J. Austral. Math. Soc. (Series A) 27 (1979), 221-231

SUPPORTS OF BOREL MEASURES

SUSUMU OKADA

(Received 28 February 1978)

Communicated by E. Strzelecki

Abstract

We present a new class of topological spaces called SL-spaces, on which every Borel measure has a Lindelöf support. The class contains all metacompact spaces. However, a θ -refinable space is not necessarily an SL-space.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 60 B 05; secondary 54 D 20.

1. Introduction

Let X be a topological space and $\mathscr{B}(X)$ be the *Borel field* of X, that is, the smallest σ -algebra generated by all open subsets of X. By a *Borel measure* we mean a totally finite, non-negative, countably additive set-function on $\mathscr{B}(X)$.

A Borel measure μ is a *regular* (resp. *Radon*) measure if it satisfies, for every Borel set B

 $\mu(B) = \sup \{\mu(F); B \supset F \text{ and } F \text{ is closed (resp. compact)} \}.$

A Borel measure μ is τ -smooth if for every increasing net $\{U_{\alpha}\}$ of open subsets we have $\sup_{\alpha} \mu(U_{\alpha}) = \mu(\bigcup_{\alpha} U_{\alpha})$. If μ is a regular measure on a topological space X, then it is necessary and sufficient for μ to be τ -smooth that $\sup_{\alpha} \mu(U_{\alpha}) = \mu(X)$ for every increasing net $\{U_{\alpha}\}$ of open subsets satisfying $\bigcup_{\alpha} U_{\alpha} = X$. Moreover if X is a regular topological space, then the τ -smoothness implies the regularity (see Gardner (1975), Theorem 5.4).

We define the support S_{μ} of μ as follows:

$$S_{\mu} = \{x \in X; \mu(U) > 0 \text{ for every open } U \text{ containing } x\}.$$

Moreover, if there exists the smallest closed subset S^*_{μ} satisfying $\mu(S^*_{\mu}) = \mu(X)$, then S^*_{μ} is said to be the *strong support* of μ . It is evident that S^*_{μ} equals S_{μ} if S^*_{μ} exists. Note that S_{μ} is equal to $\bigcap \{F; F \text{ is closed and } \mu(F) = \mu(X)\}$ and that S_{μ} may be empty.

From the definitions, a τ -smooth measure has a strong support. Since a Radon measure is τ -smooth, a Radon measure has a strong support. It still seems to be unsolved whether the τ -smoothness or the regularity is implied by the existence of the strong support. But the existence of a non-empty support S_{μ} does not necessarily imply even the regularity of μ , since the Dieudonné measure has a non-empty support and is not regular (see Example 2.3).

The main purpose of this paper is to study a new class of topological spaces where every Borel measure has a Lindelöf support. These spaces are called SLspaces. We show that every metacompact space is an SL-space. Furthermore, a θ -paracompact space is shown to be an SL-space (for the definition of θ -paracompact spaces, see Section 3). However, a θ -refinable space is not necessarily an SL-space. Moreover, we prove that every F_{σ} -subset of an SL-space is also an SL-space, while an open subset is not always an SL-space. The class of SL-spaces is not closed by the products though the product space of an SL-space and a σ -compact space is an SL-space.

All topological spaces considered in this paper are Hausdorff spaces.

The author expresses his thanks to Professor W. Moran for suggesting an example which is not θ -paracompact but metacompact (Example 3.9). The author is also indebted to the referee for suggesting improvements on the original paper, particularly, for an example which is not metacompact but θ -paracompact (Example 3.10).

2. Fundamental properties of supports

In general, even if a Borel measure has a non-empty support, it does not imply the existence of the strong support (see Example 2.3). However, we have the following theorem by Gardner (1975), Theorem 3.1. Recall that a Borel measure μ is said to be *locally measure zero* if for each x in X there exists an open neighbourhood U of x with $\mu(U) = 0$.

THEOREM 2.1. Let X be a topological space; then the following statements are equivalent:

- (1) every non-zero regular Borel measure has a non-empty support;
- (2) every non-zero regular Borel measure has a strong support;
- (3) every regular Borel measure is τ -smooth;
- (4) every regular Borel measure which is locally measure zero is identically zero.

