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Introduction

Let M be an w-dimensional (n > 2) connected C°°-manifold with a linear con-

nection. For simplicity, tensor fields on M will simply be called tensors on M.

A tensor S on M is said to be parallel if its covariant derivative is everywhere

zero in M, i.e., if FS = 0. S is said to be recurrent if its covariant derivative

is equal to the tensor product of a covector and S itself, i.e., if ΓS= W®S,

where W is called the recurrence covector. A recurrent tensor S on M is said

to be almost-parallel if there exists on M some linear connection with respect

Received March 26, 1963.

67

https://doi.org/10.1017/S002776300001134X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001134X


68 YUNG-CHOW WONG

to which S is parallel. In these definitions, we assume that neither the tensor

S nor the covector W is everywhere zero in M> so that a tensor cannot be

both recurrent and parallel with respect to the same linear connection.

Following a study by H. S. Ruse of 3- and 4-dimensional Riemannian mani-

folds whose curvature tensors are recurrent, A. G. Walker ([11]) defined re-

current tensors in w-dimensional Riemannian manifolds and studied their relations

with parallel fields of planes. These works of Ruse and Walker, though origi-

nally of a local nature, have led to developments in two directions: Linear con-

nections with recurrent curvature (Wong [14]) and existence of linear con-

nections with respect to which given fields of planes are parallel1*. As recurrent

tensors and parallel fields of planes are closely related concepts, it is natural

to study the existence of linear connections with respect to which given tensors

are parallel or recurrent. This problem has been on the author's mind since

the main results in Wong [13] were obtained which seemed to provide a natural

method to deal with the problem. But it was perhaps M. Kurita ([7]) who first

studied the existence of linear connections with respect to which a given tensor

is parallel.

In this paper, we first give an improvement of a result of Kurita's and a

generalization to the case of recurrent tensors (Theorems 1.1-1.3). It follows

from our results that with each parallel or recurrent tensor of type (r, s) on

M there is associated a tensor of type (r, s) over the w-dimensional (real)

vector space Rn. This gives rise to the question: Under what conditions will

a recurrent tensor be almost-parallel? It turns out that the answer is quite

different according as the recurrent tensor is of type (r, s), r*=sy or of type

(r, r). In fact, we prove that every recurrent tensor of type (r, s), r^s, is

almost-parallel (Theorem 2.1) and that a recurrent tensor of type (1,1) is

almost-parallel iff it is nilpotent (Theorem 2.9). But the case of recurrent

tensors of type (r, r), r > 2 , is much more difficult. It leads to an equation

which can be written symbolically as

where C is the tensor of type (r, r) over Rn associated with the recurrent

tensor, k C denotes the action on C induced from a non-singular linear trans-

1} For literature on those topics, see bibliographies in Willmore [12], pp. 276-278.
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formation k in Rn

y and <J>0 is a real number. A study of the consistency of

this equation yields some necessary and some sufficient conditions for a recurrent

tensor of type (r, r) to be almost-parallel and the theorem that for a recurrent

tensor of type (r, r) which is not almost-parallel, the recurrence covector is

locally a gradient (Theorem 2.4).

We shall give a fuller description of these results at the beginning of § 2,

but would like to mention here that our study of the equation k C-σC in the

field of real numbers completely solves the problem of consistency of this

equation in an algebraically closed field, giving a remarkable and perhaps im-

portant result (Proposition 3.1).

The author is grateful to Professor S. Ishihara for the many stimulating

discussions on this subject, and to Professor H. C. Wang for supplying Lemma

1.3 and its proof. The author is also grateful to his young colleagues Mr. C.

S. Hsu who read through critically a first draft of the manuscript and Mr. K.

Y. Lam who helped in certain computations and checking in §§ 3 and 4.

1. Parallel or recurrent tensors on M

The purpose of this section is to prove Theorems 1.1-1.3 which give a

necessary and sufficient condition for the existence on M of a linear connection

with respect to which given tensors are parallel or recurrent. Some applications

are given.

1.1. Preliminaries (cf. Wong [13]).

We first give a few definitions and three lemmas which will be needed

later. The indices αr, /9, r, e, i, j , k, - all have the range 1, , n. The

ranges of other indices will be given as they appear. Summation over a re-

peated index is implied. Tensors, functions, and linear connections on C°°-mani-

folds are assumed to be C00 unless stated otherwise.

