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Abstract

This paper addresses the effect of general Lewis number and heat losses on the calculation
of combustion wave speeds using an asymptotic technique based on the ratio of activation
energy to heat release being considered large. As heat loss is increased twin flame speeds
emerge (as in the classical large activation energy analysis) with an extinction heat loss.
Formulae for the non-adiabatic wave speed and extinction heat loss are found which apply
over a wider range of activation energies (because of the nature of the asymptotics) and
these are explored for moderate and large Lewis number cases—the latter representing the
combustion wave progress in a solid. Some of the oscillatory instabilities are investigated
numerically for the case of a reactive solid.

1. Introduction

Earlier work [8, 12] has explored the classical combustion wave (premixed flame
propagation) problem using a different grouping of parameters to that used in the
past. In particular, instead of using asymptotic analysis based on activation energy
being large, the same equations have been recast in terms of the ratio of activation
energy to heat release. This theory is distinct from the traditional large activation
energy approach, since there is no one to one mapping between the two approaches.
Nevertheless there is a good correspondence between the two theories, and arguably
the new approach has the distinct advantage of still being valid for quite low activation
energies (see [12, Figure 3]).

The present approach has more readily shown the bifurcation behaviour that can
occur at moderate values of the ratio (/?) of activation energy to heat release. Such
instabilities have been well known in the work of Bayliss and co-authors [2, 5]. The
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later work of Metcalf et al. [10] and Balmforth et al. [1] has also shown that this is
a general phenomenon that can occur at general Lewis numbers and with different
reaction terms. For Arrhenius kinetics with infinite Lewis number (that is, solid fuels)
there are indications (known experimentally [11] and confirmed numerically [4, 6]
that there is a possible period-doubling route to chaos. The paper by Weber et al. [12]
was able to confirm this with an accurate value determined for the minimum wave
speed.

It is known from classical large activation energy analysis that heat losses have a
great effect on the stability of combustion fronts, and with the new scheme for the
grouping of the parameters, Mercer et al. [9] have shown numerically that oscillatory
instabilities occur for non-adiabatic systems with again a period-doubling route to
chaos. This present paper concentrates on the influence of global heat loss on the
propagation speeds of combustion fronts for general Lewis numbers. In particular we
derive modified analytical expressions for the wave speed using large fi asymptotic
analysis (rather than large activation energy asymptotics). As mentioned earlier, fi is
the ratio of activation energy to heat release.

There is a wide range of reaction possibilities. Normally for the common hydro-
carbon reactions the heat release is large but generally the activation energy is larger
still, so that fi is then large. Only if the activation energy is low with high heat release,
would the analysis here not be valid, and this is not usually found in practice. The
remaining case of low heat release with moderate activation energy is feasible since
then the wave propagates with a thicker reaction region (since the activation tempera-
ture is low) but with a low temperature rise. Though the kinetics can certainly not be
described accurately by one-step chemistry as used here, qualitatively an example of
low heat release with moderate activation energy is the 'cool flames' phenomena ([7,
pp. 200-204]). Thus there can be practical cases of burning where heat release is small
and activation energy is not great, and consequently this theory has the advantage of
being able to widen the applicability of asymptotic analysis to similar cases in gases
and solids where a relatively low activation energy value pertains.

Using this approach, extinction values of heat loss for these fronts are derived
and we further show some numerical results concerning the solid fuel oscillatory
instability.

