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ARTICLE

SUMMARY

This article is a practical guide for psychiatrists 
who want to apply basic and straightforward 
statistics in their research. It describes ways 
of summarising data and provides an overview 
of statistical tests for comparing patients’ 
characteristics. Measures of association such 
as correlation and regression are also explained, 
along with principal components analysis, a 
method for reducing the dimensionality of data. 
Explanations are clarified using data from the 
published studies.

LEARNING OBJECTIVES
•	 Be able to produce summary statistics and 

assess normality
•	 Be able to perform the appropriate statistical 

tests by looking at the type of data and the 
number of samples to compare 

•	 Be able to assess the association between two 
or more variables, identify confounders, make 
predictions and reduce the dimensionality of data
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None

This article provides the fundamental statistical 
elements any researcher should bear in mind when 
conducting a statistical analysis of an experiment. 
Whether this is an observational study or a clinical 
trial, a researcher should be able to form a research 
question for addressing a clinical problem. This 
involves (a) identifying the population of interest, 
(b) specifying the exposure or intervention under 
investigation and the comparison exposure or 
treatment and (c) defining the outcome of primary 
interest. The role of statistical analysis during 
this process is of vital importance, not only from 
a scientific perspective but also from the ethical 
point of view. For instance, if the investigator wants 
to prove that a small effect size is statistically 
significant, it would not be ethical to conduct a 
study with a small sample size. Moreover, for valid 
inferences to be drawn, the statistical analysis 
should be made according to the types of data 
and the research question under investigation. It 
is therefore important for the clinician to be able 

to understand the basic principles of choosing an 
appropriate statistical test for testing a hypothesis 
and reporting the results. 

Types of data
Before moving onto any kind of statistical analysis, 
it is important to understand the distinction 
between three main categories of data: these will 
determine the most appropriate statistical test. 
They are (a) continuous, (b) categorical and (c) 
time-to-event data.

Continuous data can be derived by adding, 
subtracting, multiplying and dividing. Examples 
of this kind of data include age, body mass index 
(BMI) and General Health Questionnaire (GHQ) 
score. Moreover, continuous data can be extended 
to count data such as number of epileptic episodes.

Categorical data can be: (a) binary, i.e. data with 
two categories, such as dead or alive, treatment or 
control, disease or non-disease; (b) nominal, i.e. 
data with categories that cannot be ordered, such 
as blood type, marital status or occupation; or (c) 
ordinal, i.e. data with ordered categories, such as 
school grades, age categories (e.g. 25–35, 35–45, 
etc.) and ratings on a Likert scale (e.g. strongly 
agree, agree, disagree, etc.).

Time-to-event data measure the time it takes for 
an event to occur, such as time to death or time to 
remission. 

This article focuses on the analysis of continuous 
data.

Summary or descriptive statistics
The first step of any statistical analysis is to 
describe the population of interest. This will give 
information about patients’ demographic and 
clinical characteristics, such as age, gender and 
educational status. The best way of doing this is 
to produce summary statistics. 

Table 1 shows the summary statistics produced 
on three measures of ability collected as part of 
the Synthetic Aperture Personality Assessment 
(SAPA) project (http://sapa-project.org). These are: 
the self-assessment SATa Verbal (SATV) score, the 
self-assessment SAT Quantitative (SATQ) score 
and the Assessment Composite Test (ACT) score 
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(Revelle 2010). As can be seen from Table 1, gender 
(a binary categorical variable) is summarised as 
frequencies (n) and percentage proportions (%), 
whereas continuous variables such as age, ACT, 

SATV and SATQ scores are summarised by the 
mean, along with the standard deviation (s.d.) 
and/or the median, minimum (min) and maximum 
(max) and interquartile range (IQR). 

Means, medians, standard deviations and 
interquartile ranges
The mean value corresponds to the average value 
of a continuous variable, whereas the median 
corresponds to the exact middle value of its 
distribution. That is, if we rank all patients from 
youngest to oldest, the median value will be the 
one in the middle of this ranking. This is possible 
when we have an odd number of observations. 
If there is an even number of observations, the 
median is derived as the average of the two values 
in the middle of the distribution. 