Let M be a connected w-dimensional C°°-manifold satisfying the second

axiom of countability. A frame in M is composed of a point u e M and an

ordered set of n linearly independent tangent vectors at u. To any frame

{Xa(u)} in M at u, there corresponds a unique dual coframe {Xr(u)} in M a t

u. In particular, when a fixed local coordinate system (U, uι) is given in M

with coordinate neighborhood U and local coordinates u\ there is attached to

each point u^U the natural frame {ίd/du^u) and its dual coframe
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Given a frame z = {X*iu)} at weM, any tensor Siu) at weiW can be ex-

pressed uniquely as

Siu) = S?;;; (z)xAu) ®Xt(u) ®xr(u) ®

where {Xr(u)} is the dual coframe of {XJu)}. We call the numbers S??.V (2)

the components of S(w) relative to the frame z- {XJu)}. In particular, if S

is a tensor defined on a coordinate neighborhood U, the components SjKu' of S

relative to the natural frame {d/du^are the usual components of S in the local

coordinate system (U, uι). It is easy to see that if XΛu) =Xad/du\ then

s??:; ω = stfϊ; *?^ *? ,

where ixf) is the inverse of the matrix (#*). Moreover, it follows at once

from definition that the components of Siu) relative to the frame z(u) = {XΛu)}

and those relative to the frame z'iu) = {X*iu)j£t) are related by

where igΐ) is the inverse of the matrix (gίO. For brevity, we shall write the

above equation as

S{z'(u))=g-1-Siziu)).

Thus, Siziu)) denotes the set of components S^'''iziu)) and g"1 denotes an

operator whose action on Siziu)) is as defined.

Let B be the total space of the frame bundle π : B-+M over M. A point

z in B is a frame {Xaiu)} in M at the point u = πzeM. For any tensor S on

M, the components S??.ϊ'(2) of Siπz) relative to the frame z define a set of

functions S??.\" on 2?, which in Wong [13], §2.1, were called the functions cor-

responding to the tensor S on M.

Now assume that a linear connection has been given on M If B{z^] is the

submanifold of B, consisting of all the points which can be joined to a given

point 20 in B by (sectionally C00) horizontal curves, then we have (Wong [13],

(3.15) and (3.9)):

LEMMA 1.1. On M with a linear connection, a tensor S is parallel iff the

restrictions of its corresponding funtions on B to any B[_zo~] are all constant,

but not all zero.

LEMMA 1.2. On M with a linear connection, a tensor S is recurrent iff the
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restrictions of its corresponding functions on B to any BLZQ] have no common

zero and are proportional to a fixed set of constants.

It follows at once from these that a parallel or recurrent tensor on M is

nowhere zero.

The following lemma and its proof were kindly supplied by Professor H.

C. Wang.

LEMMA 1.3. Let (u,y) = (u\ , un, y1, , ym) be coordinates in the

Euclidean in + m) space Rn+m and Fτ(u,y)9 l<ζ<p,P C00-functions in (u,y).

Suppose that, for every fixed u, the set of points (u,y) satisfying the equations

Fx(u,y) = 0 is a C00 closed submanifold (of Rn+m) of dimension q<m> and q is

independent of u. Then the set Bf of points (u, y) satisfying the equations

Fx(u>y) = 0 is a C00 closed submanifold of Rn+m of dimension n + q.

Proof. Let (UQ, y0) be any point of B'. It follows from assumption that

the pxm matrix

is of rank t~m — q. Therefore, after rearranging the F\ and the yΆ if neces-

sary, we may assume that the determinant of order t lying at the upper left

corner of the above matrix is not zero. Then by the implicit function theorem,

we can solve the equations

(1.1) Fi(u,y)=Qi , Ft(uiy) = 0

for y1, m , y*', more precisely, there exist t C00-functions

fiiuy 50, , ft(u, y)

in the variables («, y) = (u1, , un, y*fl, , ym) defined on a neighborhood

of (wo, yo) such that, on a suitable neighborhood Vo of (wo, jyo), the system of

equations (1.1) is equivalent to the system of equations

(1.2) y =/iU, 50, , y =//(«, 5).

Therefore, on Fo, the solutions of Fχ(u, y) =0 are the same as those of

Ft)-i(u,fi{u> y), , ft(u, y)t y) = 0,
(1.3)

Fp(u,Mu,y), - ,Mu9y),y)=0.
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But from the assumption that, for every fixed w, the solutions of F%{ u,y)=0

form a C00 closed submanifold of dimension q^m — t, it follows that the last

p-t equations in (1.3) must all be satisfied identically. Therefore, on the

neighborhood Vo of iuo,yo), the system of equations F\{u,y)=0 is equivalent

to (1.2) in other words, on the neighborhood Fo, the set B1 is represented by

the equations (1.2). Hence B' is a C00 closed submanifold of Rn+m of dimension

m-t-n + q, as was to be proved.

