ ω2

ci

)
ux +

Zie

mi

∂2φ

∂x∂t
= 0, (5)

where ux is the x component of the ion fluid velocity vector ui, and ωci = ZieB0/mic

is the ion gyrofrequency.
Eliminating ux from (3) by using (5) with (3), we obtain(

∂2

∂t2
+ ω2

ci

)
ni1 − ZiNi0e

mi

∂2φ

∂x∂t
= 0. (6)

Finally, replacing ni1 in (6) by ne1/Zi in the quasi-neutrality approximation,
which holds for the long-wavelength (in comparison with the electron Debye radius)
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EIC perturbation, we obtain the EIC wave equation
(

∂2

∂t2
+ ω2

ci

)
[1 + ε cos(kex)]φ − C2

s
∂2φ

∂x2 = 0, (7)

where (2) has been used.
Assuming that the wave potential φ is proportional to exp(−iωt), where ω is the

frequency, we Fourier transform (7) to obtain

∂2φ

∂x2 +
ω2 − ω2

ci

C2
s

[1 + ε cos(kex)]φ = 0. (8)

Defining 2η = kex − π, we express (8) in the standard form of the Mathieu
equation

∂2φ

∂η2 +
4(ω2 − ω2

ci)
k2
eC

2
s

[1 − ε cos(2η)]φ = 0. (9)

Equation (9) admits an instability [9] for εe�1 and

2(ω2 − ω2
ci)

1/2

keCs
= p, (10)

where p is an integer. The instability is strongest for p ≈ 1, and in that region the
growth rate is

γ =
pkeCs

4

[
ε2

4
− (p − 1)2

]1/2

. (11)

For larger ε one can have a strong off-resonant growth rate. For p ≈ 2, 3, etc., the
growth rates are smaller; the maximum growth rates for ε � 1 are γ ≈ keCsε

2/8 for
p = 2 and γ = 81keCsε

3/1024 for p = 3.
To summarize, we have shown that the pre-existing electron density ripple across

the external magnetic field direction can excite the EIC-like modes in a dusty
magnetoplasma. The energy stored in the electron density ripple is transferred
to the EIC-like modes due to the parametric interactions. As a result, the EIC-
like modes with frequencies (ω2

ci + p2k2
eC

2
s /4)1/2 grow. The increment is strongest

for p ≈ 1, and it strongly depends on ε and Cs. We are hoping that the present
theoretical prediction would be verified by forthcoming laboratory experiments.
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