For continuous mappings and supports, we have

THEOREM 2.2. Let X and Y be two topological spaces and f be a continuous mapping of X to Y. Then, for a Borel measure μ on X, the relation $\overline{f(S_{\mu})} \subset S_{f(\mu)}$ holds, where $f(\mu)$ is the image measure of μ by f, that is, $f(\mu)(B) = \mu(f^{-1}(B))$ for each Borel set B in $\mathscr{B}(Y)$.

PROOF. We may assume that S_{μ} is non-empty. For every x in S_{μ} and each open neighbourhood V of f(x), we have

$$f(\mu)(V) = \mu(f^{-1}(V)) > 0,$$

which implies $f(S_{\mu}) \subset S_{f(\mu)}$. Since $S_{f(\mu)}$ is closed, we have $\overline{f(S_{\mu})} \subset S_{f(\mu)}$.

The following example shows that $\overline{f(S_{\mu})}$ is not equal to $S_{f(\mu)}$ in general.

EXAMPLE 2.3. Let Ω be the first uncountable ordinal and $[0, \Omega]$ be the set of ordinals less than or equal to Ω . We put $[0, \Omega]$ the usual interval topology. We consider the Dieudonné measure μ on $[0, \Omega]$, that is, $\mu(B) = 1$ or 0 according as *B* does or does not contain an unbounded closed subset of $[0, \Omega]$ for each Borel subset *B* of $[0, \Omega]$ (see Halmos (1950), Section 52 (10), or Schwartz (1973), p. 45). Hence we have $\mu(\{\Omega\}) = 0$ and $\mu(U) = 1$ for every open set *U* containing Ω , so that S_{μ} is equal to $\{\Omega\}$ and μ is not a regular measure. By ν we denote the restriction of μ to $[0, \Omega] = [0, \Omega] - \{\Omega\}$, then ν is a regular measure by Gruenhage and Pfeffer (1978), Example 5, and we can easily show that S_{μ} is empty. So we have

$$\emptyset = \overline{\iota(S_{\nu})} \subsetneq S_{\iota(\nu)} = S_{\mu} = \{\Omega\},\$$

where ι is the natural injection of $[0, \Omega)$ to $[0, \Omega]$.

Nevertheless, for strong supports the equality holds:

THEOREM 2.4 (Rajput and Vakhania (1977), Lemma 1). Let X and Y be two topological spaces and μ be a Borel measure on X with $S^*_{\mu} \neq \emptyset$. For a continuous mapping f of X to Y, $S^*_{f(\mu)}$ exists and we have $S^*_{f(\mu)} = \overline{f(S^*_{\mu})}$.

THEOREM 2.5. Let X be a topological space and A be a subset of X. Then, for a Borel measure μ on A we have $S_{\iota(\mu)} \cap A = S_{\mu}$, where ι is the natural injection of A into X.

PROOF. We may assume that S_{μ} is not empty. For every x in S_{μ} and every open set U containing x, we have $\iota(\mu)(U) = \mu(U \cap A) > 0$, which implies $S_{\mu} \subset S_{\iota(\mu)}$.

Conversely, for each x in $S_{\iota(\mu)} \cap A$ and any open neighbourhood U of x, we have $\mu(U \cap A) = \iota(\mu)(U) > 0$, which shows $S_{\iota(\mu)} \cap A \subseteq S_{\mu}$. This completes the proof.

As to strong supports, we have $S_{\iota(\mu)}^* \cap A = S_{\mu}^*$ by Theorem 2.4.

Let μ be a Borel measure on a topological space X and A be a subset of X. Then there exists a Borel subset B in $\mathscr{B}(X)$ such that $\mu^*(A) = \mu(B)$, where μ^* is the outer measure derived from μ . By μ_B we mean the restriction of μ to the Borel subset B. Since A is μ_B -thick in B, we can consider the restriction $(\mu_B)_A$ of μ_B to A (see Halmos (1950), Section 17, Theorem A). It is easy to prove that the restriction measure $(\mu_B)_A$ is independent of the choice of B satisfying $\mu^*(A) = \mu(B)$, so that we can denote it by μ_A . Remark that $\mu_A(C) = \mu^*(C)$ for every C in $\mathscr{B}(A) = A \cap \mathscr{B}(X)$.