In some cases, the median is reported instead 
of the mean. The reason for this is that the latter 
is influenced by extreme values (outliers), which 
are very large or very small values. An example is 
shown in Fig. 1, where there are many individuals 
of an older age that push the value of the mean 
to the right of the distribution. In this case, the 
mean value is greater than the median and we 
say that the distribution is skewed to the right 
(it has a right tail). If the mean was smaller than 
the median, we would say that the distribution is 
skewed to the left (it would have a left tail). 

Similar to the mean, the standard deviation is 
also influenced by extreme values. The standard 
deviation measures the variability of a trait. So, 
in cases where our distribution is skewed, it is 
better to report the IQR instead of the standard 
deviation. 

The IQR is the difference between the 1st and 
3rd quartiles of the distribution. The 1st quartile 
corresponds to the value for which 25% of the 
observations are lower, and the 3rd quartile is the 
value for which 75% of the observations are lower. 
These values will be the same regardless of how 
low or high the minimum and maximum values 
are. Hence, the IQR is not affected by outliers. 

Normality of data
If a variable is distributed symmetrically around 
its mean (i.e. the plotted distribution is bell-
shaped), then this variable is said to follow a 
normal distribution. Hence, using a histogram is 
one way of assessing the normality of a variable. 

Another way of assessing normality is by using 
a box plot (Fig. 2). The box plot consists of the 
median value (the horizontal line inside the box); 
the 1st and 3rd quartiles of the distribution are 
the lower and upper edges of the box respectively, 
and the minimum and maximum values of the 

TABLE 1 Summary statistics from the Synthetic Aperture Personality Assessment 
(SAPA) project

Mean (s.d.) Median Min–Max IQR

Gender: n (%)
Male
Female

247 (35)
453 (65)

Age, years n = 700 25.59 (9.50) 22 13–65 10

ACT n = 700 28.55 (4.82) 29 3–36 7

SATV n = 700 612.23 (112.90) 620 200–800 150

SATQ n = 687 610.22 (115.64) 620 200–800 170

ACT, Assessment Composite Test score; SATQ, SAT Quantitative score; SATV, SAT Verbal score. IQR, interquartile range; 
Min, minimum; Max, maximum; s.d., standard deviation.
Data from Revelle et al (2010).

FIG. 1 Histogram showing the age distribution of participants summarised in Table 1.
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FIG. 2 Distribution of mean SAT Verbal (SATV) scores over males and females (data from Table 1).
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distribution are the upper and lower ends of the 
plot respectively. The red dots outside the boxes 
are the outliers of the distribution. If the median 
is located in the middle of the box and the spread 
of the distribution is symmetrical around the 
median, then this is an indication of a normal 
distribution. 

A third way to assess normality is by a normal 
probability plot. If this is linear then the normality 
assumption is satisfied. In our case (Fig. 3) it is far 
from linear, which confirms our conclusion (from 
Fig. 1) that age was non-normally distributed. 

There are also formal tests for assessing 
normality, such as the Kolmogorov–Smirnov 
test. These tests test the null hypothesis that 
the distribution is normal, hence small P-values 
(described in the next section) suggest strong 
evidence against normality. Such tests, however, 
should not be trusted much because they are 
influenced by the sample size. For instance, a small 
sample may fail to reject a hypothesis of normality, 
whereas a very large sample may falsely reject a 
hypothesis of normality. 

Box 1 gives key points on summary statistics.

Statistical tests
Statistical tests are used to formally test a 
hypothesis or, in other words, our research 
question. A statistical test depends on (a) the 
type of data, (b) the number of samples tested 
and (c) whether these samples are independent or 
correlated. 

Comparing two or more samples
Say, for instance, that we want to test whether 
IQ score is the same for males and females. IQ 
score is a continuous variable and if we were to 
compare the mean IQ score between two samples 
(males and females) that are independent we would 
do a a t-test for two independent samples. If we 
were comparing the IQ scores of twin pairs or if 
IQ scores were compared in a ‘before and after’ 
design, then these samples would be correlated 
and we would use a paired t-test.