2. Mathematical model

The derivation of the governing equations is well known from earlier papers (see,
in particular, [12]). For the case of global heat loss, the non-dimensional forms of the
differential equations are

^ Hfl)=O, (2.1)

https://doi.org/10.1017/S1446181100013638 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013638


[3] Non-adiabatic combustion waves for general Lewis numbers
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FIGURE 1. Schematic of combustion wave with heat loss.

dt-
(2.2)

where it should be recognised that % = x — ct is a coordinate following the combus-
tion wave travelling with speed c and time t is non-dimensionalised with respect to
a characteristic time to s cp(E/R)/QA, with distance x non-dimensionalised with
respect to a characteristic length d0 = V(&/P) (E/R)/QA. The parameter group-
ings are as follows: Lewis number L = k/(pDcp), heat loss £ s hSEf(VpQAR),
ratio of activation energy to heat release ^ = Ecp/RQ, temperature u = RT/E,
where k/pcp is thermal thermal diffusivity (m2s~]) (it, p and cp are thermal con-
ductivity (Wirr'K"1), density (kgm~3) and specific heat (Ikg^K"1) respectively),
h is an overall heat transfer coefficient (Wm~2K"1)) 5 is surface area (m2), V is
volume (m3), E is activation energy (Jmol"1), Q is the heat of reaction (Jkg"1),
A is the pre-exponential reaction constant (s"1) and R is the Universal gas constant
(8.314 Jmol^'K"1). In these equations y represents the mass fraction of fuel and the
temperature T (K) is non-dimensionalised with respect to the activation temperature
E/R, rather than the ambient temperature.

A schematic of the propagating combustion wave is given in Figure 1. As indicated
in Figure 1, the boundary conditions are

+oo : u = ua, y = 1,

- o o : u = ua, y = 0.

(2.3a)

(2.3b)

A point of discussion is relevant here concerning the approach to solving (2.1)
and (2.2). If one was seeking to solve these equations without first applying some
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asymptotic limit, and with full account taken of the ambient temperature as a parameter,
then the approach of using an ignition temperature (such as that used by Bayliss and
Matkowsky [3]) would be necessary, coupled with a rescaling of temperature with a
consequent adjustment to the form of the reaction term. We do not use an ignition
temperature here since the asymptotic analysis considered later in Section 3 naturally
brings in an inner region where the reaction dominates, but is negligible outside
such a zone. The boundary conditions (2.3), giving the same boundary condition on
temperature, are a result of the slow decay to the original ambient temperature Ta

(non-dimensionally ua) at f = — oo on the equilibrium side. Later it is assumed that
ua = 0 with little lost in the main results—particularly concerning extinction.

3. Exact integral and asymptotic analysis, finite Lewis number

3.1. Exact integral By multiplying (2.2) by 1//J and adding it to (2.1), we have the
derived result

Integrating this result from —oo to +00 implies the following result for wave speed:

/•+00

c = 01 (u-ua)d$. (3.2)
J—00

Note that as I -»• 0, so the temperature tail shown in Figure 1 extends to infinity
with c reaching its adiabatic value. In this work I will always be considered small,
that is o(l). The cooling tail is in fact characterised by a length of O(t~x).

3.2. Outer zone asymptotics Away from the reaction zone, the solution for tem-
perature and fuel in the preheat and equilibrium zones must satisfy

d2u du
-T7T + c-nr-^(«-«a) = 0,

L d$2 d%

This is on the basis of u <SC 1 in the preheat zone, and y -> 0 in the equilibrium zone.
For £ > 0 on the cold (pre-heat) side, the solutions fitting the boundary conditions are

u = ua + (uf- «fl)e~m?, (3.3)
y i e (
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where

Non-adiabatic combustion waves for general Lewis numbers

(> 0), (3.4)
z z

and Uf represents the flame temperature, that is, uj = u\$=o. For £ < 0 on the hot
(equilibrium) side, the solutions fitting the boundary conditions are

where

u = ua + (uf — u

+

(3.5)

(3.6)

(3.7)

Substituting these approximate solutions into the wave speed equation (3.2) implies

f°- f+°°
c « Pi (w - ua) d% + PI (M - ua) d%

J— oo . /o+

that is,

-+ U (uf -ua). (3.8)

Note as I -> 0 so uf -> Mad = ua + 1/fi, so that adiabatic conditions satisfy (3.8) as
a special case.