THEOREM 2.6. Let μ be a regular Borel measure on a topological space X. Then the following statements are equivalent:

- (1) μ is a τ -smooth measure;
- (2) for each closed subset F with $\mu_F > 0$, the support S_{μ_F} is non-empty;
- (3) for each closed subset F with $\mu_F > 0$, the strong support $S^*_{\mu\nu}$ exists;
- (4) for each subset A with $\mu_A > 0$, the support S_{μ_A} is non-empty;
- (5) for each subset A with $\mu_A > 0$, the strong support S^*_{μ} exists.

PROOF. If μ is τ -smooth measure, then so is μ_A by Amemiya, Okada and Okazaki (1978), Section 5. Hence (1) implies (5). So it is sufficient to show that (2) implies (1). Let $\{U_{\alpha}\}$ be an increasing net of open subsets of X such that $\bigcup_{\alpha} U_{\alpha} = X$ Suppose $a = \sup \mu(U_{\alpha}) < \mu(X)$, then we can choose an increasing sequence $\{U_{\alpha_n}\}$ from $\{U_{\alpha}\}$ such that $\sup_n \mu(U_{\alpha_n}) = a$. If we put $F = (\bigcup_{n=1}^{\infty} U_{\alpha_n})^c$, then we have $\mu_F > 0$, so that S_{μ_F} is not empty. For an element x in S_{μ_F} , there exists a $U_{\alpha(x)}$ containing x, which implies $\mu(F \cap U_{\alpha(x)}) = \mu_F(F \cap U_{\alpha(x)}) > 0$. Then we have

$$a = \mu\left(\left(\bigcup_{n=1}^{\infty} U_{\alpha_n}\right) \cup U_{\alpha(x)}\right) = \mu\left(\bigcup_{n=1}^{\infty} U_{\alpha_n}\right) + \mu(U_{\alpha(x)} \cap F) > \mu\left(\bigcup_{n=1}^{\infty} U_{\alpha_n}\right) = a,$$

which is a contradiction. Therefore we have $\sup_{\alpha} \mu(U_{\alpha}) = \mu(X)$, which completes the proof.

REMARK 2.7. (1) For each subset A of X, we have $S_{\mu} \subset S_{\mu} \cap A$.

- (2) If A is a μ -thick subset or an open subset, then we have $S_{\mu_A} = S_{\mu} \cap A$.
- (3) We consider the restriction to the support. It holds $S_{(\mu_{B_{\mu}})} \subset S_{\mu}$. If S_{μ}^{*} exists, then $S_{(\mu_{B_{\mu}})}^{*}$ exists and we have $S_{(\mu_{B_{\mu}})}^{*} = S_{\mu}^{*}$.

In general S_{μ_A} is not necessarily equal to $S_{\mu} \cap A$ even if both μ and μ_A are Radon measures and A is a closed G_{δ} -subset.

EXAMPLE 2.8. Let a, b, c be real numbers such that a < b < c. Then there is a non-negative valued continuous function f such that (i) $\int_{-\infty}^{\infty} f(x) dx = 1$; (ii) $[a,b] = f^{-1}(0)$, where dx is the Lebesgue measure. If we put $d\mu = f dx$, then μ is a Radon measure and the restriction $\mu_{[a,c]}$ is a non-zero Radon measure. It is evident that $a \in S_{\mu}$ and $a \notin S_{\mu_{[a,c]}}$, which implies $S_{\mu_{[a,c]}} \subseteq S_{\mu} \cap [a,c]$.

In general, the equality $S_{(\mu_{Su})} = S_{\mu}$ does not hold even if $\mu_{S\mu} > 0$. In fact we have

EXAMPLE 2.9. Let μ be the Dieudonné measure on $[0, \Omega]$ and a be in $[0, \Omega)$. We put $\nu = \delta_a + \mu$, where δ_a is the Dirac measure at a. Then we have $S_{\nu} = \{a, \Omega\}$ and $\nu_{S_{\nu}} > 0$. But it follows that $\Omega \notin S_{(\nu_{S_{\nu}})}$ and $\Omega \in S_{\nu}$, which implies $S_{(\nu_{S_{\nu}})} \subsetneq S_{\nu}$.

PROBLEM 2.10. Let μ be a regular Borel measure on a topological space. Then, is $S_{(\mu_{\pi_n})}$ equal to S_{μ} ?