Both types of t-test make two assumptions: 
(a) the outcome variable is normally distributed 
and (b) there is homogeneity of variance, i.e. the 
variability of the outcome variable is the same 
across the two samples.

As I described in the previous section, the first 
assumption is tested by a histogram, box plot or 
normal probability plot.

The normality assumption is very important 
when the sample size is small (fewer than 100). 
According to a mathematical theorem known as the 
central limit theorem, as the sample size increases, 
the distribution of the means approximates the 
normal distribution. Hence, we can assume that 
the distribution is normal. Of course we can check 
this with histograms and probability plots, but 
it is very likely that these plots would confirm 
this assumption. 

The homogeneity of variance assumption is 
also robust for large enough samples. This can be 
checked by looking at the spread or else the IQR 
of a box plot. 

As an example, we can test whether the mean 
SATV scores in the SAPA project (Table 1) are 
the same for males and females. Since this is a 
continuous variable and we want to test its mean 
for two independent samples (males and females), 
we will carry out a t-test for two independent 
samples. We first use a box plot (Fig. 2) for 
checking the normality and equal variance 
assumptions. At first glance, it appears that the 
SATV scores are normally distributed, with 
similar variability in males and females (as shown 
by the spread of each box, i.e. the IQRs). Since the 
sample is big enough (n = 247 and 453 for males 
and females respectively), according to the central 
limit theorem, the distribution of the means 

BOX 1 Summary or descriptive statistics

•	 Summary statistics are used to describe the population 
of interest

•	 The mean and standard deviation (s.d.) are reported for 
continuous variables whose distribution is not skewed

•	 The median, interquartile range (IQR), minimum and 
maximum values are reported for continuous variables 
whose distribution is skewed

•	 Frequencies and percentage proportions are reported 
for categorical variables

•	 Histograms, box plots and normal probability plots are 
used to assess the normality of data

•	 One should not rely solely on formal tests for assessing 
normality, since these are influenced by the sample size
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FIG. 3 Normal probability plot for age (data from Table 1).
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approximates the normal distribution. Therefore 
the two means can be compared using a t-test for 
two independent samples. 

Running this test, I observed a mean difference 
in SATV of 4.5 units and a P-value of 0.62. 
The P-value is the probability of observing this 
difference (or something more extreme), given that 
the null hypothesis is true. The null hypothesis 
was that the two groups have similar means. Since 
the probability of observing this difference from 
the data is quite high (0.62 or 62%), we cannot rule 
out our null hypothesis. In other words, there is 
not strong evidence to suggest that the two groups 
differ in mean SATV scores. 

To compare three or more independent groups, 
we will use analysis of variance (ANOVA), a form 
of linear regression. The assumptions of ANOVA 
are the same as those of a t-test for two independent 
samples: (a) the outcome is normally distributed, 
(b) the variance is the same across groups and 

(c) the groups are independent samples of the 
population. ANOVA, because of the central limit 
theorem, is quite robust for large enough samples 
(greater than 100 people). 

However, ANOVA is a global test: it compares the 
means across all groups all at once. For instance, 
if we want to compare the mean depression score 
across three groups (two experimental and one 
placebo), so-called one-way ANOVA will test 
the null hypothesis that the three groups have 
equal mean depression scores. The reason we use 
ANOVA instead of pairwise t-tests is very simple: 
with the pairwise t-tests we would need to do three 
t-tests, and this would increase the type I error, i.e. 
the chance of falsely rejecting a null hypothesis. 
ANOVA, however, is just one test, so the chance 
of rejecting a null hypothesis is just 0.05 or 5%. If 
we then want to find out which of the three groups 
differ, we can do a post hoc comparison using 
either Bonferroni or Tukey tests, which correct for 
multiple testing.