3.3. Inner zone asymptotics In the inner reaction zone we re-scale the temperature
and space. Thus we define

t
= " a d + - =

p
+

p pand

X =

(3.9a)

(3.9b)

where u^ is the adiabatic temperature and x is the rescaled space variable. Conse-
quently in this zone, the exponential in the reaction zone can be written

e~l/u = exp

; exp 1 - ~a— 1 * exp + —— I ,
. «ad V ^Mad/J V "ad Pu^J
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and the two differential equations in the inner zone to leading order in P~l become

dX
2

d2y

= 0 and (3.10)

Ldx2 '

so that to leading order, the equation eliminating the reaction rate (3.1) becomes

d2d> 1 d2y
-r-r + - - r4 = 0.

(3.11)

Integrating this equation once yields

d^_ \_dy_ _
dx L dx

where c\ is a constant. Matching with the equilibrium solutions at f = — oo (see
(3.5M3.7)) requires

d<p du

0-

Consequently under the p —>• oo limit (3.12) gives
Note that for I small, then from (3.7),

- u a ) = — ( 1 + 0 U ) . (3.12)

= 0, and so c\ is zero.

c c small).

Consequently integrating (3.11) a second time yields

<p + y/L = c2,

where c2 is a constant. Matching on the hot side again gives

0l-oo . . , . _
—7— = M | ? = 0 . - Mad, With yUoo = 0.

If we define

4>f = POtf ~ «ad).

(3.13)

(3.14)

(3.15)

(3.16)

then the condition (3.15a) becomes #|_oo = <£/. so that c2 is simply <j>f. Noting then
from (3.14) that y = —L((f> — <pf), we then obtain the single equation in the inner
zone from (3.10):
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with boundary conditions on the equilibrium side (f = - co ) :

= 0.
JO

This single differential equation can be integrated once to give

2 " U x J = L e ' " 7 , .
If we l e tp ' == —((f>' — 4>f)/Puli, p = —(<f> — 4>f)/Puli, then

- I — ) = Lp-2u>*///J ""e^17""1 / p'e-p'dp'. (3.17)
2 \dx / Jp'=o

Upon integration, (3.17) gives

(— I ^ Lp U dC ""g I — r 1 I g "• + 1 I . (3.1o)

dXJ LV ^«^ / J
This solution for the inner gradient in temperature must now be matched to the outer
temperature solution (3.3) on the preheat side where £ = +oo. Thus

d$_ /-; du

dx +OO o+

which using (3.16) gives

From (3.9b), <p = P(u - u^) = P(u - ua) - 1, so that as x
Consequently the matching of gradients ((3.18) and (3.19)) as ;
result

1

(3.19)

co, 4> -*• - 1 .
-> oo gives the

"* IY X /7 - lj. (3.20)

This result matches a leading order outer zone temperature gradient with an inner
zone temperature gradient which includes higher order terms. Hence it is recognised
that there will therefore be extra terms which strictly could be balanced by taking the
outer expansion to the next order—clearly not possible in a tractable way analytically
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here. That these terms do not affect the leading order calculation of wave speed is
confirmed by the earlier paper ([12]) where exactly the same approach was used,
and it was shown that there is excellent agreement between numerical results and
predictions from the large fi asymptotic analysis. This analysis is not the same as that
based on large activation energy, and the large /$ wave speed formula for wave speed
does not in any way actually include the classical large activation energy result, since
(as explained in the introduction) there is no one to one mapping between the two
approaches—that is, by definition the parameter fi in the current method is composed
of the ratio of two parameters (non-dimensional activation energy E/RT^ and non-
dimensional heat release Q/cp 7^) in the classical approach. Nevertheless, as the
following pages show, there are additional terms initially carried in this non-adiabatic
analysis, and recognising that we actually only want the leading estimates of heat loss
affected wave speed, we later in this work simplify (3.20) to (3.26) and then (3.33),
so that carried in this result are only the main terms necessary to maintain the balance
of gradients implied in the limit </>—•— 1.

