
TLP 18 (5–6): 759–805, 2018. C© Cambridge University Press 2018

doi:10.1017/S1471068418000078 First published online 23 May 2018
759

Parallelism, concurrency and distribution
in constraint handling rules: A survey

THOM FRÜHWIRTH
Institute of Software Engineering and Programming Languages,

Ulm University
89069 Ulm, Germany

(e-mail: thom.fruehwirth@uni-ulm.de)

submitted 31 March 2017; revised 6 April 2018; accepted 10 April 2018

Abstract

Constraint Handling Rules (CHR) is both an effective concurrent declarative programming language
and a versatile computational logic formalism. In CHR, guarded reactive rules rewrite a multi-set
of constraints. Concurrency is inherent, since rules can be applied to the constraints in parallel. In
this comprehensive survey, we give an overview of the concurrent, parallel as well as distributed
CHR semantics, standard and more exotic, that have been proposed over the years at various levels
of refinement. These semantics range from the abstract to the concrete. They are related by formal
soundness results. Their correctness is proven as a correspondence between parallel and sequential
computations. On the more practical side, we present common concise example CHR programs
that have been widely used in experiments and benchmarks. We review parallel and distributed
CHR implementations in software as well as hardware. The experimental results obtained show
a parallel speed-up for unmodified sequential CHR programs. The software implementations are
available online for free download and we give the web links. Due to its high level of abstraction,
the CHR formalism can also be used to implement and analyse models for concurrency. To this end,
the Software Transaction Model, the Actor Model, Colored Petri Nets and the Join-Calculus have
been faithfully encoded in CHR. Finally, we identify and discuss commonalities of the approaches
surveyed and indicate what problems are left open for future research.

KEYWORDS: parallelism, concurrency, distribution, constraint handling rules, declarative program-
ming, concurrent constraint programming, semantics, rewriting, concurrency models.

1 Introduction

Parallelism has become an eminent topic in computer science again with the widespread
arrival of multi-core processors. With the proliferation of mobile devices and the promises
of the internet-of-things, distribution is an another major topic, intertwined with the par-
allelism. Parallel and distributed programming is known to be difficult. Declarative pro-
gramming languages promise to ease the pain. This survey shows how parallelism and
distribution are addressed in the declarative language Constraint Handling Rules (CHR).

Basic notions. Before we start with our survey, we shortly clarify the essential concepts
at stake and introduce CHR. The technical terms of concurrency, parallelism and distri-
bution have an overlapping meaning, and the processes are another central notion in this
context. Due to their generality, they are hard to define precisely:

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

760 T. Frühwirth

Concurrency allows for logically more or less independent computations, be they sequen-
tial or parallel. This abstract concept thus supports the modular design of independent
program components that can be composed together.

Parallelism allows for computations that happen simultaneously, at the same time, thus
hopefully improving performance. On the downside, sequential programs usually have
to be rewritten to be able to run in parallel. With the arrival of multi-core processors, it
has become a dominant computation model. The processors may have access to a shared
memory to exchange information.

Distribution allows for program components that are located on physically distributed de-
centralized networked processors. Each processor has its own local memory (distributed
memory). Personal computers, the internet and mobile devices have enforced this com-
putational paradigm. Distribution introduces modularity and potential parallelism, but
also the need for communication between the components.

Processes are programs that are executed independently but can interact with each other.
Processes can either execute local actions or communicate, coordinate and synchronize
by passing (sending and receiving) messages. Depending on context and level of ab-
straction, processes are also called threads, workers, tasks, activities or even agents.

Concurrency and distribution are easier with the declarative programming languages, since
they are compositional: Different computations can be composed into one without unin-
tended interference. Moreover, declarative languages offer a wealth of program analysis
and reasoning techniques.

CHR. CHR is both an effective concurrent declarative constraint-based programming
language and a versatile computational logic formalism (Frühwirth, 2009; Sneyers et al.,
2010; Frühwirth and Raiser, 2011; Frühwirth, 2015, 2016). CHR has its roots in constraint
logic programming and concurrent constraint programming, but also integrates ideas from
multi-set transformation and rewriting systems. While conceptually simple, CHR is distin-
guished by a remarkable combination of desirable features:

• A semantic foundation in classical logic as well as in linear logic (Betz, 2014).
• An effective and efficient sequential and parallel execution model (Frühwirth and

Raiser, 2011).
• A proof that every algorithm can be expressed with best known time and space

complexity (Sneyers et al., 2009).
• Up to a million rule applications per second due to CHRs novel rule execution

strategy based on lazy matching without conflict resolution (Van Weert, 2010).
• Guaranteed properties like the anytime algorithm and online algorithm properties

(Abdennadher et al., 1999).
• Program analysis methods for deciding essential properties like confluence and pro-

gram equivalence (Abdennadher and Frühwirth, 1999).

The given references are meant to serve as starting points into the respective themes. One
could continue with their references but also the papers that reference them.

Information on CHR can be found online at http://www.constraint-handling-
rules.org, including news, tutorials, papers, bibliography, online demos and free down-
loads of the language.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 761

Minimum example. Assume we would like to compute the minimum of some numbers,
given as multiset min(n1), min(n2),..., min(nk). We interpret the constraint (predi-
cate) min(ni) to mean that the number ni is a candidate for the minimum value. We make
use of the following CHR rule that filters the candidates.

min(N) \ min(M) <=> N=<M | true.

The rule consists of a left-hand side, on which a pair of constraints has to be matched, a
guard check N=<M that has to be satisfied, and an empty right-hand side denoted by true.
In effect, the rule takes two min candidates and removes the one with the larger value
(constraints after the \ symbol are to be removed). Starting with a given initial state, CHR
rules are applied exhaustively, resulting in a final state. Note that CHR is a committed-
choice language, i.e., there is no backtracking in the rule applications. Here the rule keeps
on going until only one, thus the smallest value, remains as single min constraint. Note
that the min constraints behave both as operations (removing other constraints) and as data
(being removed). This abstraction is characteristic of the notion of constraint.

A state is a multi-set of constraints. In a sequential computation, we apply one rule at a
time to a given state. A possible computation sequence is (where we underline constraints
involved in a rule application)

min(1),min(0),min(2),min(1) �→
min(0),min(2),min(1) �→
min(0),min(1) �→

min(0)

The final state is called answer. The remaining constraint contains the minimum value, in
this case zero.

By the way, CHR insists on multi-sets so one can directly model resources as constraints,
for example,

buy : cup \ euro, euro <=> coffee.

This rule expresses that we get a coffee for two euros if we have a cup. As we will see,
there are also some semantics and implementations of CHR that are set-based.

Concurrency and parallelism in CHR. One of the main features of CHR is its inherent
concurrency. Intuitively, in a parallel execution of a CHR program, rules can be applied
to separate parts of a state in parallel. As we will see, CHR rules can even be applied in
parallel to overlapping parts of a state, in principle without the need to change the program.
This is referred to as logical parallelism or declarative concurrency.

The rule of min can be applied in parallel to different parts of the state:

min(1),min(0), min(2),min(1) �→
min(0), min(1) �→

min(0)

We arrive at the answer in less computation steps than with the sequential execution.
The rule can also be applied in parallel to overlapping parts of the state, provided the

overlap is not removed by any rule. For example, let the overlap be the constraint min(0).

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

762 T. Frühwirth

Then the three pairs min(0), min(1), min(0), min(1) and min(0) and min(2) can
be matched to different rule instances. (Note that we always match the same min(0), but
that we have two copies of min(1).) These rules can be applied at the same time, since the
common (overlapping) constraint min(0) is not removed.

min(0), min(1),min(2),min(1) �→
min(0)

So this is another, even shorter way to arrive at the same answer.
In CHR, concurrently executing processes are CHR constraints that communicate via a

shared built-in constraint store. The built-in constraints take the role of (partial) messages
and variables take the role of communication channels.

Guaranteed properties of CHR. First of all, the essential monotonicity property of
CHR means that adding constraints to a state cannot inhibit the applicability of a rule. (Rule
matching and guards check for presence of certain constraints, never absence.) Among
other things, this monotonicity enables decidable program analyses and helps declarative
concurrency. Most, but not all semantics that we introduce enjoy the monotonicity property.

Now assume that while the program runs, we add another constraint. It will eventually
participate in the computation in that a rule will be applied to it. The answer will be as if
the newly added constraint had been there from the beginning but ignored for some time.
This property of a CHR program is called incrementality or online algorithm property and
directly follows from monotonicity.

Furthermore, in CHR, we can stop the computation at any time and observe the current
state as intermediate answer. We can then continue by applying rules to this state without
the need to recompute from scratch. If we stop again, we will observe a next intermediate
answer that is closer to the final answer. This property of a CHR program is called the
anytime algorithm property. Note that by this description, an anytime algorithm is also an
approximation algorithm, since intermediate answers more and more approximate the final
answer.

Desirable property of confluence. This property of a program guarantees that any
computation starting from a given initial state results in the same answer no matter which
of the applicable rules are applied. There is a decidable, sufficient and necessary syntactic
condition to analyze confluence of terminating programs and to detect rule pairs that led
to non-confluence when applied. Among other things, confluence implies that rules can
be applied in parallel, with the same result as any sequential computation, without the
need for any modification of the given program. If on the other hand a program is not
confluent, it may have to be rewritten to ensure proper parallel execution. This rewriting
is aided by the method of completion, which automatically adds rules to a program to
make it confluent (but may not terminate). An introduction into all these properties can be
found in Frühwirth (2009). In the next section, we will discuss desirable properties that
characterize the correspondence between different semantics of CHR.

Overview of the survey and its structure. The richness of topics in this survey, from
formal semantics to hardware implementation and more, poses a challenge for the structure
of this text. We decided to go from abstract to concrete while making sure concepts are
introduced in sections before they are referred to in later sections.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 763

Sections 2–4: Abstract parallel CHR semantics, example programs, extension by transac-
tions. In the next section, we define abstract syntax and abstract operational semantics
for CHR. One sequential transition describes rule applications, another one parallel
transitions, a trivial third one connects the two. The essential correctness properties
of monotonicity, soundness and serializability are introduced. In Section 3, we present
common classic CHR example programs based on well-known algorithms. Often one
rule suffices. All but one of the programs can be run in parallel without change. In
Section 4, we extend abstract parallel CHR with transactions (CHRt), a popular and
essential concept in concurrency.

Sections 5 and 6: Refining the parallel semantics and its implementation. In Section 5,
we refine our abstract semantics by differentiating between a goal and a constraint store.
The goal holds active constraints to execute them as processes in the operation, the
constraint store holds inactive constraints as data. This implies that we now have to
account for the in-activation (suspension) and re-activation (wake-up) of user-defined
constraints. In Section 6, we describe an implementation of the refined semantics in
Haskell using software transactions and the result of benchmark experiments showing
parallel speed-ups.

Sections 7 and 8: Excursion: Set-based massive parallelism and hardware implementa-
tions. Section 7 introduces a more exotic abstract semantics that is massively parallel.
It is also set-based. This theoretical model in the extreme case allows to find primes
in constant time and to solve SAT problems in linear time. This comes with a cost:
soundness only holds under a certain condition. We then move on to more mundane
fast hardware implementations of the parallel CHR semantics introduced in Section 8
and again present some experimental evidence. It is typically one order of magnitude
faster than the fastest software implementations. The translation scheme of the hardware
implementations also applies to procedural languages like C and Java.

Section 9: Distribution in CHR. In Section 9, we discuss two distributed semantics for
CHR, where the constraint store and computations are decentralized by introducing the
notion of locations. Distribution requires a syntactic restriction on CHRs rule heads to
ensure shared variables as communication channels among locations. The first seman-
tics is informal and set-based, the second one full-fledged. Both semantics allow for
propagation rules. Both semantics have been implemented.

Section 10: Concurrency models in CHR. Last but not the least, in Section 10, we shortly
show the high-level encoding common formal models of concurrency in CHR on four
concrete models: the Software Transaction Model, the Actor Model, Colored Petri Nets
(CPNs) and the Join-Calculus have been faithfully embedded in CHR to enable compari-
son and further investigation by the program analyses available in CHR. The embeddings
have been proven correct. Some embeddings are available online.

Sections 11 and 12: Discussion and conclusions. We end the paper with a discussion,
directions for future work and in Section 11 with conclusions.

Within the sections, we also try to follow a standard structuring where applicable: We
define the parallel or distributed semantics at hand and discuss its correspondence to the
standard sequential CHR semantics. This is usually done by proving the properties of
soundness and serializability, which are notions of correctness. Another property of interest
is monotonicity, which is also enjoyed by the standard CHR. For software and hardware

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

764 T. Frühwirth

implementations, we give free download links and we summarize experimental results
found in the literature. We illustrate the approaches to semantics and implementation with
additional examples.

For a better reading experience, we use the editorial we throughout. Of course, it refers
to different authors in different sections of this paper.

2 Parallel abstract operational semantics of CHR

We will present the sequential equivalence-based abstract CHR semantics and extend it
with parallelism. We just need a sequential transition describes rule applications, another
one parallel transitions, a trivial third one that connects the two. We also introduce the three
properties that prove the correctness of a given semantics with regard to a more abstract
or a sequential semantics: monotonicity, soundness and serializability. We assume basic
familiarity with the first-order predicate logic and the state transition systems. Readers
familiar with CHR can skip most of this section. We start with some preliminaries.

2.1 Semantics of CHR and their properties

Structural Operational Semantics is a common inductive approach to describe the behav-
ior of programming languages, in particular, concurrent ones. In Structural Operational
Semantics, a state transition system specifies the computations. Transitions rewrite states
and take the form of inference rules. All semantics of CHR, sequential or parallel, employ
this approach.

Semantics for sequential CHR. They exist in various formulations and at various levels
of refinement, going from the abstract to the concrete (refined) (Frühwirth, 2009; Betz
et al., 2010):

• The very abstract semantics (Frühwirth, 2009) is close to modus ponens of predicate
logic.

• The abstract semantics (Abdennadher et al., 1999) is the classical basis for CHR
program analysis and its properties.

• The more recent state-equivalence-based abstract semantics (Raiser et al., 2009)
will be the starting point of our survey. We will extend it with parallelism.