If we want to compare three or more samples 
that are correlated, e.g. mean depression scores 
measured at multiple time points in the same 
individuals, then we would do a repeated-measures 
ANOVA. The assumptions are the same as those 
for one-way ANOVA and the t-tests, i.e. a normally 
distributed outcome variable and equal variances. 
Once again, we could do serial t-tests, but this 
would increase the type I error, whereas the 
repeated-measures ANOVA would answer whether 
there was a significant change between groups 
over time (i.e. the time × treatment interaction) 
with just one test. Post hoc comparisons will show 
which of the time-dependent comparisons are 
significant and which are not.

Box 2 gives key points on statistical tests.

Comparing two or more non-normally distributed 
samples
If we have small samples that are not normally 
distributed, we cannot use any of the above 
statistics. Instead, we should use one of the 
following: (a) the Wilcoxon rank-sum (or Mann–
Whitney) test for two independent samples, (b) 
the Wilcoxon signed-rank test for two correlated 
samples, (c) the Kruskal–Wallis test for three or 
more independent samples, or (d) the Friedman 
test for three or more correlated samples. The first 
two tests are alternatives to the independent t-test 
and paired t-test respectively, while the Kruskal–
Wallis and Friedman tests are alternatives to 
one-way ANOVA and repeated-measures ANOVA 
respectively. 

Box 3 summarises key points on comparing 
normally or non-normally distributed samples.

BOX 2 Statistical tests

•	 t-tests and ANOVA make three fundamental 
assumptions:

•	 the outcome variable is normally distributed 

•	 the variance of the outcome variable is the same in 
all groups

•	 the groups are independent 

•	 Histograms and box plots are used to check the 
normality and homogeneity of variance assumptions

•	 According to the central limit theorem, the normality 
and equal variance assumptions are generally satisfied 
for large enough samples (more than 100 people)

BOX 3 Comparing normally or non-normally distributed samples

•	 To compare normally distributed 
observations we use:

•	 the t-test for 2 independent groups
•	 ANOVA for 3 or more independent groups
•	 the paired t-test for 2 correlated groups
•	 repeated-measures ANOVA for 3 or 

more correlated groups

•	 To compare non-normally distributed 
observations we use:

•	 the Wilcoxon rank-sum (Mann–
Whitney) test for 2 independent groups 
(alternative to the t-test)

•	 the Kruskal–Wallis test for 3 or more 
independent groups (alternative to 
ANOVA)

•	 the Wilcoxon signed-rank test for 2 
correlated groups (alternative to the 
paired t-test)

•	 the Friedman test for 3 or more 
correlated groups (an alternative to 
repeated-measures ANOVA)

•	 Type I error is the chance of falsely 
rejecting the null hypothesis

•	 The P-value is the probability of the 
observed data (or data showing a 
more extreme departure from the null 
hypothesis) when the null hypothesis is 
true (Everitt 2002)

•	 A null hypothesis is rejected if the P-value 
is less than 0.05, or 5%
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Correlation
Correlation measures the strength of a linear 
association. As with t -tests and ANOVA, 
correlation is also a special case of linear regression 
and it makes the same assumptions: (a) normally 
distributed variables, (b) equal variances and (c) 
continuous and independent variables. A measure 
of this strength is either (a) Pearson’s r correlation 
coefficient for normally distributed outcomes or 
(b) Spearman’s rho (r or rs) correlation coefficient 
for non-normally distributed outcomes (and small 
sample size).

There is a rule of thumb with regard to the 
strength of an association:

	• if the correlation coefficient (r or rho) is greater 
than 0.7, there is a strong association between 
the two variables

	• if the correlation coefficient is between 0.3 and 
0.7, there is a moderate association between the 
two variables

	• if the correlation coefficient is between 0.1 and 
0.3, there is a weak association between the two 
variables.

Correlation coefficients close to zero (less than 
0.10) suggest no association, i.e. the two variables 
are independent. 

Moreover, the sign of the correlation coefficient 
provides information about the direction of the 
association. A plus (+) sign would suggest a positive 
association, i.e. both variables increase or decrease 
in the same direction. A minus (−) sign would sug-
gest a negative association, i.e. the two variables 
increase or decrease in opposite directions. 