In a product space, we have the following theorem.

THEOREM 2.11. Let $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ be a product space and μ be a Borel measure on X, then we have

$$S_{\mu} \subset \prod_{\lambda \in \Lambda} S_{\mu\lambda},$$

where μ_{λ} is the image measure of μ by the projection p_{λ} of X to X_{λ} .

PROOF. For each $x = (x_{\lambda}) \in S_{\mu}$, we have

$$\mu_{\lambda}(V_{\lambda}) = \mu(V_{\lambda} \times \prod_{\lambda' \neq \lambda} X_{\lambda'}) > 0$$

for every neighbourhood V_{λ} of x_{λ} in X_{λ} , which implies $x \in \prod_{\lambda \in \Lambda} S_{\mu\lambda}$. Therefore we have $S_{\mu} \subset \prod_{\lambda \in \Lambda} S_{\mu\lambda}$.

 S_{μ} is not necessarily identical to $\prod_{\lambda \in \Delta} S_{\mu\lambda}$, in general.

EXAMPLE 2.12. In the space **R** of real numbers, we put $d\mu = (1/2\pi) \exp(-x^2/2) dx$. There is a non-negative continuous function f on \mathbb{R}^2 vanishing outside a compact set such that $\operatorname{supp} f \subsetneq p_1(\operatorname{supp} f) \times p_2(\operatorname{supp} f)$, where p_i is the projection (i = 1, 2). If we put $d\nu = fd(\mu \times \mu)$, then it is easily verified that $S_{\nu} = \operatorname{supp} f$ and $S_{p_i(\nu)} = p_i(\operatorname{supp} f) (i = 1, 2)$. Thus we have

$$S_{\nu} = \operatorname{supp} f \subsetneq p_1(\operatorname{supp} f) \times p_2(\operatorname{supp} f) = S_{p_1(\nu)} \times S_{p_2(\nu)}.$$

9

3. Lindelöf supports

We show that every Borel measure on a metacompact space has a Lindelöf support. A topological space is called metacompact if every open cover has an open point finite refinement. A paracompact space is metacompact. By using the idea of Moran (1970) we have

THEOREM 3.1. Let X be a metacompact space and μ be a Borel measure on X. Then the support S_{μ} of μ is a Lindelöf space.

PROOF. Assume that S_{μ} is non-empty. Let \mathscr{U}_0 be a family of open subsets of X which covers S_{μ} . Then there is an open point finite refinement \mathscr{U}_1 of $\mathscr{U}_0 \cup \{X - S_{\mu}\}$. We put $\mathscr{U}_2 = \{U \in \mathscr{U}_1; U \cap S_{\mu} \neq \emptyset\}$ and $\mathscr{U}_2^n = \{U \in \mathscr{U}_2; \mu(U) \ge 1/n \ (n = 1, 2, ...)\}$. Then we have $\mathscr{U}_2 = \bigcup_{n=1}^{\infty} \mathscr{U}_2^n$. Suppose that the cardinal of \mathscr{U}_2 is uncountable. Then there exists an *n* such that the cardinal of \mathscr{U}_2^n is uncountable, so that we can take a countable sequence $\{P_m\}$ in \mathscr{U}_2^n . If we put $P = \overline{\lim_{n \to \infty} P_m}$, then we have

$$\mu(P) = \lim_{m} \mu\left(\bigcup_{k=m}^{\infty} P_{k}\right) \ge 1/n,$$

which means that P is not empty. For an element x in P, there is an increasing sequence $\{k_s\}$ such that $x \in \bigcap_{s=1}^{\infty} P_{k_s}$, which contradicts the point finiteness of $\{P_k\}$. Hence the cardinal of \mathscr{U}_2 is countable. For each U in \mathscr{U}_2 , there is a V_U in \mathscr{U}_0 such that $U \subseteq V_U$, therefore we have

$$S_{\mu} \subset \bigcup_{U \in \mathcal{U}_2} U \subset \bigcup_{U \in \mathcal{U}_2} V_U,$$

so that S_{μ} is a Lindelöf space. This completes the proof.

COROLLARY 3.2. Every Borel measure on a paracompact space has a Lindelöf support.