• The refined semantics (Duck et al., 2004) describes more concretely the actual be-
havior of the CHR implementations. All more concrete parallel semantics of CHR
are based on it.

In addition, several alternative operational semantics for sequential CHR have been
proposed.

Soundness and serializability. The correctness of a more refined semantics is shown
by its soundness with regard to a more abstract semantics. This means that for each com-
putation in the refined semantics, there is a corresponding computation in the abstract
semantics. The converse (completeness) typically does not hold, because refined semantics
are more concrete and thus rule out certain computations. When we introduce a parallel
semantics for CHR, it will be related by soundness to a more abstract semantics and/or the
sequential part of the semantics.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 765

Actually, the interleaving semantics approach to concurrency is defined by the fact that
for each possible parallel computation, there exists a corresponding sequential computation
with the same result. The sequential computation uses interleaving of the different parallel
computations. This means that a parallel computation step can be simulated by a sequence
of sequential computation steps. This correspondence property is called serializability
(sequential consistency). Most semantics we discuss are correct in this way.

2.2 Abstract syntax of CHR

Constraints are relations, distinguished predicates of the first-order predicate logic. We
differentiate between two kinds of constraints: built-in (pre-defined) constraints and user-
defined (CHR) constraints which are defined by the rules in a CHR program. Built-in
constraints can be used as tests in the guard as well as for auxiliary computations in the
body of a rule. In this survey, besides the trivial constraint true, we will have syntactical
equality = between logical terms and equations between arithmetic expressions.

Definition 2.1
A goal is a conjunction of built-in and user-defined constraints. A state is also a goal.
Conjunctions are understood as multi-sets of their conjuncts. We will use letters such as
A,B,C,D,E, . . . for goals and S and T for states.

A CHR program is a finite set of rules. A (generalized) simpagation rule is of the form

r : H1\H2 ⇔C|B

where r : is an optional name (a unique identifier) of a rule. In the rule head (left-hand
side), H1 and H2 are conjunctions of user-defined constraints, the optional guard C| is a
conjunction of built-in constraints, and the body (right-hand side) B is a goal.

In the rule, H1 are called the kept constraints, while H2 are called the removed con-
straints. At least one of H1 and H2 must be non-empty. If H1 is empty, the rule corresponds
to a simplification rule, also written

s : H2 ⇔C|B.

If H2 is empty, the rule corresponds to a propagation rule, also written

p : H1 ⇒C|B.

Interestingly, most parallel semantics do not allow for propagation rules, while dis-
tributed semantics do. This will be discussed in Section 11.

Ground CHR. Most implementations and some semantics assume that variables are
substituted by ground (variable-free) terms at run-time. This requirement can be captured
by a common syntactic fragment of CHR: In Ground CHR, every variable in a rule (also)
occurs in the head of the rule. We also say that the rule is range-restricted. This condition
can be relaxed by allowing for local variables in the body of rule, provided they first occur
in built-in constraints that always bound them to ground values at run-time (e.g., arithmetic
functions). So given a ground initial states, all states in a computation will stay ground. As
we will see, this greatly simplifies refined semantics and implementations, since then it is
not necessary to account for the suspension and wake-up of user-defined constraints during

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

766 T. Frühwirth

computations. It is worth noting that Ground CHR without propagation rules is still Turing-
complete: It can implement a Turing machine with just one rule as we will see in Section
3.2.

2.3 Sequential abstract operational semantics of CHR

The semantics follows Raiser et al. (2009) and Betz (2014). It relies on a structural equiv-
alence between states that abstracts away from technical details in a transition.

State equivalence. The equivalence relation treats built-in constraints semantically and
user-defined constraints syntactically. Basically, two states are equivalent if they are logi-
cally equivalent (imply each other) while taking into account that user-defined constraints
form a multi-set, i.e., multiplicities matter. For a state S, the notation Sbi denotes the built-in
constraints of S and Sud denotes the user-defined constraints of S.

Definition 2.2 (State equivalence)
Two states S1 = (S1bi ∧S1ud) and S2 = (S2bi ∧S2ud) are equivalent, written S1 ≡ S2, if and
only if

|= ∀(S1bi →∃ȳ((S1ud = S2ud)∧S2bi))∧∀(S2bi →∃x̄((S1ud = S2ud)∧S1bi))

with x̄ those variables that only occur in S1 and ȳ those variables that only occur in S2.

The CHR state equivalence is defined by two symmetric implications and moreover syn-
tactically equates the conjunctions of user-defined constraints as multi-sets. For example,

X=<Y ∧Y=<X ∧ c(X ,Y) ≡ X=Y ∧ c(X ,X) �≡ X=Y ∧ c(X ,X)∧ c(X ,X).

Transition. Using this state equivalence, the abstract CHR semantics is defined by a
single transition that is the workhorse of CHR program execution. It defines the application
of a rule. Let the rule (r : H1\H2 ⇔ C|B) be a variant of a rule from a given program P .
A variant (renaming) of an expression is obtained by uniformly replacing its variables by
fresh variables.

(Apply)
S ≡ (H1 ∧H2 ∧C∧G) (r : H1\H2 ⇔C|B) ∈ P (H1 ∧C∧B∧G) ≡ T

S �→r T

Upper-case letters stand for (possibly empty) conjunctions of constraints in this section.
The goal G is called context of the rule application. It is left unchanged.

In a transition (computation step) S �→r T , S is called source state and T is called target
state. We may drop the reference to the program P and rule r to simplify the presentation.

If the source state can be made equivalent to a state that contains the head constraints
and the guard built-in constraints of a variant of a rule, then we delete the removed head
constraints from the state and add the rule body constraints to it. Any state that is equivalent
to this target state is in the transition relation.

A computation (derivation) of a goal S in a program P is a connected sequence Si �→ Si+1

beginning with the initial state (query) S0 that is S and ending in a final state (answer, re-
sult) or the sequence is non-terminating (diverging). The notation �→∗ denotes the reflexive
and transitive closure of �→.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 767

Note that the abstract semantics does not account for termination of propagation rules:
If a state can fire a propagation rule once, it can do so again and again, ad infinitum.
This is called trivial non-termination of propagation rules. Most parallel semantics rule out
propagation rules. Propagation rules and their termination will be discussed for distributed
CHR in Section 9, though.

For the minimum example, here is a possible (Apply) transition from a state S =(min(0)∧
min(2)∧min(1)) to a state T = (min(0)∧min(1)):

S ≡ (min(X)∧min(Y)∧X � Y ∧ (X = 0∧Y = 2∧ min(1)))

(min(X)\min(Y) ⇔ X � Y |true)

(min(X)∧X � Y ∧ true∧ (X = 0∧Y = 2∧min(1))) ≡ T

S �→ T

2.4 Extension to parallel abstract semantics

We extend the abstract semantics by parallelism. We interpret conjunction as parallel oper-
ator. As we have seen for the minimum example, CHR rules can also be applied simultane-
ously to overlapping parts of a state, as long as the overlap (shared,
common part) is not removed by any rule. Following Frühwirth (2005a), CHR parallelism
with overlaps is called strong. It can be defined as follows, see also Chapter 4 in
Frühwirth (2009).

(Strong) Parallelism (with overlap). We denote parallel transitions by the relation �⇒.
The transition (Intro-Par) says that any sequential transition is also a parallel transition.
The transition (Parallel) combines two parallel transitions using conjunction into a single
parallel transition where the overlap E is kept.

(Intro−Par) A �→C
A �⇒C

(Parallel) A∧E �⇒C∧E B∧E �⇒ D∧E
A∧B∧E �⇒C∧D∧E

Again, back to the minimum example:

(Parallel) min(1)∧min(0) �⇒ true∧min(0) min(2)∧min(0) �⇒ true∧min(0)
min(1)∧min(2)∧min(0) �⇒ true∧ true∧min(0)

Here the overlap is the goal min(0).

2.5 Properties: Monotonicity, soundness and serializability

The monotonicity property of CHR states that adding constraints to a state cannot inhibit
the applicability of a rule (Abdennadher et al., 1999). It is easy to see from the context of
the sequential (Apply) transition and from the overlap of the (Parallel) transition that a
rule can be applied in any state that contains its head and guard.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

768 T. Frühwirth

Theorem 2.1 (Monotonicity of CHR)
If A �→ B, then A∧G �→ B∧G. If A �⇒ B, then A∧E �⇒ B∧E.

The correctness of the abstract parallel semantics can be established by proving the
following theorem.

Theorem 2.2 (Soundness and serializability)
If A �⇒ B, then there exists a sequential computation A �→∗ B.

The essential aspect of the truth is that the (Parallel) transition can be simulated sequen-
tially: If A∧E �→ B∧E and C∧E �→ D∧E, then A∧C∧E �→ S �→ B∧D∧E, where S is
either A∧D∧E or B∧C∧E, i.e., the two transitions commute.

3 Parallel CHR example programs

These exemplary CHR programs are mostly folklore in the CHR community, see e.g.
Chapters 2 and 7 in Frühwirth (2009). These are concise and effective implementations of
classical algorithms and problems starting with finding primes, sorting, including Turing
machines and ending with preflow-push and union-find (UF). Often one type of constraint
and one rule will suffice, and we will not need more then six rules. Due to the guaranteed
properties of CHR, these programs are also incremental anytime online approximation
algorithms. Typically, they run in parallel without any need for modifying the program.
An exception is UF, which is known to be hard to parallelize. We do it with the help of
confluence analysis.

These sequential programs are in the subset of Ground CHR without propagation rules
and can therefore be understood in all parallel semantics and executed in all parallel im-
plementations surveyed without modification. On the other hand, most example programs
may require some modification for distributed semantics and their implementations. As we
will see, the experimental results report parallel speed-ups.

3.1 Algorithms of Erastothenes, Euclid, von Neumann, Floyd and Warshall

Here we introduce some classical algorithms over numbers and graphs. They are imple-
mented as simple multi-set transformations reminiscent of the Chemical Abstract Machine.
Typically, they can be implemented with one kind of constraint and a single rule in CHR
that can be applied in parallel to pairs of constraints. Our running example of minimum
falls into this category. These programs are confluent when run as intended, with ground
goals. Correctness of each implementation can be shown by contradiction: Given the spec-
ified initial goal, if the resulting answer were not of the desired form, the rule would still
be applicable.

Prime numbers. The following rule is like the rule for minimum, but the guard is
different, more strict. In effect, it filters out multiples of numbers, similar to the Sieve
of Erastothenes.

sift : prime(I) \ prime(J) <=> J mod I =:= 0 | true.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 769

If all natural numbers from 2 to n are given, only the prime numbers within this range
remain, since non-prime numbers are multiples of other numbers greater equal to 2. Ob-
viously, the rules can be applied to the pairs of prime number candidates in parallel. In a
parallel step, we can try to remove each prime by associating it with another prime such
that the sift rule is applicable. This gives a maximum, linear parallel speed-up without the
need to modify the program. This was confirmed experimentally for both a software and a
hardware implementation (Lam, 2018; Triossi et al., 2012).

Greatest common divisor (GCD). The following rule computes the greatest common
divisor of natural numbers written each as gcd(N).

gcd(N) \ gcd(M) <=> 0<N,N=<M | gcd(M-N).

The rule replaces M by the smaller number M−N as in Euclid’s algorithm. The rule main-
tains the invariant that the numbers have the same greatest common divisor. Eventually, if
N = M, a zero is produced. The remaining non-zero gcd constraint contains the value of the
gcd. The rules can be applied to the pairs of gcd numbers in parallel. Note that to any pair
of gcd constraints, the rule will always be applicable. A parallel speed-up was observed
in a hardware implementation (Triossi et al., 2012), and even a super-linear speed-up in a
software implementation (Lam, 2018).

Merge sort. The initial goal state contains arcs of the form a->V for each value V, where
a is a given smallest (dummy) value.

msort : A->B \ A->C <=> A<B, B<C | B->C.

The rule only updates the first argument of the arc constraint, never the second. The first
argument is replaced by a larger value and the two resulting arcs form a small chain A->B,

B->C. The rule maintains the invariant that A=<B. So eventually, in each arc, a number will
be followed by its immediate successor, and thus the resulting chain of arcs is sorted.

For sorting with optimal run-time complexity, we prefer merging arc chains of the
same length. To this end, we precede each chain with its length, written as special arc
N=>FirstNode. We also have to add a rule to initiate merging of chains of the same length:

N=>A, N=>B <=> A<B | N+N=>A, A->B.

In the initial goal, we now introduce constraints of the form 1=>V for each value V. The
rules can be applied to the pairs of arcs in parallel similar to the previous examples.

Floyd–Warshall all-pair shortest paths. Our implementation finds the shortest dis-
tance between all connected pairs of nodes in the transitive closure of a directed graph
whose edges are annotated with non-negative distances.

shorten : arc(I,K,D1), arc(K,J,D2) \ arc(I,J,D3) <=>

D3>D1+D2 | arc(I,J,D1+D2).

Clearly, we can shorten arc distances in parallel by considering triples of arc constraints
that match the head of the rule. In each parallel step, we can try to remove each arc by
associating it with a corresponding pair of arc constraints and by checking if the rule is
applicable then.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

770 T. Frühwirth

3.2 Classical models and classical algorithms with statefulness

These algorithms about abstract problems are characterized by their statefulness, i.e., their
essence is a state change, an update. While other declarative languages may not have an
efficient way to update, CHR has a proven one by constant-time updating (i.e., removing
and adding) user-defined constraints (Sneyers et al., 2009).

Turing machine. Turing machine is the classical model of computability used in theo-
retical computer science. One rule suffices to implement it efficiently in CHR.

st(QI,SI,SJ,D,QJ) \ state(I,QI), cell(I,SI) <=> state(I+D,QJ), cell(I,SJ).

The state transition steps of the Turing machine are given as constraints st(QI,SI,SJ,D,
QJ): In the current state, QI reading tape symbol SI, write symbol SJ and move in direction
D to be in state QJ. The direction is either left or right, we move along the cells of a tape. We
represent cells as an array, so positions are numbers and the direction is either +1 or −1.
A Turing machine with one tape is inherently sequential, since we can only be in one state
at a time. Still parallelism can be employed to find the matching state transition constraint.