A scatter plot is used to explore the association 
between two variables, as shown in the following 
example. Figure 4 shows the association of heights 
between 928 adult children and their parents 
(205 mother and father pairs) almost a century 
and a half ago (Galton 1886). It reveals a positive 
association between a child’s height and the 
combined mean height of their mother and father, 
which Galton calls the mid-parent height (i.e. they 
both increase). However, a lot of observations 
are scattered around the line, suggesting a weak 
association. 

To calculate the strength of this association, we 
would use Pearson’s correlation coefficient because 
(a) heights for both groups are normally distributed 
(and the sample is >100), (b) the variances are 
equal (Pearson’s correlation coefficient is robust 
against this assumption when the sample is large 
enough) and (c) both variables are independent. 

Using Pearson’s formula on Galton’s data, I 
found a correlation coefficient of 0.43, suggesting 
a moderate association between the heights of 

the two groups. This association, however, was 
statistically significant, with a corresponding 
P-value of less than 0.05. 

Another use of Pearson’s correlation coefficient 
is to explain variability in one variable by that in 
another. For instance, to calculate the variability 
in the children’s heights explained by the mid-
parent height, we square the Pearson’s correlation 
coefficient to get the coefficient of determination, 
R-squared (R2). In our example, squaring the 0.43 
gives us 0.18 or 18%, suggesting that 18% of the 
variability in the children’s heights is explained 
by the mid-parent heights. This leaves 82% of the 
remaining variability explained by factors other 
than the mid-parent heights. 

Box 4 gives key points on correlation.

Regression
Another way to assess the association between two 
or more variables is with regression. There are two 
types of regression: (a) simple linear regression and 

BOX 4 Correlation

•	 Correlation measures the strength of a 
linear association between two variables

•	 Pearson’s correlation coefficient (r ) is a 
measure of strength of the association 
between two normally distributed 
variables

•	 Pearson’s correlation coefficient squared 
gives us the R-squared that measures the 
proportion of variability in one variable 
explained by the other

•	 Spearman’s correlation coefficient (r or 
rs) is a measure of the strength of the 
association between two non-normally 
distributed variables

•	 A correlation coefficient greater than 
0.7 suggests a strong association. A 
correlation coefficient close to zero 
suggests no association

•	 A positive correlation coefficient suggests 
a positive association, i.e. both outcome 
and predictor move in the same direction

•	 A negative correlation coefficient suggests 
a negative association, i.e. outcome and 
predictor move in opposite directions 

•	 A scatter plot with a straight line 
superimposed is used to explore visually 
the linear association between two 
variables

FIG. 4 Scatter plot showing the association of heights between 205 couples (mother and father) 
and their 928 adult children. The mid-parent height is the average of the heights of the 
mother and father (Galton 1886).
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(b) multiple linear regression. The former refers to 
the association between two variables, whereas the 
latter refers to the association between more than 
two variables.

Simple linear regression
Simple linear regression is very similar to the 
correlation described above. In the case of 
correlation, however, we do not distinguish which 
of the two variables is the dependent and which the 
independent variable. Since regression is eventually 
used for prediction, we define one variable to be 
the dependent (or outcome) variable and the other 
one to be the independent (or predictor) variable.

Simple linear regression makes the following 
assumptions:

	• the relationship between the outcome and the 
predictor is linear

	• the outcome is normally distributed
	• the outcome has the same variance across all 
values of the predictor 

	• outcome and predictor variables are drawn from 
independent samples.