COROLLARY 3.3. Assume that a regular topological space X is not paracompact but metacompact. Then there is no Borel measure of which support is identical to X.

COROLLARY 3.4 (Rajput and Vakhania (1977), Lemma 2). Let X be a metric space and μ be a Borel measure on X. The support S_{μ} is separable. Particularly if S_{μ}^{*} exists, then S_{μ}^{*} is separable.

COROLLARY 3.5. Let X be an inseparable Banach space. Then there is no Borel measure μ such that the linear hull of the support S_{μ} is equal to X, in particular S_{μ} is not equal to the unit ball.

Note that Corollary 3.6 implies Corollary 1 of Ionescu Tulcea (1973).

Now we introduce a new class of topological spaces. Recall that a family $\{A_{\alpha}\}$ of subsets is called *locally finite* at x if there exists a neighbourhood V of x such that $\{\alpha; A_{\alpha} \cap V \neq \emptyset\}$ is finite. We call a topological space X θ -paracompact if every open cover \mathscr{U} of X has an open refinement $\mathscr{W} = \bigcup_{n=1}^{\infty} \mathscr{W}_n$ satisfying that for every x in X there is an n(x) such that $x \in \bigcup_{U \in \mathscr{W}_n(x)} U$ and $\mathscr{W}_{n(x)}$ is locally finite at x.

THEOREM 3.6. Let μ be a Borel measure on a θ -paracompact space X. Then the support S_{μ} of μ is a Lindelöf space.

PROOF. Suppose that S_{μ} is not empty. Let \mathscr{U} be a family of open subsets of X which covers S_{μ} ; then there is an open refinement $\mathscr{W} = \bigcup_{n=1}^{\infty} \mathscr{W}_n$ of \mathscr{U} which satisfies the condition preceding Theorem 3.6. Put

$$X_n = \{x \in X; x \in \bigcup_{U \in \mathscr{W}_n} U, \mathscr{W}_n \text{ is locally finite at } x\},\$$

then we have $X = \bigcup_{n=1}^{\infty} X_n$. Without difficulty it is shown that X_n is an open subset of X for every *n*. We put

$$\mathscr{U}_n = \{ U \cap X_n; U \in \mathscr{W}_n \text{ and } U \cap X_n \cap S_\mu \neq \emptyset \},\$$

then we have $\mu(V) > 0$ for every V in \mathscr{U}_n . We can show that the cardinality of \mathscr{U}_n is countable for every *n* from the definition of X_n by the same idea as in the proof of Theorem 3.4. For every $V = U \cap X_n$ in \mathscr{U}_n , there is a W_V^n in \mathscr{U} containing U. Thus we have

$$S_{\mu} = \bigcup_{n=1}^{\infty} (S_{\mu} \cap X_n) \subset \bigcup_{n=1}^{\infty} \bigcup_{V \in \Psi_n} V \subset \bigcup_{n=1}^{\infty} \bigcup_{V \in \Psi_n} W_V^n,$$

which implies that S_{μ} is a Lindelöf space. This completes the proof.

COROLLARY 3.7. Let X be a metacompact or θ -paracompact space and μ be a regular Borel measure on X. Then μ is τ -smooth if and only if its strong support S^*_{μ} exists and S^*_{μ} is a Lindelöf space.

REMARK 3.8. (1) The 'if' part of Corollary 3.8 always holds even if X is neither metacompact nor θ -paracompact.

(2) The statement does not hold if we replace S^*_{μ} with S_{μ} . In fact, consider a Borel measure $\nu = \mu_{(0,\Omega)} + \delta_a$ on $[0, \Omega)$, where $a \in [0, \Omega)$ and μ is the Dieudonné measure on $[0, \Omega]$. Then S^*_{μ} does not exist but $S_{\mu} = \{a\}$. So ν is a regular measure of which support is compact. Nevertheless ν is not a τ -smooth measure since

$$1 = \sup_{\alpha} \nu([0, \alpha)) < \nu([0, \Omega)) = 2.$$

The following example is originally given by Bing (1951) and Michael (1955). Moran (1968), IV.2 has treated it again in his thesis and has shown the author that a modification of the proof there gives a proof that G is not θ -paracompact.