The implementation of the Turing machine shows Turing-completeness of the Ground
CHR fragment with constants only and without propagation rules, actually with a single
rule (Sneyers, 2008).

Dijkstras dining philosophers. In this classical problem in concurrency, several philoso-
phers sit at a round table. Between each of them, a fork is placed. A philosopher either
thinks or eats. In order to eat, a philosopher needs two forks, the one from his left and the
one from his right. After a while, an eating philosopher will start to think again, releasing
the forks and thus making them available to his neighbors again.

think_eat : think(X), fork(X), fork(Y) <=> Y =:= (X+1) mod n | eat(X).

eat_think : eat(X) <=> Y =:= (X+1) mod n | think(X), fork(X), fork(Y).

In the implementation, we assume a given number n of philosophers (and forks). They
are identified by a number from zero to n-1. The rules are inverses of each other, the
constraints simply switch sides.

The problem is to design a concurrent algorithm that is fair, i.e., that no philosopher will
starve. Here we are mainly interested in the inherent parallelism of the problem. Disjoint
pairs of neighboring forks can be used for eating in one parallel computation step. (For
the experiments, time counters for eating and thinking were introduced into the program to
introduce termination.)

Blocks world. Blocks world is a classical planning problem in Artificial Intelligence. It
simulates robot arms re-arranging stacks of blocks.

grab : grab(R,X), empty(R), clear(X), on(X,Y) <=> hold(R,X), clear(Y).

putOn : putOn(R,Y), hold(R,X), clear(Y) <=> empty(R), clear(X), on(X,Y).

The operation constraints grab and putOn specify the action that is taken. The other
constraints are data constraints holding information about the scenario. Operation con-
straints update the data constraints. The rule grab specifies that robot arm R grabs block X

if R is empty and block X is clear on top and on block Y. As a result, robot arm R holds block
X and block Y is clear. The rule putOn specifies the inverse action. The data constraints in
the rule switch sides. At any time, only one of the actions is thus possible for a given

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 771

robot arm. Parallelism is induced by introducing several robot arms and multiple actions
for them. Different robot arms can grab different clear blocks in parallel or put different
blocks on different clear blocks in parallel.

3.3 Parallel preflow-push algorithm

Next we present two non-trivial algorithms, preflow-push and UF. Both algorithms are
acknowledged in the literature to be hard to parallelize. To maintain the focus of the survey,
we cannot explain these algorithms in detail.

The preflow-push algorithm (Goldberg and Tarjan, 1988) solves the maximum-flow
problem. Intuitively, the problem can be understood as a system of connected water-pipes,
where each pipe has a restricted given capacity. The system is closed except for one source
and one sink valve. The problem now is to find the maximum capacity the system can
handle from source to sink and to find the routes the water actually takes.

A flow network is a directed graph, where each edge is assigned a non-negative capacity.
We want to find a maximum flow through the network from a source to a sink node
under the capacity restrictions. The preflow-push algorithm moves flow locally between
neighboring nodes until a maximum flow is reached.

In Meister (2007), we present and analyze a concise declarative parallel implementation
of the preflow-push algorithm by just four rules. In the code listing below, comment lines
start with the symbol %.

% increase node height by one, remove minimum

lift : n(U,N), e(U,E) \ h(U,_), m(U,M,C)

<=> U \= source, U \= sink, 0 < E, C =:= N+E | h(U,M+1).

% replace K by HU in unchecked egde, insert minimum

up : h(U,HU), h(V,HV) \ r(U,V,K)

<=> HU =< HV, K < HU | m(U,HV,1), r(U,V,HU).

% push flow downwards by one unit, insert minimum, reverse edge

push : h(U,HU), h(V,HV) \ e(U,EU), e(V,EV), r(U,V,_)

<=> 0 < EU, HV < HU | e(U,EU-1), e(V,EV+1), m(V,HU,1), r(V,U,HV).

% compute minimum for node, count for completeness

min : m(U,M1,C1), m(U,M2,C2) <=> m(U,min(M1,M2),C1+C2).

The variable U stands for a node, N is its number of outward capacity edges, E is its cur-
rent excess flow and HU is its current height. The constraint m(U,M,C) encodes a minimum
candidate with value M for node U, where the counter C allows to detect if the minimum of
all outward edges has been computed. The constraint r(U,V,K) encodes a residual edge
from nodes U to V with remaining capacity K.

The implementation described in Meister (2007) simulates parallel computations se-
quentially using an interleaving semantics approach and time stamps for user-defined con-
straints. The active elements (nodes with excess flow) can be processed in parallel as long
as their neighborhoods (set of nodes connected to them through an edge) do not overlap.
In the simulation, we greedily, randomly and exhaustively apply as many rules as possible
at a given time point t before progressing to time t + 1. A speed-up in experiments with
random graphs was consistently observed. The speed-up depends on the total amount of
flow units, its distribution on disjoint nodes and the density of the flow network. A parallel
speed-up was also confirmed in the experiments of Triossi et al. (2012).

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

772 T. Frühwirth

3.4 Parallel union-find algorithm

This classical UF (also: disjoint set union) algorithm (Tarjan and Leeuwen, 1984) effi-
ciently maintains disjoint sets under the operation of union. Each set is represented by a
rooted tree, whose nodes are the elements of the set. UF is acknowledged in the literature
to be hard to parallelize.

In Frühwirth (2005a), we implement the UF algorithm in CHR with optimal time and
space complexity and with the anytime online algorithm properties. This effectiveness is
believed impossible in other pure declarative programming languages due to their inability
to express destructive assignment in constant time. When the UF algorithm is extended
by the rules that deal with the function terms (rational trees), it can be used for optimal
complexity unification (Meister and Frühwirth, 2007). Last but not the least, a generaliza-
tion of UF yields novel incremental algorithms for simple Boolean and linear equations
(Frühwirth, 2006). See chapter 10 in Frühwirth (2009) for an overview of UF in CHR.

Parallelizing basic union-find. We only discuss the basic UF algorithm here, not the
optimized one, since the former has been used in experiments (Sulzmann and Lam, 2008).
In CHR, the data constraints root and arc -> represent the tree data structure. With the UF
algorithm come several operation constraints: find returns the root of the tree in which a
node is contained, union joins the trees of two nodes and link performs the actual join.

union : union(A,B) <=> find(A,X), find(B,Y), link(X,Y).

findNode : A->B \ find(A,X) <=> find(B,X).

findRoot : root(A) \ find(A,X) <=> found(A,X).

linkEq : link(X,Y), found(A,X), found(A,Y) <=> true.

linkRoot : link(X,Y), found(A,X), found(B,Y), root(A) \ root(B) <=> B->A.

The second argument of the find operation find holds a fresh variable as an identifier.
When the root is found, it is recorded in the constraint found.

CHR confluence analysis[COMP: Please set the citation “Abdennadher and Frühwirth
2004; Abdennadher and Frühwirth 1998” as “Abdennadher and Frühwirth 1998, 2004”
here.] (Abdennadher and Frühwirth, 1998; Abdennadher and Frühwirth, 2004) produces
abstract states that reveal a deadlock: When we are about to apply the linkRoot rule,
another link operation may remove one of the roots that we need for linking. From the non-
confluent states, we can derive an additional rule for found that mimics the rule findNode:
The found constraint now keeps track of the updates of the tree so that its result argument
is always a root.

foundUpdate : A->B \ found(A,X) <=> found(B,X).

Linking for disjoint node pairs can now run in parallel. While this seems an obvious result,
this semi-automatic confluence-based approach yields a non-trivial parallel variant of the
optimized UF algorithm with path compression. Correctness of the parallelization is proven
in both cases in Frühwirth (2005a). A parallel speed-up is reported in Lam (2018).

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 773

4 Parallel CHR with transactions

We now extend parallel CHR by transactions. Transactions will also be used for the im-
plementation of parallel CHR in Section 6 and for encoding of a transaction-based concur-
rency model in CHR in Section 10.1.

Transactions. They alleviate the complexity of writing concurrent programs by offering
entire computations to run atomically and in isolation. Atomicity means that a transaction
either proceeds uninterrupted and successfully commits or has to rollback (undo its side-
effects). In optimistic concurrency control, updates are logged and only committed at the
end of a transaction when there are no update conflicts with other transactions. Isolation
means that no intermediate update is observable by the another transaction. The highest
level of isolation is serializability, the major correctness criterion for concurrent transac-
tions: For each parallel execution, there is a sequential execution with the same result.

4.1 Transactions in parallel CHR

The paper (Schrijvers and Sulzmann, 2008) proposes CHRt as a conservative extension
of CHR with atomic transactions. An atomic transaction is denoted as a meta-constraint
atomic(C) where C is a conjunction of CHR constraints. Atomic transactions may appear
in goals.

Example 4.1
Consider these CHR rules for updating a bank account:

balance(Acc,Bal), deposit(Acc,Amt) <=> balance(Acc,Bal+Amt).

balance(Acc,Bal), withdraw(Acc,Amt) <=> Bal>Amt | balance(Acc,Bal-Amt).

transfer(Acc1,Acc2,Amt) <=> withdraw(Acc1,Amt), deposit(Acc2,Amt).

The balance constraint is a data constraint, and the deposit and withdraw constraints
are operation constraints. The guard ensures that withdrawal is only possible if the amount
in the account is sufficient. The transfer constraint rule combines deposit and withdrawal
among two accounts.Now assume a transfer between two accounts:

balance(acc1,500), balance(acc2,0), transfer(acc1,acc2,1000)

We can execute the deposit, but we cannot execute the withdrawal due to insufficient funds.
The transaction gets stuck. It has a deadlock and cannot proceed till the end. This is clearly
not the desired behavior of a transfer. In CHRt, we can introduce a transaction to avoid
this problem. The transfer constraint in the goal is wrapped by the meta-constraint
atomic.

balance(acc1,500), balance(acc2,0), atomic(transfer(acc1,acc2,1000))

Now the incomplete transaction will be rolled back, no money will be transferred.

4.2 Abstract syntax and semantics of CHRt

We assume Ground CHR. We classify CHR constraints into operation constraints and
data constraints. The distinction appeals to the intuitive understanding that operation con-
straints update data constraints. Thus, the head of a CHRt rule must contain exactly one

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

774 T. Frühwirth

operation constraint. It requires one more transition for transactions. The (Atomic) transi-
tion executes any number of atomic transactions in parallel in a common context T of data
constraints.

(Atomic) (T ∧S1 ∧C1 �→∗ T ∧S′1), . . .(T ∧Sn ∧Cn �→∗ T ∧S′n)
T ∧S1 ∧ . . .Sn ∧atomic(C1)∧ . . .atomic(Cn) �⇒ T ∧S′1 ∧ . . .S′n

In the transition, T,Si and S′i must be data constraints. The parallel step considers the
separate evaluation of each Ci in isolation. The transactions only share the common data
constraints T , which serves as a context. Note that each transaction may perform arbi-
trary many computation steps. Each transaction is fully executed until there are no op-
eration constraints. It does not get stuck. So there are only data constraints in the target
state.

4.3 Properties: Monotonicity, soundness and serializability

For CHRt programs, the following properties are proven to hold in Schrijvers and
Sulzmann (2008).

Serializability. For each (atomic) transition with n concurrent transactions, there is a
corresponding computation of n consecutive sequential (atomic) transitions each with
only one transaction.

Soundness. For any computation in CHRt, there is a corresponding computation in CHR
where the atomic wrappers are dropped.

Monotonicity. Although not proven in the paper, it follows from soundness and the con-
text T of the (atomic) transition.

4.4 Encoding transactions in standard CHR

We want to execute CHRt in standard parallel CHR, i.e., without the (atomic) transition.
The straightforward way is to execute atomic transactions only sequentially. Thus, we
trivially guarantee the atomic and isolated execution of transactions. We identify two spe-
cial cases where we can erase the atomic wrappers and still allow for parallel execution:
bounded and for confluent transactions.

Bounded transactions. A bounded transaction is one that performs a finite, statically
known number of transitions.atomic(G) <=> G. Then we unfold the rule (Frühwirth
and Holzbaur, 2003; Frühwirth, 2005b; Gabbrielli et al., 2013) until no more operation
constraints appear in its body. Since the transaction is bounded, unfolding will eventually
stop.

In the running example, we can replace the atomic transfer rule (since it is bounded) by
the following rule:

balance(Acc1,Amt1),balance(Acc2,Amt2),atomic(transfer(Acc1,Acc2,Amt)) <=>

Amt1>Amt | balance(Acc1,Amt1-Amt), balance(Acc2,Amt2+Amt).

The rule head expresses the fact that an atomic transfer requires exclusive access to both
the accounts involved.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 775

Fig. 1. Refined parallel CHR syntax.

Confluent transactions. The paper proves that if a CHRt program is confluent when
we ignore atomic wrappers, then it can be executed in standard parallel CHR provided the
initial goal never gets stuck (deadlocks). Confluence then guarantees that isolation is not
violated.

Consider the example of the stuck transaction that attempts to overdraw an account. The
withdraw rule can be fixed if we drop its guard (and hence allow negative balances):

balance(Acc,Bal), withdraw(Acc,Amt) <=> balance(Acc,Bal-Amt).

Any two consecutive transfers commute now. Regardless of the order they are performed
in, they yield the same final result (even if the intermediate results differ). Hence, we can
safely erase the atomic wrappers.

5 Refined parallel CHR semantics

A refined semantics for parallel CHR is developed and implemented in Sulzmann and
Lam (2008), Lam and Sulzmann (2009), and Lam (2018). This semantics can be seen as a
refinement of the parallel abstract semantics given before. In states, we now differentiate
between the goal that holds active constraints to be processed, and the constraint store
that holds inactive suspended constraints as data. This means that we have to account
for the in-activation (suspension) and re-activation (wake-up) of user-defined constraints
due to built-in constraints on shared variables. As before, the semantics is given in two
parts, the sequential transitions and the parallel transitions and the properties of mono-
tonicity, soundness and serializability are shown.