In the Galton example, to predict a child’s 
height given the mid-parent height, we could 
do a simple linear regression, with the child’s 

height as the dependent (or outcome) variable 
and the mid-parent height as the independent (or 
predictor) variable. The linear regression model is 
robust against the normality and equal variance 
assumption for large enough samples, and also 
both variables are independent, so we would fit 
a linear regression line (as shown in Fig. 4) to 
explain the association between the two variables. 
To express this relationship mathematically, the 
derived equation from fitting the model would be:

child’s height = 24 + 0.64 × mid-parent height

where 24 is the intercept, i.e. the average child’s 
height if the mid-parent height is zero (as this is 
not possible, this value is just the average child’s 
height in our sample); 0.64 is the regression 
coefficient beta (b), i.e. the slope of the regression 
line. The slope represents the steepness of the line: 
in this case by how much the child’s height would 
change if the mid-parent height were to increase 
by 1 inch. For Galton’s data, the beta coefficient is 
statistically significant (P <0.05), suggesting that 
there was indeed a linear relationship between the 
two variables.

To test the assumptions of the linear regression, 
we would do a residual analysis that involves 
plotting: 

	• a histogram of the residuals, to check the 
normality assumption (Fig. 5)

	• a scatter plot of the residuals against the 
predictor, to check the homogeneity of variance 
and the independence assumption (Fig. 6).

Figure 5 shows a bell-shaped histogram of the 
residuals, suggesting that the normality assump-
tion of the linear regression model is justified. 
Figure 6 shows that the residuals are randomly 
scattered around zero, suggesting that the variance 
is constant across all values of the predictor. 
This satisfies the homogeneity of variance and 
independence assumptions. 

Multiple linear regression 

The analysis using a simple linear regression 
model is known as univariate analysis, whereas the 
respective analysis for multiple linear regression 
is known as multivariate analysis. Multiple 
linear regression allows us to add more than one 
predictor into the regression equation. Hence, a 
multivariate regression analysis involves:

	• controlling for confounder variables
	• improving the precision of the estimates
	• checking for interaction between the predictors 
(by adding an interaction term in the regression 
equation; for example, the addition of an age × 
gender interaction term in the regression model 

FIG. 5 Histogram of the residuals from Galton’s data.

FIG. 6 Residuals v. the predictor (mid-parent height) from Galton’s data. The mid-parent height 
is the average of the heights of the mother and father.
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will show whether the SATQ score changes for 
males and females across different age groups). 

Say, for instance, that we want to see whether 
the SATV (verbal) score is a significant predictor 
of the SATQ (quantitative) score in the SAPA 
project. Table 2 shows the results of the univariate 
analysis between these two variables.

The univariate analysis suggests that the 
SATQ score changes by 0.66 units per unit 
increase in the SATV score, and this association 
is statistically significant. We will now add age 
into the model to see whether age confounds this 
association. As can be seen from Table 3, taking 
age into account attenuates the effect of the 
SATQ score by only 1.5%, from 0.66 to 0.65. As 
a rule of thumb, a variable is a confounder if it 
changes the outcome variable by more than 10%, 
regardless of its significance. This is not the case 
in our example, so age is not a confounder. Also, 
the R-squared from the univariate regression is 
0.415 or 41.5%, whereas the adjusted R-squared 
from the multivariate regression is 0.413 or 41.3%, 
suggesting that adding age into the model does not 
explain any more of the variability in the outcome 
than is explained by the SATV alone. 

Similarly, a residual analysis shows that (a) the 
residuals of the multivariate regression are nor-
mally distributed (Fig. 7) and (b) the homogeneity 
of variance and independence of variables hold for 
age but not for SATV score, as there seems to be a 
reduction in variance with increased SATV score 
(Fig. 8). 

Box 5 summarises key points on regression.

Principal components analysis
The purpose of principal components analysis 
(PCA) is to make a data-set with a large number of 
variables smaller without losing much information. 
The derived new variables are called principal 
components; they are linear combinations of 
the original variables and explain most of the 
variation in the data. PCA is usually done before 
the regression or for exploratory purposes to aid in 
understanding the data or in identifying patterns 
in the data. 

As an example, we can consider a data-set 
with 50 observations and four variables. These 
four variables represent statistics on arrests per 
100 000 residents for (a) assault, (b) murder and (c) 
rape in 50 US states in 1973 and (d) the percentage 
of the population living in urban areas (McNeil 
1977). If we wanted to summarise these data using 
fewer than four variables, we would do a PCA to 
find the number of principal components (i.e. 
linear combinations of the original four variables) 
explaining most of the variability in the data. 