1. 2. Condition for the existence of linear connections with respect to which

given tensors are parallel or recurrent

For convenience and clarity, we shall first prove the following two theorems

dealing with a single tensor.

THEOREM 1.1. Let S be any given tensor on M. Then there exists on M a

linear connection with respect to which S is parallel iff we can assign to each

point we M a frame z(u) such that the set 5 (ziu)) of components of S relative

to ziu) are not all zero and are independent of u.

THEOREM 1.2. Let S be any given tensor on M. Then there exists on M

a linear connection with respect to which S is recurrent iff we can assign to

each point u^M a frame ziu) such that the set S(z(u)) of components of S

relative to z( u) are not all zero and are proportional to a fixed set C of constants

(which are independent of u).

Remark. We note that in Theorems 1.1 and 1.2 and in Theorem 1.3 to

be given later, the assignment of ziu) to u&M is not required to be locally

continuous, not to say locally C00. This is an important fact which greatly

facilitates the applications of our theorems.

Proof. Only the proof of Theorem 1.2 will be given, the proof of Theorem

1.1 being similar.

To prove the necessity of the condition, we use Lemma 1.2 and obtain

SΛ

rt"{z) = φ(z)CT:: on Bίzol

where ψ(z) is a C00 and nowhere-zero function on BLzol, and C??.'.'" are constants,

not all zero. For brevity, we shall write the above equation as

(1.4) S(z)=φ(z)c on Bίzol

Now for any point u^M, let uiτ),0<τ<> beany (sectionally C°°) curve in M
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joining the fixed point uQ = πzQ eΛf to the point u. If 2(r) is the lift of u(τ) in

B passing through zQ, then the end point of z(τ) belongs to π~1(u)P\Bίz0']. Thus,

by (1.4); this point is a frame z(u) in M at u such that

(1.5) S(z(u))=φ(z(u))C~ρ(u)C,

which proves the necessity of the condition in Theorem 1.2. We note here

that since the C°°-function φ(z) is nowhere zero in BLZQ], its value is of the

same sign everywhere in BZz<J. Consequently, though the function ρ{u) is gener-

ally not continuous, its value is of the same sign for every point u^M.

To prove the sufficiency of the condition in Theorem 1.2, we assume that

a tensor S on M has the property that at each point u e M, there exists a

frame z(u) relative to which the set S(z(u)) of components of S are not all

zero and are proportional to a fixed set C of constants. Then S has no zero

in M, and consequently, its components relative to any frame z are not all zero.

Denote by H the set of those elements of the real general linear group

GL(n, R) that are characterized by the following property:

Let GL(n, R) act on a fixed w-dimensional vector space Rn by {£*}-> {eα£}

= {eΛ&}, where {ea) is a basis of Rn and g = (g^)^GL(n, R). Then h = (hl>)

etf if HaGL(n,R) and if

(1.6) h-ι-

i.e. c??:."S;f/ί|Γ*ϊ'

where δΐ is the Kronecker delta, (hΐ) the inverse of the matrix ihr), and

ψ(h) an unspecified non-zero constant depending on h. It is easy to see that

the set H thus defined is a closed subgroup of GL(n, R). But a closed sub-

group of a Lie group is a Lie subgroup (see, for example, Chevalley [1], p.

135). Therefore, H is a Lie group and a Lie subgroup of GL(n, R).

Next consider the set Ba of all those frames in M such that the set S(z)

of components of S relative to each of these frames are proportional to the

fixed set C of constants, i.e.,

(1.7) BH = {ZU*ΞB, 3(Z) = Φ(Z)C),

where ψ(z) is an unspecified function of z. By the assumption of the theorem,

for every point « e M , there exists some z(u) e BH. We now prove that
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(1.8) BH.Π π~ι(u) = z(u)H s (z(u)h\ h e #}.

In fact, let z'(u) be any point in BHflπ'Hu). Then we have

S(z'(u))=ψ(z'(u))C,

and

2f(w) = 2(&)# for some g&GL(n, R).

From these and

S{z(u)g) = tf"1 S (*(*)), §{z{u)) =

it follows that

Comparing this with the definition (1.6) of H> we see that g&H, and this

proves (1.8).