5.1 Syntax for refined parallel CHR

Figure 1 describes the syntax for the refined semantics. The notation a denotes a sequence
of a’s. We only consider built-in constraints that are syntactic equalities or arithmetic
equations. To distinguish multiple occurrences (copies and duplicates) of CHR constraints,
they are extended by a unique identifier. We call c#i an identified constraint. Conjunctions
are modeled as (multi-)sets. Unlike in the abstract semantics, a state is now a pair: We
distinguish between a goal (store) (a multi-set of constraints) and the (constraint) store (a
set of built-in and identified CHR constraints). Correspondingly, there are goal and store
constraints. We also introduce matched constraints that are pairs of store constraints which
we will need as an annotation to transitions.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

776 T. Frühwirth

Fig. 2. Parallel CHR semantics (sequential part
δ

�).

5.2 Sequential refined CHR semantics

The sequential part of the semantics in Figure 2 is a generalization of the refined CHR
semantics of Duck et al. (2004). The semantics assumes generalized simpagation rules
that are not propagation rules.

Constraints from the goal are executed one by one. A constraint currently under exe-
cution is called active constraint. It tries to apply rules to itself. To try a rule, the active
constraint is matched against a head constraint of the rule. The remaining head constraints
are matched with partner constraints from the constraint store. If there is such a complete
matching and if the guard is satisfied under this matching, then the rule applies (fires). The
constraints matching the removed constraints of the head are deleted atomically and the
body of the rule is added to the state. Because of the role of the active constraint, we call
the semantics goal-based semantics.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 777

Transitions. A transition σ
δ

� σ ′ maps the CHR state σ to σ ′ involving the CHR
constraint goals in δ . The transition annotation δ holds the constraints that were matched
with the rule head. It will be needed in the parallel part of the semantics.

The first transition (Solve+Wake) moves a built-in constraint, an equation or equality
e, into the store and wakes up (re-activates) identified constraints in the store which could
now participate in a rule application. This is the case when the built-in constraint effects
variables in a user-defined constraint, because then the re-activated (woken) constraint
may now be able to match a rule head and satisfy the guard of the rule. The function
WakeU p(e,Sn) computes a conservative approximation of the re-activated constraints,
where m.g.u. denotes the most general unifier induced by a set of syntactic equations.

In transition (Activate), a CHR constraint goal becomes active by annotating it with a
fresh unique identifier and adding it to the store.

Rules are applied in transitions (Apply-Remove) and (Apply-Keep). They are analo-
gous, but distinguish if the active constraint c#i is kept or removed. In both cases, we
seek for the missing partner constraints in the store, producing a matching substitution
φ in case of success. The guard t must be logically entailed by the built-in constraints
in the store under the substitution φ . Then we apply the rule instance of r by atomically
removing the matching constraints HS and adding the rule body instance φ(B) to the goal.
We also record the matched identified constraints HS and HP in the transition annotation. In
transition (Apply-Remove), the matching constraints HS include c#i. Since c#i is removed,
we drop it from both the goal and the store. In transition (Apply-Keep), c#i remains and
so can possibly fire further rules.

Finally, in transition (Suspend), we put an active constraint to sleep. We remove the
active identified constraint from the goal if no (more) rules apply to the constraint. Note
that the constraint is kept suspended in the store and may be woken later on.

5.3 Extension to parallel refined CHR semantics

Figure 3 presents the parallel part of the refined operational semantics. It is a refinement
of the parallel transition for the abstract semantics. We allow for multiple goal stores to be
combined while the constraint store is shared among the parallel computations.

In the (Intro-Par) transition, we turn a sequential computation into a parallel com-
putation. Transition (Parallel-Goal) parallelizes two parallel computations operating on
the same shared store, if their matched constraints δ1 and δ2 do not have an overlap
that involves removed constraints. They may overlap in the kept constraints. This makes
sure that parallel computations remove distinct constraints in the store. The identifiers
of constraints make sure that we can remove multiple but different copies of the same
constraint. The matched constraints δ1 and δ2 are composed by the union of the kept and
removed components, respectively, forming δ . Note that a context G is added to the goals
in the resulting parallel transition, implying monotonicity.

5.4 Properties: Monotonicity, soundness and serializability

The following results are proven in the appendix of Lam and Sulzmann (2009).

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

778 T. Frühwirth

Fig. 3. Parallel CHR semantics (parallel part
δ

�||).

Monotonicity holds for the goal store, but not for the constraint store. In an enlarged
constraint store, the (Suspend) transition may not be possible anymore, because a new
rule becomes applicable to the active constraint. The monotonicity is still sufficient though,
because in the semantics, the constraint store is only populated via the goal store. Serial-
izability holds: Any parallel computation can be simulated by a sequence of sequential
computations in the refined semantics.

Furthermore, soundness holds: Any parallel computation has a correspondence in a
suitable variant of the sequential abstract semantics. For the upcoming theorem, let us
note that an initial state is of the form 〈G,{}〉, a final state is of the form 〈{},Sn〉. Given a
computation 〈G | {}〉 �∗

|| 〈G′ | Sn〉, the state 〈G′ | Sn〉 is called a reachable state.

Theorem 5.1 (Soundness)
For any reachable state 〈G | Sn〉,

if 〈G | Sn〉 �∗
|| 〈G′ | Sn′〉

then (NoIds(G)�DropIds(Sn)) �→∗ (NoIds(G′)�DropIds(Sn′))

where �→∗ denotes transitions in the sequential abstract semantics and where NoIds = {c |
c ∈ G,c is a CHR constraint}�{e | e ∈ G,e is a built-in constraint}.

6 Parallel CHR implementation in Haskell

The parallel refined semantics from the previous Section 5 has been implemented in the
lazy functional programming language Haskell (Sulzmann and Lam, 2007, 2008; Lam and
Sulzmann, 2007, 2009; Lam, 2018). Concretely, we use the Glasgow Haskell Compiler
for implementing parallel Ground CHR because of its good support for shared memory
and multi-core architectures. The implementation is available online for free download at
https://code.google.com/archive/p/parallel-chr/. In principle, the system can
be re-implemented in mainstream procedural languages such as C and Java. In this section,
we give an overview of the implementation principles and the best experimental results,

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 779

details and more experiments with different settings can be found in the literature cited
above.

6.1 Implementation principles

Our implementation follows the principles of standard sequential implementations of CHR
where possible (Holzbaur et al., 2005; Van Weert, 2010). The goal store is realized as a
stack, the constraint store as a hash table. We implement common CHR optimizations, such
as constraint indexing (hashing) and optimal join ordering for finding partner constraints
with early guard scheduling.

Parallel goal execution must not remove constraints in overlaps that participate in several
rule head matchings. We discuss two approaches of concurrency control to implement this
kind of parallel rule-head matching, locking and transactions, before we settle for a hybrid
approach.

Fine-grained lock-based parallel matching. Pessimistic concurrency control uses lock-
ing as the basic serialization mechanism. We restrict the access to each constraint in the
shared store with a lock. When an active constraints finds an applicable rule, it will first try
to lock its matching removed partner constraints. Kept constraints can be used by several
rules simultaneously, so they need not be locked. Locking fails if any constraint in the
complete rule head matching is already locked by another active constraint. If locking
fails, the active constraint releases all its locks and tries to redo the rule application. If
locking succeeds, the rule is applied. No unlocking is necessary since locked constraints are
removed. This locking mechanism can avoid deadlocks and cyclic behavior using standard
techniques for these problems such as timestamps or priorities.

Software transactional memory (STM). Optimistic concurrency control is based on
transactions that can either commit or rollback and restart. We use the STM transactions
provided in Haskell. The principles of transaction have been introduced in Section 4.
The idea of STM is that atomic program regions are executed optimistically. That is,
any read/write operations performed by the region are recorded locally and will only be
made visible when the transaction is completed. Before making the changes visible, the
underlying STM protocol will check for read/write conflicts with other atomically executed
regions. If there are update conflicts among transactions, the STM protocol will randomly
commit one of the atomic transactions and rollback the others (Shavit and Touitou, 1997).
Committing means that the program updates become globally visible. Rollback means that
we restart the program. The disadvantage of STM is that unnecessary rollbacks can happen.
We will meet STM again in Section 10.1, when it is specified in CHR.

Hybrid STM-based locking scheme. In the implementation, we use both STM and
traditional shared memory access locking techniques. The search for matching partner
constraints is performed outside STM to avoid unnecessary rollbacks. When a complete
rule head matching is found, we perform an STM procedure that we call atomic rule-head
verification. It checks that all the constraints are still available and marks the constraints
to be removed as deleted. These deleted constraints will be physically delinked from the
constraint store, either immediately or later. Both behaviors can be implemented with
standard concurrency primitives (such as compare-and-swap and locks).

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

780 T. Frühwirth

Number of Threads 1 2 4 8 Unbounded

Merge Sort 121% 94% 70% 52% >200%
Gcd 109% 37% 18% 12% 123%
Parallel Union-Find 125% 82% 52% 32% >200%
Blocks World 123% 77% 54% 39% >200%
Dining Philosophers 119% 74% 49% 41% >200%
Prime 115% 73% 46% 30% 155%
Fibonacci 125% 85% 59% 39% >200%
Turing Machine 111% 63% 78% 70% >200%

Fig. 4. Experimental results, with optimal configuration (on eight threaded Intel processor).

Thread pool. The naive way to implement a parallel CHR system is to spawn an active
thread for each goal constraint in a state. Each thread tries to find its partner constraints.
However, the thread and its later partner constraints would then compete for the same
rule application. Moreover, the number of threads would be unbounded, as the number
of constraints in a state is unbounded. Our implementation uses a bounded number of
active threads. A thread pool maintains threads waiting for tasks to be allocated for parallel
execution.

6.2 Experimental results

Experiments were performed on an Intel Core quad core processor with hyper-threading
technology (that effectively allows it to run eight parallel threads). We measure the relative
performance of executing with one, two, four, eight and an unbounded number of threads
against our sequential CHR implementation in Haskell. The table in Figure 4 gives some
exemplary results with these two optimizations: Each goal thread searches store constraints
in a unique order to avoid matching conflicts and a special goal ordering for Merge Sort
and Gcd is used (explained below).

There are several general observations to be made with regard to the number of threads.
Executing with one goal thread is clearly inferior to the sequential implementation because
of the wasted overhead of parallel execution. Executions with two, four and eight goal
threads show a consistent parallel speed-up, with exception of the Turing machine. It
is inherently single-threaded. Interestingly, we still obtain improvements from parallel
execution of administrative procedures (for example, dropping of goals due to failed match-
ing). Unbounded thread pooling is always slower than the sequential implementation.
Furthermore, we observed a super-linear speed-up for the Gcd example with a queue-based
goal ordering instead of the usual stack-based ordering in the goal store. In merge sort, we
stack -> constraints and queue just => for optimal performance. Last but not the least,
experiments also confirmed that there is a speed-up when a multi-core processor instead of
a single-core processor is used.

7 Massively parallel set-based CHR semantics

A CHR semantics is set-based if conjunctions of constraints are considered as set instead
of multi-set. In Raiser and Frühwirth (2010), we present a parallel execution strategy for

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 781

set-based CHR. The use of sets instead of multi-sets has a dramatic impact: It allows
for multiple removals of constraints. This means that overlaps can be removed several
times. We show that the resulting refined semantics is not sound in general anymore, but
sound if the program is deletion-acyclic (i.e., when its simpagation rules do not allow for
mutual removal of constraints). CHRmp programs for the computation of minimum, prime
numbers and sorting can run in constant time, given enough processors. We describe a
program for SAT solving in linear time.

7.1 Massively parallel set-based semantics CHRmp

As in the parallel abstract semantics, there are no restrictions on the syntax of CHR.
Reconsider the essential (Parallel) transition of the abstract CHR semantics. Keep in mind
that conjunctions of constraints are now interpreted as sets of constraints.

(Parallel) A∧E �⇒C∧E B∧E �⇒ D∧E
A∧B∧E �⇒C∧D∧E

Consider the program

a <=> b,c. a <=> b,d.

Then the following transition for the goal a ∧ e is possible in the set-based interpretation:

a∧e �⇒ b∧c∧e a∧e �⇒ b∧d∧e

a∧e �⇒ b∧c∧d∧e

This means that a is removed twice and b is only produced once.
When we generalize this observation, we see that overlaps between rule matchings can

be removed arbitrary many times, leading to a kind of massive parallelism.
Refined CHRmp semantics. We refine this set-based semantics now. We assume CHR

without propagation rules. In the body of a rule, we distinguish between CHR constraints
Bc and built-in constraints Bb, and write Bc,Bb. A CHRmp state S (or T) is of the form
〈�;�〉, where the goal (store) � is a set (not multi-set) of constraints and the (built-in)
constraint store � is a conjunction of built-in constraints. c and d are atomic constraints.
We adapt the state equivalence ≡ in the obvious way to CHRmp states.

Definition 7.1 (Massively parallel transition)
Given a CHRmp state S = 〈�;�〉. Let R be the smallest set such that for each rule vari-
ant r : H1\H2 ⇔G |Bc,Bb, where S≡〈H1∪H2∪�′;G∧�′〉 it holds that (H1,H2,Bc,Bb,�′)
∈ R. We then define for any non-empty subset R ⊆ R,

– the set of removed constraints D = {c | ∃(,H2, , ,�′) ∈ R,c ∈ � : H2 ∧�′ → c};
– the set of added constraints A = {c | ∃(, ,Bc, ,) ∈ R : c ∈ Bc};
– the conjunction of added built-in constraints B =

∧
(, , ,Bb,�′)∈R

�′ ∧Bb.

A massively parallel transition (step) of S = 〈�;�〉 using R is then defined as

(Massive-apply) 〈�;�〉 �R 〈(�\D)∪A;�∧B〉

If the specific set R is not of importance, we write � instead of �R.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

782 T. Frühwirth

The idea is that in the set R, we collect all possible rule applications and then we
apply any subset of them at once in one parallel computation step. In this way, multiple
removals of the same constraint are possible. In the extreme case, R = R, so all possible
rule applications are performed simultaneously. We call this exhaustive parallelism. With
such an execution strategy, any CHRmp program is trivially confluent, because there are
no conflicting rule applications. On the other hand, if R is a singleton set, only one rule is
applied and we are back to sequential CHR.