TABLE 2 Univariate association between SATQ score and SATV score

Beta s.e. 95% CI P

Intercept 207.53 18.6 171.06–243.99 <0.001

SATV 0.66 0.03 0.59–0.72 <0.001

SATQ, SAT Quantitative score; SATV, SAT Verbal score; beta, regression coefficient; s.e., standard error; 95% CI, 95% 
confidence interval.
Data from Revelle et al (2010).

TABLE 3 Multivariate association of age and SATV score with SATQ score

Beta s.e. 95% CI P

Intercept 209.87 21.06 168.52 to 251.2 <0.001

Age, years −0.08 0.36 −0.78 to 0.62 0.813

SATV 0.65 0.03 0.59 to 0.72 <0.001

SATQ, SAT Quantitative score; SATV, SAT Verbal score; beta, regression coefficient; s.e., standard error; 95% CI, 95% 
confidence interval.
Data from Revelle et al (2010).

FIG. 7 Histogram of the residuals (from the data in Table 3).

FIG. 8 Residuals v. linear predictors (from the data in Table 3); SATV, self-assessment SAT 
Verbal test.
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Hence, the first two components together explain 
87% of the variation in the data, suggesting that we 
reduced the dimensionality of the data from four 
to two independent variables. Table 4 shows the 
resulting two new variables (principal components 
PC1 and PC2). Each new variable is the weighted 
sum of the original four variables. 

In Table 4, the weights, which can range from 
−1 to +1, indicate the relative contribution of each 
variable to each component. For example, murder, 
assault and rape have weights of 0.54, 0.58 and 
0.54 respectively for the first component, whereas 
proportion of the population living in urban areas 
(urban proportion) has a weight of 0.28 for this 
component. These data suggest that PC1 is a 
measure of violence. 

The second component (PC2) has high weights 
for urban proportion (0.87) and murder (−0.42) 
and lower weights for assault (−0.19) and rape 
(0.17). Thus, these data suggest that PC2 is a 
measure of urban criminality. 

The advantage of PCA is that we can do a 
multiple regression with only two variables (PC1 
and PC2) instead of four. This makes it easier to 
interpret the results, reduces the risk of chance 
findings and makes the results more robust, since a 
composite variable may capture better a particular 
trait (e.g. violence) than the original variables.

Box 6 summarises key points on principal 
components and PCA.

Figure 9 shows a scree plot (on the left) that I 
created to find the number of principal compo-
nents needed to explain the most variation in the 
data. Plot (b) shows the cumulative proportion of 
variance explained by the four principal compo-
nents in the data. As can be seen from Fig. 9, the first 
component alone explains 62% of the variation in 
the data; the second component explains another 
25%, the third component about 9% and the fourth 
component about 4%. An ‘elbow’ shape on a scree 
plot indicates the number of principal components 
needed to summarise the data. In this example, 
the crook of the elbow is on the second component, 
suggesting that we discard all components after 
the point at which the crook starts.

TABLE 4 Results of the principal components analysis 
showing the weights of each variable

PC1 PC2

Murder 0.5358 −0.4182

Assault 0.5831 −0.1879

Urban proportion 0.2782 0.8728

Rape 0.5434 0.1673

PC, principal component; urban proportion, proportion of the population living 
in urban areas.

BOX 6 Principal components and principal 
components analysis

•	 Principal components analysis is a method of reducing 
the dimensionality of data 

•	 The principal components are linear combinations of 
the original variables that explain the most variation in 
the data

•	 A scree plot is used for identifying the number of 
principal components 

•	 Principal components are composite variables that aid 
the interpretation and robustness of the results

FIG. 9 Scree plots showing (a) the proportion of variance explained by each of the four principal 
components and (b) cumulative proportion of variance explained. Data from McNeil (1977).