3.4. Wave speed formula for non-adiabatic conditions The result (3.20) is now
coupled with the result for c ((3.8)) from the exact integral, which using (3.9b) can be
written c = y/c2 + 4£(1 + <f>f).

As stated after (3.13), £ is regarded as o(l), so that to leading order (3.21) yields
the following connection between (f>f, I and c:

that is,

l « ( l + 2 £ / c 2 + • • • ) ( !+ </>/)• (3.21)

Thus

21 21

Performing a similar expansion for m in (3.4) we find

c c ( 21 \ I
m « - + - 1 + — H , that is, m& c+ - (3.23)

2 2 \ c2 / c
and thus

m(l + 0 / ) « s c - - . (3.24)
c

Substituting results (3.22)-(3.24) into (3.20) then yields the following transcendental
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equation for the wave speed c:

P"a
(3.25)

where uaA = ua

Thus for a given £ and fi, one formally can find the wave speed c. The expression
(3.25) becomes a little easier to manipulate with little loss of generality if we make
the approximation ua —> 0 (see [12]) so that u^ « l/y6 and consequently the result
(3.25) becomes the simpler expression

(3-26)

For adiabatic conditions I -> 0 with c -> cad, (3.26) collapses down to

^ = fije-*[eP - 1 - fl, (3.27)

which for L = 1 is the same result as in Weber et al. [12]. Equation (3.26) and the
adiabatic solution (3.27) are plotted for L — 1 in Figure 2 for low heat loss, and clearly
confirm the well-known result that for a given fi with small heat loss I there are two
main solutions with an extinction point where the two solutions merge. Theoretically
there are also other low c solutions, from the full formula, but it is unlikely that these
are practically relevant. Numerical solutions of the full system (2.1), (2.2) and (2.3)
are also marked on this plot as the dashed lines.

For large yS, yet further simplification of (3.26) and (3.27) can be made where the
terms other than the exponential in the square bracket are small in comparison to the
exponential term. Hence we obtain

(3.28a)

and

Cad « y/(2L/P)e-'. (3.28b)

Although (3.28a) is not plotted, it is close to the curves 'b' and 'c' illustrated in
Figure 2 for I = 0.00001 and I = 0.00002.
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0.02

FIGURE 2. Non-adiabatic wave-speed formula given in (3.26) (solid lines) and numerical solutions to the
full system (dashed lines) for Lewis number L = 1 and various heat losses (a) I = 0, (b) I = 0.00001,
(c) I = 0.00002. Note the multiple wave speeds for the non-adiabatic cases and the subsequent extinction
point.

3.5. Extinction heat loss and wave speeds From (3.28), for large fi we can deduce
an approximate extinction condition since

^ = c2ln(cad/c), (3.29)

so that d(f}£)/dc = 0 when c = 2cln(Ca<i/c), which implies that at this turning point,

Ce«/Cad = \l-fe = 0.607 . . . , (3.30)

where the subscript ext stands for extinction and so

= 0.184... =» 4x, = L/(P2el+l>), (3.31a,b)

where the second expression uses the approximate formula for ĉ d from (3.28b).
Figure 3 plots out the simpler expression, derived from (3.29):

(3.32)

which essentially encapsulates the major effect of heat loss which is either to predict
a critical extinction heat loss, or for a given heat loss, a critical extinction value for
the ratio fi of activation energy to heat release.

However this approximation is not really accurate enough in determining the ex-
tinction heat loss £ea. For the case plotted in Figure 2 for I = 0.00002, it can be seen
that the critical fi value from the full formula is about 6.3, with the corresponding
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FIGURE 3. Approximate extinction heat loss and wave speed for combustion waves (finite Lewis number).

critical wave speed to be near 0.01 (refer to the solid line (c) in Figure 2). From the
above approximate formula, for I = 0.00002, the critical fi is about 6, with c^ « 0.03,
so that c « 0.607 x 0.03 ~ 0.018, so that the error is in the region of 6%.