Example 7.1
Reconsider the CHR program for computing prime numbers. Consider the state

S = 〈{prime(2),prime(3),prime(4),prime(5),prime(X)};X=6〉.

There are three possible rule applications, removing the non-prime numbers 4 and twice 6:

R =

⎧⎨
⎩

({prime(N1)},{prime(M1)}, /0,�,X=6∧N1=2∧M1=4),
({prime(N2)},{prime(M2)}, /0,�,X=6∧N2=2∧M2=6),
({prime(N3)},{prime(M3)}, /0,�,X=6∧N3=3∧M3=6)

⎫⎬
⎭

We can now perform all three possible rule applications exhaustively parallel, i.e., R = R,
resulting in the following sets:

D = {prime(4),prime(X)}, A = /0,
B = (X=6∧N1=2∧M1=4)∧ (X=6∧N2=2∧M2=6)∧ (X=6∧N3=3∧M3=6)

This leads to the parallel transition:

S �R 〈{prime(2),prime(3),prime(5)};X=6∧B〉

Hence, a single parallel step is sufficient to find all prime numbers.

7.2 Example programs under exhaustive parallelism

We examine different algorithms written in CHR and the effect of executing these programs
in CHRmp, in particular with exhaustive parallelism to achieve maximum
speed-up.

Filter programs. Programs that only consist of rules whose body is true can be un-
derstood as filtering constraints. They can obviously be executed in constant time with
exhaustive parallelism, given enough processors. The minimum and the prime program
fall into this category. The msort rule of merge sort leads to a linear number of ex-
haustively parallel steps. It can be rewritten to achieve constant-time complexity. The
experiments with the prime program using massive parallelism (see Section 8) (Triossi
et al., 2012) show a run-time improvement of about an order of magnitude over strong
parallelism.

SAT solving. The SAT formula is given as a tree of its sub-expressions. The tree nodes
are of the form eq(Id,B), where Id is a node identifier and B is either a Boolean variable
written v(X) or a Boolean operation (neg, and, or) applied to identifiers. Additionally,
a f(L,[]) constraint is required in the initial state, where L is a list of all n variables in
the SAT formula.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 783

generate : f([X|Xs], A) <=> f(Xs,[true(X)|A]), f(Xs,[false(X)|A]).

assign : f([],A) \ eq(T,v(X)) <=> true(X) in A | sat(T,A,true).

assign : f([],A) \ eq(T,v(X)) <=> false(X) in A | sat(T,A,false).

sat(T1,A,S) \ eq(T,neg(T1)) <=> sat(T,A, neg S).

sat(T1,A,S1), sat(T2,A,S2) \ eq(T,and(T1,T2)) <=> sat(T,A, S1 and S2).

sat(T1,A,S1), sat(T2,A,S2) \ eq(T,or(T1,T2)) <=> sat(T,A, S1 or S2).

The generate rule generates, in n parallel steps, 2n f constraints representing all possi-
ble truth assignments to variables as a list in its second argument. In the next parallel step
(using the assign rules), all n Boolean variables in the given formula are assigned truth
values for each assignment, represented by sat constraints.

The remaining three rules determine the truth values of all sub-expressions of the for-
mula bottom-up. In each parallel step, the truth values of sub-expressions at a certain height
of the tree are concurrently computed for all possible assignments of variables. Therefore,
the number of parallel steps in this phase is bound by the depth of the formula.

A formula is in 3-DNF normal form if it is in disjunctive normal form (a disjunction
of conjunctions of literals) and each clause contains at most three literals. Because of its
bounded depth, a SAT problem given in 3-DNF normal form with n variables can be solved
in linear time in n with this program under exhaustive parallelism, independent of the size
of the formula.

7.3 Properties: Soundness under deletion-acyclicity

Soundness of CHRmp is not always possible as the following example shows.

Example 7.2
Consider the following rule that removes one of two differing constraints:

c(N) \ c(M) <=> N=\=M | true.

and the goal c(1), c(2). There are two competing rule instances for application: one
matches the two constraints in the given order and the other in reversed order. So if we
apply both rules simultaneously under exhaustive parallelism, both constraints will be
(incorrectly) removed.

In general, computations that allow for mutual removal of constraints are not sound in
CHRmp. Soundness requires that the programs are deletion-acyclic, effectively ruling out
mutual removal. A deletion dependency pair (c,d) means the kept constraint c is required
to remove constraint d in a rule of the program. This is the case if c as an instance of a kept
constraint and d is an instance of a removed constraint in the head of the rule.

Definition 7.2 (Deletion dependency, deletion-acyclic)
Given a CHRmp state S = 〈�;�〉. Then deletion dependency D(S) is a binary relation such
that (c,d) ∈ D if and only if there exist (H1,H2,Bc,Bb,�′) ∈ R(S) and c′ ∈ H1,d′ ∈ H2

such that c′ ∧�′ → c and d′ ∧�′ → d.
A CHRmp program P is deletion-acyclic if and only if for all S such that S �R T the

transitive closure D(S)+ is irreflexive.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

784 T. Frühwirth

In a deletion-acyclic program, we can simulate the CHRmp computation steps by a
sequence of sequential rule applications in multi-set semantics, provided we initially have
enough copies of the user-defined constraints and can remove them when needed. The
latter is accomplished by so-called set-rules of the form

set-rule: c(X1,...Xn) \ c(X1,...Xn) <=> true.

for each CHR constraint c/n in the given program. These rules remove multiple occur-
rences of the same constraint.

The following soundness theorem requires a deletion-acyclic program and the set-rules
(Raiser and Frühwirth, 2010). Let � be a sequential transition in a suitable variant of the
usual multi-set CHR semantics.

Theorem 7.1 (Soundness)
Let P be a deletion-acyclic CHRmp program and P ′ be the CHR program P extended
with set-rules. If S = 〈�;�〉 �P T , then there exists a multiset �′ with c ∈ �′ ⇔ c ∈ �
such that S′ = 〈�′;�〉 �∗

P ′ T ′, where c ∈ T ′ ⇔ c ∈ T .

Example 7.3
Consider the initial goal a and the program

a <=> b,c. a <=> b,d. b,c,d <=> true.

Exhaustive parallelism leads to the set-based computation

a � b,c,d � true.

The sequential correspondence in the multi-set CHR program extended with set-rules is

a,a � b,b,c,d � b,c,d � true.

The example can also be used to show that serializability in general does not hold for
massively parallel set-based CHR. There is not sequential computation in CHRmp that
can simulate the exhaustively parallel computation, since the first rule application will
remove a, so either b,c or b,d can be produced sequentially, but not their union. Similarly,
monotonicity does not hold.

8 Parallel hardware implementations of CHR

The work reported in Triossi et al. (2012) and Triossi (2011) investigates the compilation
of CHR to the specialized hardware. The implementation follows the standard scheme for
translating CHR into procedural languages. The compiler translates the CHR code into
the low-level hardware description language VHDL, which in turn creates the necessary
hardware using Field Programmable Gate Array (FPGA) technology. FPGA is a hardware
consisting of programmable multiple arrays of logic gates. We also implement a hybrid
CHR system consisting of a software component running a CHR system for sequential
execution, coupled with hardware for parallel execution of dedicated rules in the program.
The resulting hardware system is typically an order of magnitude faster than the fastest
software implementation of CHR (in C).

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 785

8.1 Basic compilation of CHR to procedural languages

As preliminaries, we give the basic implementation scheme for Ground CHR in procedural
languages like C and Java, but also VHDL. This translation scheme applies throughout this
section. In Ground CHR, we do not need to wake-up constraints, because all variables are
ground at run-time. A CHR rule can be translated into a procedure using the following
simple scheme:

procedure(kept head constraints, removed head constraints) {

if (head constraints not marked removed && head matching && guard check)

then {remove removed head constraints; execute body constraints;}

}

The parameter list references the head constraints to be matched to the rule. In the proce-
dure, we first check that the constraints have not been marked as removed. Then head
matching is explicitly performed and then the guard is checked. If all successful, one
removes the removed head constraints, executes the built-in constraints and then adds the
body CHR constraints. Added constraints may overwrite removed head constraints for
efficiency. Constraints that are removed and not overwritten are marked as deleted. Such
a rule procedure is executed on every possible combination of constraints from the store,
typically through a nested loop (that can be parallelized). This basic translation scheme
corresponds to the abstract semantics, since it does not distinguish between active and
suspended CHR constraints. It needs to be refined to be practical (Van Weert, 2010).

8.2 Compiling CHR to parallel hardware

Our compiler translates the CHR code into the low-level hardware description language
VHDL, which in turn creates the necessary hardware using FPGAs. The architecture of
FPGA hardware is basically divided into three parts: the internal computational units called
configuration logic blocks, the Input/Output blocks that are responsible for the commu-
nication with all the other hardware resources outside the chip, and the programmable
interconnections among the blocks called routing channels. In addition, there can be com-
plex hardware blocks designed to perform higher level functions (such as adders and
multipliers), or embedded memories, as well as logic blocks that implement decoders or
mathematical functions.

CHR fragment with non-increasing rules. We assume Ground CHR. Since the hard-
ware resources can only be allocated at compile time, we need to know the largest num-
ber of constraints that can occur in the constraint store during the computation. In non-
increasing rules, the number of body CHR constraints added is not greater than the number
of head constraints removed. Thus, the number of constraints in the initial goal provides an
upper bound on the number of constraints during the computation. Hence, we only allow
for non-increasing simpagation rules.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

786 T. Frühwirth

CHR compilation hardware components. A program hardware block (PHB) is a col-
lection of Rule Hardware Blocks (RHBs), each corresponding to a rule of the CHR pro-
gram. A combinatorial switch assigns the constraints to the PHBs. In more detail:

Rule hardware block (RHB). In VHDL, the rule is translated into a single clocked pro-
cess following the transformation scheme described above. Here, the parameters are
input signals for each argument of the head constraints. Each signal is associated with
a validity signal to indicate if the associated constraint has been removed. A concrete
example is given below.

Program hardware block (PHB). The PHB makes sure that the RHBs keep applying
themselves until the result remains unchanged for two consecutive clock cycles. Each
rule is executed by one or more parallel processes that fire synchronously every clock
cycle. The initial goal is directly placed in the constraint store from which several
instances of the PHB concurrently retrieve the constraints.

Combinatorial switch (CS). The combinatorial switch sorts, partitions and assigns the
constraints to the PHBs, ensuring that the entire constraint store gets exposed to the rule
firing hardware. It acts as a synchronization barrier, allowing the faster PHBs to wait for
the slower ones, then communicating the results between the blocks. It also re-assigns
the input signals to make sure that all constraint combinations have been exposed to the
rule head matching.

Strong parallelism with overlap. For a given kept constraint, multiple RHBs are used
to try rules with all possible partner constraints. For the case of simpagation rules with
one kept and one removed constraint, we introduce a hardware block that consists of a
circular shift register which contains all the initial goal constraints. The first register cell
contains the kept constraint and it is connected to the first input of all the RHBs, the rest
of the register cells contain the potential partner constraints and are each connected to the
second input of one RHB. Every time the PHBs terminate their execution, the new added
constraints replace the removed ones. They shift registers until a non-removed constraint
is encountered.

Example 8.1
Consider the rule for the greatest common divisor:

r : gcd(N) \ gcd(M) <=> M>=N | gcd(M-N).

In Figure 5, we give an excerpt of the VHDL code produced for the above rule. There are
two processes executed in parallel, one for each matching order, that correspond to two
RHBs called r 1 and r 2. The input parameters gcd1 and gcd2 are byte signals holding
the numbers. valid1s and valid2s are bit signals. They are set to 0 if the associated
constraint is removed. The shared variable flag is a bit. It is used to control the application
of the two processes.

Massive parallelism. The set-based semantics CHRmp (see Section 7) allows multiple
simultaneous removals of the same constraint. Our implementation eliminates the conflicts
in the constraint removals by allowing different rule instances to work concurrently on
distinct copies of the constraints. We provide all possible combinations of constraints to
distinct parallel PHB instances in a single step. So the same constraint will be fed to several

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 787

Fig. 5. Excerpt of VHDL code for GCD rule.

PHBs. Valid constraints are collected. A constraint is valid if no PHB has removed it. This
is realized in hardware by AND gates. The improvement due to massive parallelism is
about an order of magnitude for goals with a low number of constraints and it decreases
with higher numbers of constraints. This is due to reaching the physical bounds of the
hardware.

Experimental results. A few experiments were performed including the programs for
minimum, prime numbers, GCD, merge sort, shortest-path and preflow-push (Triossi, 2011;
Triossi et al., 2012). Unfortunately, no tables with concrete performance numbers are
given, just log-scale diagrams. From them, we can see the following. The FPGA imple-
mentations of CHR are at least one order of magnitude faster than the fastest software
implementations of CHR. In the experiments, shortest-path and preflow-push showed a
consistent parallel speed-up. Strong parallelism improves the performance, and massive
parallelism improves it further by up to an order of magnitude for the prime example. In
the examples, the code produced by the CHR-to-FPGA compiler is slower but within the
same order of magnitude as handcrafted VHDL code.

Translation into C++ for CUDA GPU. Graphical Processing Units consist of hundreds
of small cores to provide massive parallelism. Similar to the work on parallel CHR FPGA
hardware, the preliminary work in Zaki et al. (2012) transforms non-increasing Ground
CHR rules to C++ with CUDA in order to use a Graphical Processing Unit to fire the rules
on all combinations of constraints. As a proof of concept, the scheme was encoded by

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

788 T. Frühwirth

hand for some typical CHR examples. No experiments are reported. The constraint store
is implemented as an array of fixed length consisting of the structures that represent CHR
constraints. A CHR rule can be translated into a function in C++ using the basic procedural
translation scheme. The rule is executed on every possible combination of constraints using
nested for-loops. Finally, the code is rewritten for the CUDA library. The outer for-loop is
parallelized for the thread pools of the Graphical Processing Unit.

9 Distribution in CHR

Before we introduce a full-fledged distributed refined semantics for CHR and its implemen-
tation, we set the stage by describing a distributed but sequential implementation of set-
based CHR. This system is successfully employed in a verification system for concurrent
software. Both semantics work with a syntactic subset of CHR where head constraints in
rules must share variables in specific ways to enable locality of computations. Both seman-
tics feature propagation rules, but they use different mechanisms to avoid their repeated
re-application.