EXAMPLE 3.9. Let P be an uncountable set, Q be the power set of P and F be the power set of Q, that is, the set of all two-valued functions on Q. For $p \in P$, we put

$$f_p(A) = \begin{cases} 1 & \text{if } p \in A, \\ 0 & \text{if } p \notin A \end{cases}$$

for each A in Q and put $K = \{f_p; p \in P\}$. We define a topology on F as follows: {f} is a neighbourhood of f if $f \in F - K$; for $f_p \in K$ and a finite subset Λ of Q, $N(f_p; \Lambda) = \{f \in F; f(A) = f_p(A) \text{ for each } A \in \Lambda\}$ is a neighbourhood of f_p . Let G be the union of K and $\{f \in F; f(A) = 0 \text{ for all except finitely many } A \in Q\}$. Then G is a normal, countably paracompact, metacompact space. But G is not θ paracompact.

EXAMPLE 3.10. Consider 'pointed extension' of the real number field (69 in Steen and Seebach, Jr. (1970)). Let X be the set of real numbers and Q be the set of rationals. We define a topology on X generated by all sets $\{x\} \cup (Q \cap U)$, where $x \in U$, U is open for the Euclidean topology. Then X is a θ -paracompact Hausdorff space. But X is not a metacompact space. This result is quoted by the referee.

4. SL-spaces

We define SL-spaces.

DEFINITION 4.1. A topological space X is called an SL-space if every Borel measure μ on X has a Lindelöf support S_{μ} (S_{μ} may be empty).

From Section 3 we have

THEOREM 4.2. A metacompact or θ -paracompact space is an SL-space.

The class of θ -refinable spaces is introduced by Worrell, Jr. and Wicke (1965). Recall that a topological space is said to be θ -refinable if each open cover of X has an open refinement $\mathscr{U} = \bigcup_{n=1}^{\infty} \mathscr{U}_n$ such that every \mathscr{U}_n covers X and for each x in X there exists an n(x) satisfying that $\mathscr{U}_{n(x)}$ is point finite at x, that is, the cardinal of $\{U \in \mathscr{U}_{n(x)}; x \in U\}$ is finite. From the definition a metacompact or θ -paracompact space is θ -refinable.

Supports of Borel measures

Now we present a θ -refinable space which is not an SL-space. Let S be the Sorgenfrey line, that is, the real line with the right half-open interval topology. S is Hausdorff and hereditarily Lindelöf, particularly paracompact. The product space $X = S \times S$ is separable since the set of rational numbers is dense in X and X is not Lindelöf (see Steen and Seebach Jr. (1970), 51 and 84). But X is θ -refinable by Burke (1970), Theorem 1.6 and Lutzer (1972), Proposition 3.1. As the following example shows, X is not an SL-space, that is to say, a θ -refinable space is not always an SL-space.

EXAMPLE 4.3. (1) Since X is separable, there exists a countable dense subset $\{x_n\}$. If we put $\mu = \sum_{n=1}^{\infty} 1/2^n \delta_{x_n}$, then the support S_{μ} of μ is equal to X. Since X is not a Lindelöf space, X is not an SL-space.

(2) All Borel subsets $\mathscr{B}(X)$ of X are Lebesgue measurable by Vitali's covering theorem (for example, see Saks (1937), Chap. 4 (3.1)). Let ν be the restriction of the Lebesgue measure to $\mathscr{B}(X)$. Since ν is still σ -finite, there exists a totally finite Borel measure ν_1 such that ν is absolutely continuous with respect to ν_1 and ν_1 is absolutely continuous with respect to ν . So the support S_{ν_1} is identical to X, which also shows that X is not an SL-space.

A closed subset of an SL-space is also an SL-space. In general, we have

THEOREM 4.4. Let X be an SL-space. Then every F_{σ} -subset L of X is also an SL-space.

PROOF. We can write $L = \bigcup_{n=1}^{\infty} F_n$, where F_n is a closed subset of X for every n. Let μ be a Borel measure with a non-empty support S_{μ} . Then

$$S_{\mu} = S_{\iota(\mu)} \cap L = \bigcup_{n=1}^{\infty} (S_{\iota(\mu)} \cap F_n)$$

by Theorem 2.6. Since $S_{\iota(\mu)} \cap F_n$ is a Lindelöf space for every *n*, so is S_{μ} , which completes the proof.