A better approximation is to regard only t/c <$C 1 in (3.26). Near extinction
conditions this is always true. One then obtains

(3.33)

Differentiating and insisting that dl/dc is zero for the turning points leads to the
following relation at extinction:

(3.34)

(3.35)

(3.36)

- 2£/c2)

By defining

r = 0(1 - 21/c2),

and dividing (3.34) by (3.33), it can then be deduced that at extinction

er - 1 - r
er — 1

and reversing definition (3.35), and using (3.33) for c2, we have also at extinction that

L <e'-\-rYL
- *

(3.37)
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FIGURE 4. Extinction heat loss lcu plotted against ratio /S of activation energy to heat release for various
Lewis numbers L. The solid lines use (3.36) and (3.37), whilst the dotted lines are the results from the
crude approximation resulting in (3.31b).

Equations (3.36) and (3.37) can then be used to calculate to much greater accuracy
the extinction heat loss. The results from using these are shown in Figure 4.

It is evident from maxima in the plots in Figure 4 that for very small f3 the other
unrealistic turning points are picked up (shown in Figure 2 bottom left). The realistic
section of the curves in Figure 4 is the right-hand part where in the log plot the
curves are almost a straight line with constant gradient. The gradient is consistent
with (3.31b), but the shift in the values is important for accuracy, and (3.36) and
(3.37) represent a significant correction to the standard use of (3.31b) for extinction
calculations.

Equations (3.33), (3.36) and (3.37) represent the main findings from the analysis
of this paper, namely that by using the large /$ analysis (as against large activation
energy asymptotics) one can obtain a more accurate formula for non-adiabatic wave
speeds coupled with extinction conditions.

4. Analysis for solid fuels (infinite Lewis number)

4.1. Exact integral and outer zone asymptotics For infinite Lewis number (solid
fuels) a similar analysis is possible with the added benefit that an explicit formula for

https://doi.org/10.1017/S1446181100013638 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013638


[13] Non-adiabatic combustion waves for general Lewis numbers 13

the ratio of the fuel (y) is possible. For infinite Lewis number L, (2.2) enables the
immediate substitution of ye~i/u = (c/P)(dy/d%) to be made into (2.1) which now
becomes

d2u du c dy
+ c + Ku-ua) = O. (4.1)

The exact integral analysis is similar to the last section with c governed by the integral
(see (3.2)): c = pi f_™(u — ua) d%. However unlike in the previous section, the first
integration of (4.1) enables an explicit formula for y to be found:

y = ^-[ (u-ua)d!--P(u-ua)-^,
c y_M cd%

so that a single differential equation in u alone can be formed,

£ + 4 + [* f („ - ».)df - fiiu - u.) - 1±\ e-» - «. - „.) = 0.
d$2 d% I c ./_«, c d$ J

The outer zone asymptotic analysis for large fi yields the same leading order solutions
for temperature either side of the combustion wave (see (3.3) and (3.5))

u = ua + {uf - ua)e~mi and u = ua + (uf - Ma)en|,

so that one still obtains the same form for the wave speed relationship (3.8)

c * pjc1 + 4l(uf - ua). (4.2)

4.2. Inner zone asymptotics In the inner zone, the re-scaling of temperature is
identical, but matching requirements lead to a different natural scaling for the new
inner stretched coordinate JJ:

Consequently the differential equation (3.35) in the inner zone becomes

dr)2 dr] IPcJ^ c dr\ J

p
and to leading order

dry- car]
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In a similar way as with the general Lewis number case, the relationship for wave
speed (4.2) can be written a s c % -Jc2 +4€(1 + </>/), where matching of temperature
either side of the reaction zone leads as before to 4>\-oo = 4>f and <p\oo = — 1. With t
regarded as o(l), the same result for the small drop in temperature at the flame and its
connection to heat loss is found from (4.2):