9.1 Distributed set-based goal stores in CHRd

CHRd (Sarna-Starosta and Ramakrishnan, 2007) is an implementation of a sequential set-
based refined semantics for CHR with propagation rules. CHRd features a distributed
constraint store.

Termination of propagation rules. There are basically two ways to avoid repeated
application of propagation rules: Either they are not applied a second time to the same con-
straints or they do not add the same constraints a second time. Since we can
remove constraints in CHR, usually the first option is chosen: We store the sequence of
CHR constraint identifiers to which a propagation rule has been applied. It can be garbage-
collected if one of the constraints is removed. This information is called a propagation
history. CHRd replaces the check on the propagation history by an occurrence check on
the constraint store. This can be justified by the set-based semantics.

Set-based refined semantics. Our set-based semantics closely follows the standard
refined semantics (Duck et al., 2004). The essential differences are as follows:

• The propagation history is dropped from the states.
• There is an additional transition to ensure a set-based semantics. It removes a con-

straint from the goal store before its activation, if it is already in the constraint store.
• There are additional transitions to avoid immediate re-application of a propagation

rule. In the first transition, all head matching substitutions where the active constraint
is kept are computed at once and all corresponding rule instances are added to the
goal store. These rule instances are called conditional activation events.

• When a conditional activation event is processed, it is checked if the matching head
constraints are still in the constraint store. If not, a second transition removes the
event from the goal store. Otherwise, a third transition applies the rule instance by
adding its body constraints to the goal store.

The semantics does not model the distribution of the CHRd constraint store.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 789

Our set-based semantics is not always equivalent to the standard refined semantics. In
the semantics, a propagation rule may fire again on a constraint that has been re-activated
(woken). In the refined multi-set semantics, it will not be fired again. So a CHR program
may not terminate with the set-based semantics, but with the refined semantics.

Distributed local constraint stores by variable indexing. Finding the partner con-
straints in head matching efficiently is crucial for the performance of a CHR system. If
variables are shared among head constraints, we can use the corresponding arguments of
the constraints for indexing. If the argument is an unbound variable at run-time, we store
(a pointer to) the constraint as attribute of that variable. If the argument becomes bound (or
even ground) at run-time, the constraint can be accessed from a hash table instead.

A conjunction of constraints is direct-indexed (connected) if all subsets of constraints
share variables with the remaining constraints. In other words, it is not possible to split the
constraints in two parts that do not share a variable.

Definition 9.1
The matching graph of a set C of constraints is a labeled undirected graph G = (V,E),
where V = C, and E is the smallest set such that ∀c1,c2 ∈ V,vars(c1)∩ vars(c2) �= {} →
(c1,c2) ∈ E, where vars(c) returns the set of variables in a constraint c. A rule R in a
CHR program is said to be direct-indexed (connected) if the matching graph for its head
constraints is connected. A CHR program is direct-indexed if all its rule heads are direct-
indexed.

Clearly, head matching is significantly improved for direct-indexed programs. Instead of
combinatorial search for matching partner constraints, constant-time lookups are possi-
ble with indexing. CHRd requires direct-indexed programs that only index on unbound
variables. This permits the constraint store to be represented in a distributed fashion as a
network of constraints on variables.

Any CHR program can be trivially translated to a direct-indexed program. We just have
to add an argument to each CHR constraint that always contains the same shared variable.
For example, the direct-index rule for minimum is

min(X,N) \ min(X,M) <=> N=<M | true.

With the help of the new variable, we can distinguish between different minima. In general,
this technique can be used to localize computations.

Implementation and experimental results. We have an implementation of ground
CHRd in the Datalog fragment of Prolog, where terms are constants only. Our imple-
mentation has been integrated into XSB, a Prolog programming system with tabling. It can
be obtained online with a free download from http://xsb.sourceforge.net. CHRd
performs significantly better on programs using tabling, and shows comparable results
on non-tabled benchmarks. This indicates that constraint store occurrence checks can be
done as efficiently as propagation history checks while avoiding the maintenance of a
propagation history.

Verification of multi-threaded applications. The paper (Sarna-Starosta et al., 2007)
describes an approach for checking for deadlocks in multi-threaded applications based
on the concurrency framework SynchroniZation Units MOdel (Szumo) (Sarna-Starosta,
2008). The framework associates each thread with a synchronization contract that

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

790 T. Frühwirth

governs how it must synchronize with other threads. At run-time, schedules are derived
by negotiating contracts among threads.

The Szumo system includes a constraint solver written in CHRd encoding the synchro-
nization semantics of thread negotiation. The verification system performs a reachability
analysis: It constructs execution paths incrementally until either a deadlock is detected or
further extending the path would violate a synchronization contract.

With Szumo, we analyzed an implementation of the dining philosophers problem, where
no deadlock was found. We verified the in-order message delivery property of an n-place
FIFO buffer. We also analyzed Fischers protocol, a mutual-exclusion protocol that is often
used to benchmark real-time verification tools. There we employed CHRd to specify a
solver for the clock constraints.

9.2 Distributed parallel CHRe and its syntax

The paper (Lam and Cervesato, 2013) introduces a decentralized distributed execution
model consisting of an ensemble of computing entities, each with its own local constraint
store and each capable of communicating with its neighbors: In CHRe, rules are executed
at one location and can access the constraint stores of its immediate neighbors. We have
developed a prototype implementation of CHRe in Python with MPI (Message Passing
Interface) as a proof of concept and demonstrated its scalability in distributed execution. It
is available online for free download at https://github.com/sllam/msre-py.

Syntax of CHRe. We assume Ground CHR. CHRe introduces locations.

Definition 9.2
All user-defined constraints in a program must be explicitly localized. A location l is a term
(typically an unbound variable or constant) that annotates a CHR constraint c, written as
[l]c. A location l is directly connected to a location l′ if there is a constraint [l]c at location
l such that l ∈ vars(c).

We are interested in rules that can read data from up to n of their immediate neighbors, but
can write to arbitrary neighbors. We therefore define n-neighbor restricted (star-shaped)
rules (which are a subclass of direct-indexed rules introduced in CHRd). The rule head
refers to directly connected locations in a star topology. At the center of the star is the
primary location.

Definition 9.3
A CHR rule with n+1 head constraints is n-neighbor restricted (star-shaped) if and only
if there is a dedicated location called primary location and n —em neighbor locations in
the rule head satisfying the following conditions:

• The primary location is directly connected to each of its n neighbor locations.
• If a variable is shared between constraints at different locations, it also must occur

in the primary location.
• Each constraint in the guard shares variables with at most one neighbor location.

This definition ensures that computation can be structured and distributed by considering
interactions between the primary location and each neighboring location separately.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 791

Example 9.1
This variant of the Floyd–Warshall algorithm computes all-pair shortest paths of a directed
graph in a distributed manner.

base : [X]arc(Y,D) ==> [X]path(Y,D).

elim : [X]path(Y,D1) \ [X]path(Y,D2) <=> D1<D2 | true.

trans : [X]arc(Y,D1), [Y]path(Z,D2) ==> X\=Z | [X]path(Z,D1+D2).

We distinguish between arcs and paths. [X]path(Y,D) denotes a path of length D from X

to Y. The rules base and elim are 0-neighbor restricted (local) rules because their left-hand
sides involve constraints from exactly one location. Rule trans is a 1-neighbor restricted
rule since its left-hand side involves X and a neighbor Y. We see that X is the primary
location of this rule because it refers to location Y in an argument.

9.3 Refined semantics of CHRe

Before we discuss the refined semantics, we shortly mention the abstract semantics of
CHReto introduce the basic principles.

Abstract distributed CHRe semantics for n-neighbor restricted rules. Each location
has its own goal store. Based on the standard abstract CHR semantics, we introduce ab-
stract ensemble states, which are sets of local stores Gk where G is a goal and k a unique
location name. In the adapted (Apply) transition, each of the locations in an n-neighbor
rule provides a partial match in their stores. If the matchings can be combined and if the
guard holds, we add the rule body goals to their respective stores. We show soundness
with respect to the standard CHR abstract semantics, where locations are encoded as an
additional argument to each CHR constraint.

Refined distributed CHRe semantics for 0-neighbor restricted rules. We extend the
standard CHR refined semantics to support decentralized incremental multi-set matching
for 0-neighbor restricted rules.

Localized states. In CHRe, an ensemble Ω is a set of localized states. A localized state
is a tuple 〈�U ;�G; S̄; H̄〉k, where

• the Buffer �U is a queue of CHR constraints that have been sent to a location,
• the Goal Store (Execution Stack) �G is a stack of the constraints to be executed,
• the Constraint Store S̄ is a set of identified constraints to be matched,
• the Propagation History H̄ is a set of sequences of identifiers of constraints that

matched the head constraints of a rule,
• the state is at location k.

To add a further level of refinement, an active occurrenced CHR constraint c(x̄)#i: j is an
identified constraint that is only allowed to match with the jth occurrence of the constraint
predicate symbol c in the head of a rule of a given CHR program P .

To simplify the presentation of the semantics, we assume static locations: For all loca-
tions occurring in a computation, there is a localized state (possibly with empty compo-
nents) in the ensemble.

Localized sequential transitions. Figure 6 shows the sequential transitions for a single
location.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

792 T. Frühwirth

Fig. 6. The sequential part of the refined CHRe semantics for 0-neighbor restricted rules.

• The (Flush) transition step applies if the goal store is empty and the buffer is non-
empty. It moves all buffer constraints into the goal store.

The transitions (DropLoc) and (MoveLoc) apply if the first constraint in the goal store
of location k is one for location [k′]c. They deliver constraint [k′]c to location k′.

• The (MoveLoc) transition applies if k′ is distinct from k and there exists a location
k′. It it strips the location [k] away and sends constraint c to the buffer of k′.

• The (DropLoc) transition applies if k′ is the same as k. The location [k] is dropped.

The remaining transitions apply to a location as to a state in the standard refined seman-
tics. Buffers are ignored and remain unchanged. The transitions model the activation of a
constraint, the application of rules to it, and its suspension if no more rule is applicable.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 793

Fig. 7. The parallel part of the refined CHRe semantics for 0-neighbor restricted rules.

These transitions are as in the standard refined semantics of CHR, except that here we take
care of locations and handle a propagation history.

• In the (Activate) transition, a CHR constraint c becomes active (with first occurrence
1) and is also introduced as identified constraint into the constraint store.

• The (Remove) transition applies a rule where the active constraint is removed. There
is a substitution θ under which constraints from the constraint store match the head
of the rule and satisfy its guard (written |= θ ∧G).
The auxiliary function DropIds removes the identifiers from identified constraints.

• The (Keep) transition is like the (Remove) transition except that the active constraint
c matches a kept constraint and it is checked if the application of the resulting rule
instance has not been recorded in the propagation history. If so, the active constraint
is kept and remains active. The propagation history is therefore updated. (It remains
unchanged in all other transitions.) The function Ids returns the identifiers of identi-
fied constraints.

• In the (Suspend) transition, the active constraint cannot be matched against its
occurrence in the rule head. One proceeds to the next occurrence in the rules of
the program. This makes sure that rules are tried in the order given in the program.

• The (Drop) transition, if there is no more occurrence to try, removes the active
constraint the goal store, but it stays suspended in the constraint store.

Localized parallel transitions. Figure 7 shows the parallel transitions. They are par-
ticularly simple. As usual, the transition (Intro-Par) says that any sequential transition is
a parallel transition. Transition (Parallel-Ensemble) allows to combine two independent
transitions on non-overlapping parts of the state (ensembles, i.e., sets of disjoint locations)
into one parallel transition. This means that computation steps on different localized states
can be executed in parallel.

9.4 Properties: Monotonicity, soundness and serializability

In the refined CHRe semantics, monotonicity holds with respect to locations, this means
computations can be repeated in any larger context of more locations. Serializability holds
in that every parallel CHRe computation can be simulated using sequential CHRe transi-
tions. We also prove soundness of the refined CHRe semantics with respect to the abstract
CHRe semantics.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

794 T. Frühwirth

We say that a CHRe program is locally quiescent (terminating) if given a reachable
state, we cannot have any infinite computation sequences that do not include the (Flush)
transition. Hence, local quiescence guarantees that each location will eventually process
the constraints delivered to its buffer.

Serializability and soundness of the encoding holds for quiescent programs: computa-
tions between commit-free states of 0-neighbor restricted encodings have a mapping to
computations of the original 1-neighbor restricted program.

The corresponding theorems and their detailed proofs can be found in the appendix of
Lam and Cervesato (2013).

9.5 Encoding 1- and n-neighbor rules in local rules

We give an encoding of the more general 1-neighbor restricted rules into local, i.e., 0-
neighbor restricted rules. We can do the same for n-neighbor restricted rules. In this way, a
programmer can use n-neighbor rules while the translation generates the necessary commu-
nication and synchronization between locations. The encodings are a block-free variation
of a two-phase commit consensus protocol between locations.

Two-phase-commit consensus protocol. The protocol consists of two phases:

• Commit-request phase (voting phase). The coordinator process informs all the par-
ticipating processes about the transaction and to vote either commit or abort. The
processes vote.

• Commit phase. If all processes voted commit, the coordinator performs its part of the
transaction, otherwise aborts it. The coordinator notifies all processes. The processes
then act or abort locally.

The standard protocol can block if a process waits for a reply. Not so in the variation we
use.

Encoding 1-neighbor restricted programs. According to the following scheme, we
translate each 1-neighbor restricted rule of the form

r : [X]Px, [X]Px’, [Y]Py \ [X]Sx, [Y]Sy <=> Gx,Gy | Body.

In the head, Px are the persistent constraints and Px’ are the non-persistent constraints.
Constraints are persistent if they are not removed by any rule in the program. In the guard,
Gx contains only variables from location X. In the rule scheme below, XYs contains all
variables from the rule head, and Xs only the variables from location x.

% Commit-Request Phase

% match and send request to neighbor location

request : [X]Px,[X]Sx ==> Gx | [Y]r_req(Xs).