An open subset of an SL-space is not necessarily an SL-space.

EXAMPLE 4.5. Let X be the real line with the rational sequence topology (see Steen and Seebach, Jr. (1970), 65). Then X is a locally compact separable space, but X is not Lindelöf. Let \check{X} be the one-point compactification of X; then \check{X} is an SL-space since \check{X} is compact. X is an open subset of \check{X} but X is not an SL-space as (1) in Example 4.3.

Next we treat the products of SL-spaces. Note that the class of SL-spaces is not closed for the products. In fact, although the Sorgenfrey line S is an SL-space, the product $S \times S$ is not an SL-space as we have shown in Example 4.3. Still we have

THEOREM 4.6. Let X be an SL-space and Y be a σ -compact space; then the product space $X \times Y$ is also an SL-space.

PROOF. Let μ be a Borel measure on $X \times Y$ of which support S_{μ} is not empty. By Theorem 2.11 we have

$$S_{\mu} \subset S_{p_{\mathbf{r}}(\mu)} \times S_{p_{\mathbf{r}}(\mu)},$$

where p_X (resp. p_Y) is the projection to X (resp. Y). From the assumption, $S_{p_X(\mu)}$ is Lindelöf and $S_{p_Y(\mu)}$ is σ -compact. Then $S_{p_X(\mu)} \times S_{p_Y(\mu)}$ is a Lindelöf space since the product of a compact space and a Lindelöf space is also Lindelöf in general. Thus S_{μ} is a Lindelöf space, which completes the proof.

Finally we show that SL-spaces are not transferred by a continuous map or an open map.

EXAMPLE 4.7. (1) We take a topological space Y which is not an SL-space and let X be a topological space which is equal to Y as a set and has the discrete topology. Then the identity map of X to Y is a continuous bijection. Y is not an SL-space though X is an SL-space.

(2) Let X be the Euclidean plane and Y be the product of the Sorgenfrey lines. Then the identity map of X to Y is an open bijective map. Y is not an SL-space, whereas X is an SL-space.

References

- I. Amemiya, S. Okada and Y. Okazaki (1978), 'Pre-Radon measures on topological spaces', *Kōdai Math. J.* 1, 101–132.
- R. H. Bing (1951), 'Metrization of topological spaces', Canad. J. Math. 3, 175-186.
- D. K. Burke (1970), 'On p-spaces and w Δ -spaces', Pacific J. Math. 35, 285-296.
- R. J. Gardner (1975), 'The regularity of Borel measures and Borel measure-compactness', *Proc. London Math. Soc.* (3) 30, 95-113.
- G. Gruenhage and W. F. Pfeffer (1978), 'When inner regularity of Borel measures implies regularity', J. London Math. Soc. (2), 17, 165-171.
- P. R. Halmos (1950), Measure theory (Van Nostrand, New York).
- A. Ionescu Tulcea (1973), 'On pointwise convergence, compactness and equicontinuity in the lifting topology I', Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26, 197-205.

D. J. Lutzer (1972), 'Another property of the Sorgenfrrey line', Compositio Math. 24, 359-363.

E. Michael (1955), 'Point finite and locally finite coverings', Canad. J. Math. 7, 275-279.

- W. Moran (1968), Measures on completely regular spaces (Ph.D. thesis, The University of Sheffield).
- W. Moran (1970), 'Measures on metacompact spaces', Proc. London Math. Soc. (3) 20, 507-524.
- B. S. Rajput and N. N. Vakhania (1977), 'On the support of Gaussian probability measures on locally convex topological vector spaces', *Multivariate Analysis IV* (Proc. the Fourth International Symposium on Multivariate Analysis, North-Holland, Amsterdam), pp. 297-309.
- L. Schwarz (1978), Radon measures on arbitrary topological spaces and cylindrical measures (Oxford Univ. Press).
- L. A. Steen and J. A. Seebach, Jr. (1970), *Counterexamples in topology* (Holt, Rinehart and Winston, New York).
- J. M. Worrel, Jr. and H. H. Wicke (1965), 'Characterizations of developable topological spaces', *Canad. J. Math.* 17, 820–830.

Department of Mathematics I.A.S. Australian National University Canberra A.C.T. 2600 Australia

[11]

_