4>f * - 2 1 / c ? . (4.4)

Integration of the inner zone differential equation (4.3) yields

drj c

Matching of this solution for the inner gradient in temperature to the outer temperature
solution (3.3) on the preheat side where £ = +00 gives

+0O 1%
m

o+
= -m(uf - ua) = -— (1 + 4>f)

P

Noting that as r) —• oo, </>—>•— 1 and using similar reasoning to the previous section
(as (3.24)) that m(l + 4>f) ^ c — Z/c, we obtain the analogue of (3.25) for the wave
speed for solid fuels (L = oo) with heat losses:

C C
) • (4.5)

4.3. Heat loss and multiple wave speeds for moderate P ratio As with the
equivalent result (3.25) for non-infinite Lewis numbers, there is little loss of generality
if we take ua -*• 0, in which case the result (4.5) becomes

c - I = Le-P (e-W* - e-l>) , (4.6)
c c \ I

which checks with the result in Weber et al. [12] c = *Je~P{\ — e~P) for adiabatic
conditions, that is, when I —> 0.

Figure 5 shows the multiple wave speeds that pertain to the formula (4.6) particularly
at moderate /3 values. Marked on this figure are the numerical results as well, and
locations where known oscillatory instabilities occur [9] (the maximum and minimum
wave speeds in the oscillatory region are shown). The important difference in the case
of solid fuels is that this instability is much more readily obtained and on the figure
below corresponds to the slow branch of the wave speed plot.
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o.oa

0.04

0.02

FIGURE 5. Solid fuel (L = oo) wave speeds from (4.6) shown as the solid lines (a) I = 0, (b) I = 0.00005.
Note the multiple wave speeds for the non-adiabatic case. Also shown are the numerical results (dashed
lines); the maximum and minimum wave speeds have been plotted in the oscillatory regions.

4.4. Extinction Further simplification of result (4.4) can be obtained by again
regarding l/c <£ 1, so that we have a very good approximation without losing the
main characteristics of the transcendental wave speed formula:

c2 = and c2, = e~> ( l -

leading to

(4.7)

(4.8)

This curve is essentially the top part of the shape shown in Figure 5, so that it captures
the main dual wave speed phenomenon obtained with heat loss. If one ignored the
second and third terms in the square bracket, then one obtains the same approximate
expression (3.32) as we had for non-infinite Lewis number combustion waves. The
more accurate result however is summarised by (4.7) and (4.8). For the infinite Lewis
number case considered in this section, it is found in this case that for fi values over
about 5, the critical extinction heat loss teu and wave speed cex, are well approximated
by (3.30) and (3.31a). Thus for solid combustion one can still use c^Jc^ « 0.61 and
^ W c 2 ^ 0.185.

5. Conclusions

Heat losses and general Lewis number have been added to the combustion wave
speed analysis of Weber et al. [12] using an asymptotic analysis based on the ratio of
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activation energy to heat release being large (as against the more traditional analysis
of activation energy alone). Multiple wave speed solutions have been obtained—these
are more pronounced in the solid fuel case for moderate values of the ratio p. A
turning point in the speed curves indicates the extinction condition. This was further
analysed to obtain an approximate extinction condition based solely on the ratio of
the activation energy to the heat release, the heat loss and the adiabatic wave speed.

These formulae apply over a wider range of activation energies than the classical
approximations based on large activation energy asymptotics.

For both gaseous and solid fuels, extinction criteria have been established and good
comparison with full numerical solutions has been obtained.

Of particular note is that as reported by Mercer et al.[9] for solid fuels, the numerical
results clearly show that the oscillatory instability is much more readily observed as
the heat loss is increased. Illustrative calculations of maximum and minimum wave
speeds have been shown for a typical case with and without heat loss.
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