% match and send commit to primary location

vote : [Y]Py,[Y]Sy \ [Y]r_req(Xs) <=> Gy | [X]r_vcom(XYs). % if Sx non-e.

vote : [Y]Py,[Y]Sy, [Y]r_req(Xs) ==> Gy | [X]r_vcom(XYs). % if Sx empty

% Commit Phase

% remove non-persistent constraints at primary location and send commit

commit : [X]Px \ [X]Px’,[X]Sx, [X]r_vcom(XYs) <=> [Y]r_commit(XYs).

% remove at neighbor location, add non-persistent and body constraints

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 795

act : [Y]Py \ [Y]Sy, [Y]r_commit(XYs) <=> [X]Px’, Body.

% otherwise abort, re-introduce removed constraints at primary location

abort : [Y]r_commit(XYs) <=> [X]Px’, [X]Sx.

The rule scheme uses different vote rules depending on the emptiness of Sx. If Sx is
empty, it should be possible to remove several instances of Sy with the same request. Note
that the rule scheme requires a refined semantics where rules are tried in the given order,
because we have to make sure that rule act is tried before the abort rule abort.

The rule scheme implements an asynchronous and optimistic consensus protocol be-
tween two locations of the ensemble. It is asynchronous because neither primary nor
neighbor location ever block or busy-wait for responses. Rather they communicate asyn-
chronously via the protocol constraints, while potentially interleaving with other computa-
tions. The temporary removal of non-persistent constraints in the rule scheme ensures that
the protocol cannot be interfered with. It is optimistic because non-protocol constraints
are only removed after both locations have independently observed their part of the rule
head instance. It is possible that some protocol constraints are left if the transaction did not
commit, but these can be garbage-collected.

We can generalize the above encoding to n-neighbor restricted rules.
CoMingle. This new programming language can be characterized as an extension of

CHRe for distributed logic programming (Lam et al., 2015; Cervesato et al., 2016). There
is a prototype on the Android operating system for mobile devices, see https://github.
com/sllam/CoMingle. One application was built both using CoMingle and by writing tra-
ditional code: The former was about one tenth of the size of the latter without a noticeable
performance penalty.

10 Models of concurrency in CHR

Theoretical and practical models of concurrency have been encoded in CHR. Such an
effective and declarative embedding holds many promises: It makes theoretical models
executable. It can serve as executable specification of the practical models. One can toy
with alternative design choices. The implementations can be formally verified and analyzed
using standard and novel CHR analysis techniques. Last but not the least, it allows to
compare different models on a common basis.

We will shortly introduce some common models of concurrency by their implementation
in CHR: STM, Colored Petri Nets, actors and join-calculus. Typically, soundness and
completeness results will prove the correctness of these embeddings.

10.1 Software transactional memory (STM)

We have already seen the description of STM and its use to implement parallel CHR in
Haskell in Section 6. Now we do it the other way round. For the STM model, as a starting
reference, see Shavit and Touitou (1997), for a high-level description, see Guerraoui and
Kapalka (2008). The paper (Sulzmann and Chu, 2008) gives a rule-based specification
of Haskell’s STM in parallel CHR which naturally supports the concurrent execution of
transactions.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

796 T. Frühwirth

We classify CHR constraints once more into operation constraints and data constraints.
We assume CHR rules where the head contains exactly one operation constraint and the
body contains at most one operation constraint.

Shared memory operations. We first model shared memory and its associated read and
write operations in CHR.

read : cell(L,V1) \ read(L,V2) <=> V1=V2.

write : cell(L,V1), write(L,V2) <=> cell(L,V2).

L is a location identifier and V1 and V2 are values. cell is a data constraint, read and
write are operation constraints. The write rule performs a destructive assignment to
update the value of the cell. With indexing and in-place constraint updates, the compiled
rule can run in constant time.

STM run-time manager in CHR. The effects of an STM transaction are reads and
writes to shared memory. The STM run-time must guarantee that all reads and writes within
a transaction happen logically at once. In case transactions are optimistically executed in
parallel the STM run-time must take care of any potential read/write conflicts. The STM
run-time must ensure that in case of conflicts at least one transaction can successfully
commit its updates, whereas the other transaction is retried.

To accomplish this behavior, we use for each transaction a read log and a write log.
Before we can commit the write log and actually update the memory cell, we first must
validate that for each cell whose value is stored in the read log, the actual value is still the
same.

In Figure 8, we specify the STM manager via CHR rules. It has been slightly simpli-
fied in this survey. Besides locations and values, we introduce an identifier for transac-
tions T. The operation constraints are read and write and the protocol constraints are
validate, commit and rollback, retry. The data constraint CommitRight acts as
a token a committing transaction has to acquire in order to avoid concurrent writes. The
constraint validate is issued at an end of the transaction if the CommitRight is available.
Rules for rollback and retry of transactions are not shown here for space reasons.

Soundness and correctness. Our implementation guarantees atomicity, isolation and
optimistic concurrency. It is therefore sound. It is correct: if a transaction commits suc-
cessfully, the store reflects correctly all the reads/writes performed by that transaction.

10.2 Colored Petri Nets (CPN)

Petri Nets are diagrammatic formalism to describe and reason about concurrent processes.
They consist of labeled places (©) in which tokens (•) reside. Tokens can move along
arcs passing through transitions () from one place to another. A transition may have
several incoming arcs and several outgoing arcs. A transition can only fire if all incoming
arcs present a token. On firing, all incoming tokens will be removed and a token will be
presented on each outgoing arc. CPN (Jensen, 1987) significantly generalize Petri Nets.
Tokens are colored and places are typed by the colors they allow. Transitions can have
conditions on tokens and equations that compute new tokens from old ones.

The paper (Betz, 2007) shows that (colored) Petri Nets can easily be embedded into
CHR. When CPNs are translated to CHR, color tokens are encoded as numbers. Place

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 797

Fig. 8. STM run-time manager in CHR.

��
��

��
��

��
��taekrofkniht

{0,1,2} {0,1,2 {} 0,1,2}

�� �0

1 2

�� �0

1 2

y = (x+1) mod 3

y = (x+1) mod 3

eat-think

think-eat

�

�

�

�

�

�

xy,xx

xy,xx

Fig. 9. Three dining philosophers problem as Colored Petri Net.

labels are mapped to CHR constraint symbols, tokens at a place to instances of CHR
constraints, transitions and their arcs to simplification rules. Incoming arc places form the
rule head, outgoing arc places form the rule body, and the transition conditions as well as
equations form the rule guard.

Example 10.1
For simplicity, we consider the dining philosophers problem with just three philosophers
as CPN in Figure 9. Each philosopher (and fork) corresponds to a colored token, given as a
number from 0 to 2. Two philosophers x and y are neighboring if y = (x+1) mod 3. Places
are think, eat and fork, transitions are eat–think and and think–eat.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

798 T. Frühwirth

The CPN of Figure 9 translates into the following two CHR rules:

think_eat : think(X), fork(X), fork(Y) <=> Y =:= (X+1) mod n | eat(X).

eat_think : eat(X) <=> Y =:= (X+1) mod n | think(X), fork(X), fork(Y).

Soundness and completeness. For both classical and CPNs, these correctness theorems
are proven for the translation into CHR.

10.3 Actor Model

In the Actor Model (Agha, 1986), one coordinates concurrent computations by message
passing. Actors communicate by sending and receiving messages. Sending is a non-blocking
asynchronous operation. Each sent message is placed in the actors mailbox (a message
queue). Messages are processed via receive clauses which perform pattern matching and
guard checks. Receive clauses are tried in sequential order. The receive operation is block-
ing. If none of the receive clauses applies, the actor suspend until a matching message is
delivered. Receive clauses are typically restricted to a single-headed message pattern. That
is, each receive pattern matches at most one message.

In Sulzmann et al. (2008), we extend the Actor Model with receive clauses allowing for
multi-headed message patterns. Their semantics is inspired by their translation into CHR.
We have implemented a prototype in Haskell https://code.google.com/archive/p/
haskellactor/.

Example 10.2
In the Santa Clause problem, Santa sleeps until woken by either all of his nine reindeer or
by three of his ten elves. If woken by the reindeer, he harnesses each of them to his sleigh,
delivers toys and finally unharnesses them. If woken by three elves, he shows them into his
study, consults with them on toys and finally shows them out. Here is a solution using the
proposed multi-head extension:

santa sanActor =

receive sanActor of

Deer x1, Deer x2, ..., Deer x8, Deer x9 -> harness, deliver, unharness.

Elf x1, Elf x2, Elf x3 -> enter_study, consult, leave_study.

This straightforward solution avoids the clumsiness of explicitly counting deers and
elves in the mailbox. There is an obvious direct embedding of the matching receive clauses
into CHR simplification rules.

Semantics of Actors with multi-headed message patterns. We study two possible
semantics for this extension, inspired by the standard refined semantics of CHR:

• The first-match semantics provides a conservative extension of the semantics of
single-headed receive clauses. This semantics guarantees monotonicity: Any suc-
cessful match remains valid if further messages arrive in the actors mailbox.

• The rule-order-match semantics guarantees that rule patterns are executed in textual
order. In this semantics, newly arrived messages can invalidate earlier match choices.

It will depend on the application in which semantics is the better choice.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 799

10.4 Join-calculus and join-patterns

In Join-Calculus (Fournet and Gonthier, 2002), concurrency is expressed via multi-headed
declarative reaction rules that rewrite processes or events. The (left-hand side of a) rule is
called join-pattern. They provide a high-level coordination of concurrent processes. The
thesis (Lam, 2011b) extends join-patterns with guards and describes a prototype implemen-
tation in parallel CHR compiled to Haskell, see http://code.haskell.org/parallel-
join.

Join-calculus with guarded join-patterns. A concurrent process (or event), say P, has
the form of a predicate. A reaction rule (join-pattern) rewrites processes. We introduce
guards into these rules:

Guarded Reaction Rule P1, . . .Pn if Guard ⇒ P′
1, . . .P

′
m

The join-calculus semantics is defined by a chemical abstract machine. This model spec-
ifies transformations using a chemical reaction metaphor. The chemical abstract machine
can be embedded in CHR, see Chapter 6 in Frühwirth (2009).

Example 10.3
A print job is to be executed on any available printer where it fits. So print jobs have a
size, and printers have a certain amount of free memory. This behavior is captured by the
following guarded reaction rule:

ReadyPrinter(p,m), Job(j,s) if m>s => SendJob(p,j)

There is an obvious direct translation into CHR simplification rules.

Implementation and experimental results. Standard CHR goal-based lazy matching
is a suitable model for computing the triggering of join-patterns with guards: Each process
(CHR goal) essentially computes only its own rule head matches asynchronously and then
proceeds immediately. We conducted experiments of our parallel join-calculus implemen-
tation with examples for common parallel programming problems. They show consistent
speed-up as we increase the number of processors.

11 Discussion and future work

We now present common topics and issues that we have identified as a result of this survey
and that lead to research questions for future work.

Syntactic fragments of CHR. The parallel and distributed semantics surveyed are con-
cerned with expressive Turing-complete fragments of CHR. Their properties are summa-
rized in Table 1. Except for the distributed semantics (CHRd and CHRe), they do not
allow for terminating propagation rules. In the distributed semantics of CHRd and CHRe,
one restricts rule heads to be sufficiently connected by shared variables, requiring direct-
indexed and n-neighbor (star-shaped) rules, respectively. The former is no real restriction,
the latter is.

Software implementations always presume Ground CHR (and so does CHRt). Hard-
ware implementations in addition rely on non-size-increasing rules which are still Turing
complete.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

800 T. Frühwirth

Table 1. Syntactic restrictions and properties of CHR parallel and distributed semantics

CHR semantics Syntactic restriction Monotonicity soundness serializability

Abstract par. Propagation rules do not terminate Yes

Refined par. No propagation rules Yes

CHRmp No propagation rules Soundness for deletion-acyclic programs

CHRt Ground data and operation constraints Yes

CHRd Direct-indexed rule heads Yes for ground confluent programs?

CHRe Ground star-shaped rule heads For quiescent programs

Sometimes the notion of constraints is too abstract, and one differentiates between data
and operation constraints. Operation constraints update data constraints. This dichotomy
clarifies programs like Blocks World and UF, is essential in the semantics of CHRtand in
the concurrency model of STM when encoded in CHR.

All example programs in the survey and in general many other sequential CHR pro-
grams can still be run in parallel without modification, since the syntactic restrictions are
observed as they cover expressive subsets of CHR. However, changes are necessary if the
program is not ground, for parallel execution, if the program contains propagation rules,
and for distributed execution if the rule heads are not sufficiently connected. This need
for program modifications weakens the promise of declarative parallelism, and therefore
(semi-)automatic methods of program transformation should be investigated. Note that
such transformations would be purely syntactical and do not require to come up with any
scheduling for parallelism.

Propagation rules. Surprisingly, while propagation rules seem perfect for paralleliza-
tion (because they do not remove any constraints), they are currently only supported in
distributed CHRd and CHRe (see Table 1). (In the abstract parallel semantics, they are
allowed, but do not terminate.) On the other hand, it seems possible to extend the refined
parallel semantics with propagation rules, either using the propagation history of CHRe
or the occurrence check approach of CHRd to avoid their trivial non-termination. The
former seems to come with some implementation overhead, since the data structure needs
to be updated in parallel. The latter approach does not work in all cases, but it could be
applicable to set-based semantics like CHRmp. As for a third possibility, in the literature on
optimizing CHR implementations, one can find program analyses that detect if propagation
rules can be executed without any checks. Ground CHR is a good candidate for avoiding
checks altogether, because constraints cannot be re-activated.

Semantics properties: Monotonicity, serializability and soundness. These properties
have been proven for all parallel CHR semantics based on multi-sets, for distributed CHRe
with the restriction to quiescent programs. Surprisingly, these properties do not hold in
general for the set-based semantics of distributed CHRd and massively parallel CHRmp.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 801

The papers on CHRd do not fully investigate these properties, while CHRmp is sound for
deletion-acyclic programs. Clearly, set-based semantics for CHR have to be studied more
deeply. There seems to be a mismatch between their elegance of the concept and its actual
behavior.