BOX 5 Regression

•	 Simple linear regression is used to assess 
the association between two variables

•	 Multiple linear regression is used to 
assess the association between more than 
two variables

•	 Univariate analysis involves the testing of a 
hypothesis using a simple linear regression

•	 Multivariate analysis involves the use 
of a multiple linear regression in order 
to control for confounders, improve the 
precision of the estimates and check for 
interactions

•	 The regression coefficient beta is the 
slope (or steepness) of the regression line; 
it shows the change in the outcome per 
unit increase in the predictor

•	 A 95% confidence interval is a range of 
all plausible values within which the true 
population value would lie 95% of the time

•	 A residual analysis tests the assumptions 
of the linear regression. It involves the 
use of a histogram of the residuals for 
testing the assumption of normality and a 
scatter plot of the residuals against each 
predictor for testing the equal variance 
and independent variables assumptions

•	 The P-value tests the hypothesis of linear 
association between the outcome and the 
predictor. A P-value less than 0.05 would 
suggest a statistically significant linear 
association between the predictor and the 
outcome

Pr
op

or
tio

n 
of

 v
ar

ia
nc

e 
ex

pl
ai

ne
d

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Principal component

Cu
m

ul
at

iv
e 

pr
op

or
tio

n 
of

 v
ar

ia
nc

e 
ex

pl
ai

ne
d

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Principal component(a) (b)

https://doi.org/10.1192/apt.bp.115.014696 Published online by Cambridge University Press

https://doi.org/10.1192/apt.bp.115.014696


BJPsych Advances (2016), vol. 22, 251–259 doi: 10.1192/apt.bp.115.014696 259

Statistical analysis: a practical guide for  psychiatrists

MCQ answers
1 a 2 c 3 d 4 c 5 a

MCQs
Select the single best option for each question stem

1 Which of the following statistics should 
be used to summarise normally distributed 
variables?

a Mean and standard deviation
b Median and interquartile range
c Frequencies and percentages
d Both a and b
e Both a and c.

2 A large cohort study is carried out to assess 
the efficacy of an experimental drug in 
reducing depression score when compared 
with placebo. What test should be carried 
out to assess the efficacy of the drug before 
and after the intervention? 

a t-test
b Wilcoxon rank-sum test
c Paired t-test 
d Repeated-measures ANOVA
e Wilcoxon signed-rank test.

3 A large observational study is carried out 
to assess the risk factors for schizophrenia. 
Which type of analysis should be used to 
identify statistically significant risk factors? 

a Univariate analysis
b Correlation
c Multivariate analysis
d Both a and c 
e Both b and c.

4 A large randomised clinical trial is 
carried out to assess the efficacy of an 
experimental drug in reducing depression 
score when compared with placebo. The 
trial consists of a baseline assessment 
and 6-month and 12-month post-baseline 
assessments. What type of test should be 
used to compare the change from baseline 
to 6 and 12 months post-baseline between 
treatment and placebo? 

a T-test
b Wilcoxon rank-sum test

c Repeated-measures ANOVA
d Multiple linear regression
e Both a and c

5 We have a large data-set of responses to a 
health assessment questionnaire consisting 
of 20 questions. We would like to devise a 
shorter version that would provide the same 
information as the original. Which of the 
following analyses would it be best to use to 
on the data to achieve this?

a Principal components analysis
b Multiple regression
c Simple regression
d Correlation
e All of the above.

Statistical software
I produced all the figures and analyses in this 
article using R version 3.0.2 statistical software. 
R is an open source (free) software that is widely 
used by universities worldwide. R is accompanied 
by a popular and powerful graphical user 
interface (GUI) called Deducer, which allows 
users to perform statistical analyses and graphing 
functions without any coding. Users should first 
download and install R (from www.r-project.org) 
and then download and install Deducer (from 
www.deducer.org).

Conclusions
I hope that this article will help psychiatrists to 
understand the basic principles of the statistical 
analysis of data with continuous outcomes. It 
should equip them with the ability to determine 
what statistical tests to use for comparing two 
or more groups, how to interpret correlation and 
regression, and what statistical techniques are 
required to reduce the dimensionality of the data. 
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