Program analysis. We should re-examine CHR program analysis for parallel and dis-
tributed CHR to see how they carry over. Termination corresponds to quiescence in the
concurrent context. There is a vast literature on (non-)termination and complexity anal-
ysis of CHR programs. Confluence is an essential desirable property of sequential CHR
programs. It already plays a role in parallel CHR for sound removal of transactions and
seems trivial in exhaustively parallel CHRmp. Confluence seems strongly related to sound-
ness and serializability properties of concurrent CHR semantics. Semi-automatic comple-
tion generates rules to make programs confluent. This method has been used in paral-
lelizing the UF algorithm and can be used for translating away CHR transactions. When
transactions are involved, confluence seems to avoid deadlocks. We also think that the
property of deletion-acyclicity of CHRmp has a broader application in rule-based systems.
It seems related to confluence and we think can be expressed as a termination
problem.

Software and hardware implementations. All software implementations surveyed are
available online for free download, the links have been given. The implementations cover
parallel CHR, set-based CHRd and distributed CHRe as well as CoMingle. All implemen-
tations restrict themselves to the ground subset of CHR. A full-fledged widely used stable
implementation of parallel CHR is still missing. It could serve as a basis to foster further
research and applications, as does the K.U. Leuven platform for sequential CHR. With
CoMingle, the situation seems better in the case of distributed CHR. In any case, more
evidence in the form of experimental results is needed to further confirm the promise of
declarative concurrency made by CHR.

Models of concurrency in CHR. Embedding models of concurrency in CHR is promis-
ing for understanding, analyzing and extending models, but still in its infancy. It is appeal-
ing because of the lingua franca argument for CHR: Different embeddings can be com-
pared on its common basis and fertilize each other. Conversely, the striking similarity of
the some models when encoded in CHR leads one to speculate about a generic concurrency
model that is a suitable fragment of CHR which could then be mapped to many existing
models, yielding a truly unified approach.

12 Conclusions

We have given an exhaustive survey of abstract and more refined semantics for parallel
CHR as well as distributed CHR. Most of them have been proven correct. These se-
mantics come with several implementations in both software and hardware. All software
implementations are available online for free download. We presented non-trivial classical
example programs and promising experimental results showing parallel speed-up. Last
but not the least, we reviewed concurrency models that have been encoded in CHR to
get a better understanding of them and sometimes to extend them. Most of these embed-
dings have been proven correct, i.e., sound and complete. Some embeddings are available
online.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

802 T. Frühwirth

In the discussion, we identified the following main topics for future work: Including
propagation rules into the parallel semantics and providing program transformations into
the expressive syntactic fragments for distributed CHR, investigate set-based semantics
and the deletion-acyclic programs, provide a full-fledged implementation of parallel CHR,
apply the wealth of existing program analyses for sequential CHR to distributed and par-
allel CHR programs and the embedding of concurrency models, and explore similarities
of the concurrency models embedded in CHR as lingua franca to come up with unified
models.

On a more general level, it should be investigated how the research surveyed here carries
over to related languages like constraint logic programming ones and the other rule-based
approaches that have been embedded in CHR. Overall, the CHR research surveyed here
should be related to more mainstream research in concurrency, parallelism and distribution.

Acknowledgements

We thank the anonymous referees for their helpful, detailed and demanding suggestions on
how to improve this survey.

References

ABDENNADHER, S. AND FRÜHWIRTH, T. 1998. On completion of Constraint Handling Rules. In
Proc. International Conference on Principles and Practice of Constraint Programming, M. J.
Maher and J.-F. Puget, Eds. Lecture Notes in Computer Science, vol. 1520. Springer, 25–39.

ABDENNADHER, S. AND FRÜHWIRTH, T. 1999. Operational equivalence of CHR programs
and constraints. In Proc. International Conference on Principles and Practice of Constraint
Programming, J. Jaffar, Ed. Lecture Notes in Computer Science, vol. 1713. Springer, 43–57.

ABDENNADHER, S. AND FRÜHWIRTH, T. 2004. Integration and optimization of rule-based
constraint solvers. In Proc. International Symposium on Logic-Based Program Synthesis and
Transformation, M. Bruynooghe, Ed. Lecture Notes in Computer Science, vol. 3018. Springer,
198–213.

ABDENNADHER, S., FRÜHWIRTH, T. AND MEUSS, H. 1999. Confluence and semantics of
constraint simplification rules. Constraints 4, 2, 133–165.

AGHA, G. 1986. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,
Cambridge, MA, USA.

BETZ, H. 2007. Relating coloured Petri nets to Constraint Handling Rules. In Proc. 4th Workshop
on Constraint Handling Rules, 33–47.

BETZ, H. 2014. A Unified Analytical Foundation for Constraint Handling Rules. BoD–Books on
Demand.

BETZ, H., RAISER, F. AND FRÜHWIRTH, T. 2010. A complete and terminating execution model for
constraint handling rules. Theory and Practice of Logic Programming 10, 597–610.

CERVESATO, I., LAM, E. S. L. AND ELGAZAR, A. 2016. Choreographic Compilation of
Decentralized Comprehension Patterns. Springer International Publishing, Cham, 113–129.

DUCK, G. J., STUCKEY, P. J., GARCÍA DE LA BANDA, M. AND HOLZBAUR, C. 2004. The refined
operational semantics of Constraint Handling Rules. In Proc. International Conference on Logic
Programming, B. Demoen and V. Lifschitz, Eds. Lecture Notes in Computer Science, vol. 3132.
Springer, 90–104.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 803

FOURNET, C. AND GONTHIER, G. 2002. The Join Calculus: A Language for Distributed Mobile
Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, 268–332.

FRÜHWIRTH, T. 2005a. Parallelizing union-find in Constraint Handling Rules using confluence. In
Proc. International Conference on Logic Programming, M. Gabbrielli and G. Gupta, Eds. Lecture
Notes in Computer Science, vol. 3668. Springer, 113–127.

FRÜHWIRTH, T. 2005b. Specialization of concurrent guarded multi-set transformation rules. In Proc.
International Symposium on Logic-Based Program Synthesis and Transformation, S. Etalle, Ed.
Lecture Notes in Computer Science, vol. 3573. Springer, 133–148.

FRÜHWIRTH, T. 2006. Deriving linear-time algorithms from union-find in CHR. In CHR ’06,
T. Schrijvers and T. Frühwirth, Ed. K.U.Leuven, Dept. Comp. Sc., Technical report CW 452,
49–60.

FRÜHWIRTH, T. 2009. Constraint Handling Rules (Monography). Cambridge University Press.

FRÜHWIRTH, T. 2015. Constraint handling rules – what else? In Rule Technologies: Foundations,
Tools, and Applications. N. Bassiliades, G. Gottlob, F. Sadri, A. Paschke and D. Roman, Eds.
Springer International Publishing, 13–34.

FRÜHWIRTH, T. 2016. The CHR Web Site. Accessed May 2018 URL: www.constraint-

handling-rules.org. Ulm University.

FRÜHWIRTH, T. AND HOLZBAUR, C. 2003. Source-to-source transformation for a class
of expressive rules. In Proc. Joint Conf. Declarative Programming APPIA-GULP-PRODE,
F. Buccafurri, Ed. 386–397.

FRÜHWIRTH, T. AND RAISER, F., Ed. 2011. Constraint Handling Rules: Compilation, Execution,
and Analysis. Books on Demand.

GABBRIELLI, M., MEO, M. C., TACCHELLA, P. AND WIKLICKY, H. 2013. Unfolding for CHR
programs. Theory and Practice of Logic Programming, 15, 3, 1–48.

GOLDBERG, A. V. AND TARJAN, R. E. 1988. A new approach to the maximum-flow problem.
J. ACM 35, 4, 921–940.

GUERRAOUI, R. AND KAPALKA, M. 2008. On the correctness of transactional memory. In Proc.
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM, New
York, NY, USA, 175–184.

HOLZBAUR, C., GARCÍA DE LA BANDA, M., STUCKEY, P. J. AND DUCK, G. J. 2005. Optimizing
compilation of Constraint Handling Rules in HAL. Theory and Practice of Logic Programming 5,
4–5, 503–531.

JENSEN, K. 1987. Coloured Petri Nets. Springer, Berlin, Heidelberg, 248–299.

LAM, E. S. 2018. Concurrent CHR, chapter 5. In Constraint Handling Rules: Compilation,
Execution, and Analysis, T. Frühwirth and F. Raiser, Eds. Books on Demand, 121–155.

LAM, E. S. AND CERVESATO, I. 2013. Decentralized execution of constraint handling rules for
ensembles. In Proc. 15th Symposium on Principles and Practice of Declarative Programming.
ACM, 205–216.

LAM, E. S. AND SULZMANN, M. 2007. A concurrent constraint handling rules semantics and
its implementation with software transactional memory. In Proc. ACM SIGPLAN Workshop on
Declarative Aspects of Multicore Programming. ACM Press.

LAM, E. S. AND SULZMANN, M. 2009. Concurrent goal-based execution of constraint handling
rules. Theory and Practice of Logic Programming 11, 841–879.

LAM, E. S. L. 2011. Parallel execution of constraint handling rules – Theory, implementation and
application. Ph.D. thesis, School of Computing, Department of Computing Science, National
University of Singapore.

LAM, E. S. L., CERVESATO, I. AND FATIMA, N. 2015. Comingle: Distributed logic programming
for decentralized mobile ensembles. In Coordination Models and Languages - 17th IFIP WG 6.1
International Conference, COORDINATION 2015, 51–66.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

804 T. Frühwirth

MEISTER, M. 2007. Concurrency of the preflow-push algorithm in constraint handling rules. In
Proc. 12th International Workshop on Constraint Solving and Constraint Logic Programming,
160–169.

MEISTER, M. AND FRÜHWIRTH, T. 2007. Reconstructing almost-linear tree equation solving
algorithms in CHR. In Proc. Annual ERCIM Workshop on Constraint Solving and Constraint
Logic Programming, 123.

RAISER, F., BETZ, H. AND FRÜHWIRTH, T. 2009. Equivalence of CHR states revisited. In Proc.
Constraint Handling Rules, F. Raiser and J. Sneyers, Eds. K.U. Leuven, Dept. Comp. Sc.,
Technical report CW 555, 33–48.

RAISER, F. AND FRÜHWIRTH, T. 2010. Exhaustive parallel rewriting with multiple removals. In
WLP ’10, S. Abdennadher, Ed.

SARNA-STAROSTA, B. 2008. Constraint-Based Analysis of Security Properties. VDM Verlag,
Saarbrücken, Germany.

SARNA-STAROSTA, B. AND RAMAKRISHNAN, C. 2007. Compiling constraint handling rules
for efficient tabled evaluation. In Proc. 9th International Symposium on Practical Aspects of
Declarative Languages, M. Hanus, Ed. Lecture Notes in Computer Science, vol. 4354. Springer,
170–184.

SARNA-STAROSTA, B., STIREWALT, R. E. K. AND DILLON, L. K. 2007. A model-based design-
for-verification approach to checking for deadlock in multi-threaded applications. International
Journal of Software Engineering and Knowledge Engineering 17, 2, 207–230.

SCHRIJVERS, T. AND SULZMANN, M. 2008. Transactions in constraint handling rules. In Proc.
24th International Conference on Logic Programming. Lecture Notes in Computer Science,
vol. 5366. Springer, 516–530.

SHAVIT, N. AND TOUITOU, D. 1997. Software transactional memory. Distributed Computing 10, 2,
99–116.

SNEYERS, J. 2008. Turing-complete subclasses of CHR. In Proc. 24th International Conference on
Logic Programming. Lecture Notes in Computer Science, vol. 5366. Springer, 759–763.

SNEYERS, J., SCHRIJVERS, T. AND DEMOEN, B. 2009. The computational power and complexity
of Constraint Handling Rules. ACM TOPLAS 31, 2, 3–42.

SNEYERS, J., VAN WEERT, P., SCHRIJVERS, T. AND DE KONINCK, L. 2010. As time goes by:
Constraint Handling Rules – A survey of CHR research between 1998 and 2007. TPLP 10, 1,
1–47.

SULZMANN, M. AND CHU, D. H. 2008. A rule-based specification of Software Transactional
Memory. In LOPSTR ’08, Pre-proceedings, M. Hanus, Ed.

SULZMANN, M. AND LAM, E. S. 2007. Compiling constraint handling rules with lazy and
concurrent search techniques. In Proc. 4th Workshop on Constraint Handling Rules, 139–149.

SULZMANN, M. AND LAM, E. S. 2008. Parallel execution of multi-set constraint rewrite rules.
In Proc. 10thInternational Conference on Principles of Practical Declarative Programming,
S. Antoy, Ed. ACM Press, 20–31.

SULZMANN, M., LAM, E. S. AND VAN WEERT, P. 2008. Actors with multi-headed message receive
patterns. In Proc. 10th International Conference on Coordination Models and Languages, D. Lea
and G. Zavattaro, Eds. Lecture Notes in Computer Science, vol. 5052. Springer, 315–330.

TARJAN, R. E. AND LEEUWEN, J. V. 1984. Worst-case analysis of set union algorithms. Journal of
the ACM 31, 2, 245–281.

TRIOSSI, A. 2011. Hardware execution of constraint handling rules. PhD Thesis, Universita Ca
Foscari di Venezia.

TRIOSSI, A., ORLANDO, S., RAFFAETÀ, A. AND FRÜHWIRTH, T. 2012. Compiling chr to parallel
hardware. In Proc. 14th Symposium on Principles and Practice of Declarative Programming.
ACM, 173–184.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

Parallelism, concurrency and distribution in CHR 805

VAN WEERT, P. 2010. Efficient lazy evaluation of rule-based programs. IEEE Transactions on
Knowledge and Data Engineering 22, 11, 1521–1534.

ZAKI, A., FRÜHWIRTH, T. AND GELLER, I. 2012. Parallel execution of constraint handling rules
on a graphical processing unit. In CHR ’12, J. Sneyers and T. Frühwirth, Eds. K.U. Leuven, Dept.
Comp. Sc., Technical report CW 624, 82–90.

https://doi.org/10.1017/S1471068418000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000078