It is clear from (1.8) that under the action of GL(n, R) on By H leaves

BH invariant. Moreover, H acts on BH without fixed point since this is true of

the action of GLin, R) on B. Hence we may conclude from (1.8) that for

each point u^Mt BHΠπ~Hu) is a C00 closed submanifold of B of the same

dimension as H.

We now proceed to prove that BH is a C00 closed submanifold of B. Since

not all the constants C??λ"' are zero, there is at least one, say C?;??."\ which is

not zero. Then it is easy to see from definition (1.7) that

Now in any coordinate neighborhood π^iU) in B where the local coordinates

of a point z are (u, x) = (u\ xl), we have

Therefore, BHΓ\π~ι(U) is the set of all points («, x) satisfying the equations

Since Ŝ .'.V are C00 functions in u and (#") is the inverse of the matrix (#i),

F?.::'(u, x) are C°° functions in (u,x). Moreover, for every fixed u, the set of

points (u, x) satisfying the equations Fγϊ'.'.'iu, x) ~0 is BE Π π^iu) which has

just been shown to be a Cw closed submanifold of π~ι(U) of the same dimension

as H. Thus, the conditions in Lemma 1.3 are satisfied and therefore, BH Π π^i
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is a CΛ closed submanifold of π^iU). From this it follows that BH is a Cw

closed submanifold of B, as was to be proved.

Summing up the above results, we may now conclude that in a natural

manner, Bn -> M is a principal fiber bundle with structure group H which is a

subbundle of the frame bundle B-*M with structure group GL(n, R).

Connections are known to exist on any principal fiber bundle satisfying the

second axiom of countability (see, for example, Nomizu [9], Chapter II, §9).

Therefore, connections exist on BR-*M. Furthermore, by means of the injection

BH-*B, any connection ΓH on BH-*M can be extended in a natural manner to

a unique connection Γ on J3->M, which is then a linear connction Γ on M (cf.

Nomizu [9], Chapter II, §5). In fact, if the connection ΓH on BH-*M is defined

by a field QH of horizontal w-planes on BH, then the field Q of horizontal w-planes

on B defining the extended connection Γ on B -* M is obtained by extending QH

by the action of GL(n, R) on B; more precisely, if z is any point in B, we

take any point zι in BH such that z-zιg for some g^GL(ny R), and define Qz

as (Q^zx'g which is easily seen to be independent of the choice of z\.

We now show that, for any point ZQ^BH^ B, we have BHZZOI = BZzol. In

fact, let 2X be any point in BHLZQΊ. If zH{τ)y 0 < r < l , is any horizontal curve

in BH joining zQ to zίt then since zH(τ) is also a horizontal curve in B, Zι e Bίzol.

Conversely, let z2 be any point in Blzo~] and z(r), 0 ^ r < l , any horizontal curve

in B joining z0 to z2. Then u(τ) = πz(τ) is a curve in M joining u0'= πzϋ to u2

= 7Γ22. If 2a(r) is the lift of u(τ) in BH starting from zo, then it is also a lift

of u(τ) in B. But there is one and only one lift of u(τ) in B passing through

zo. Therefore zH(τ) = z(τ), and z2 e z(τ) = 2H(Γ) C Z^ΓZO]. Hence, βfl[2ϋ] = ̂ [^o],

as was to be proved.

From the way BH is constructed, the functions S?1?.'." on BH have no common

zero and are proportional to the fixed set of constants C??.7. Therefore, a

fortiori, is this true of the restrictions of the functions S??.V to BHLZ^ =£[20].

Hence, by Lemma 1.2, S is recurrent with respect to the linear connection Γ

on M This completes the proof of Theorem 1.2.

Theorems 1.1 and 1.2 can be extended to the following more general

theorem.

THEOREM 1.3. Let Si, , Sp+q be any p + q given tensors on M. Then

there exists on M a linear connection with respect to which each of the tensors
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Si, , Sp is parallel and each of the tensors Sp+i, , Sp+Q is recurrent iff

we can assign to each point u^M a frame z(u) such that the components of

Si, , Sp relative to z(u) are not all zero and are independent of u, and the

components of each of Sp+i, , Sp+Q relative to z(u) are not all zero and are

proportional to a fixed set of constants {which are independent of u), the factors

of proportionality being generally different for different tensors Sp+U * , Sp+Φ

proof. With slight modifications, the proof of Theorem 1.2 given above

holds also for this theorem. We need only replace the single tensor S by the

tensors Si, , Sp+Q and modify accordingly the definition of the subgroup

H of GLin, R) and that of the submanifold BH of B. More precisely, we let

CS(1<£ <P) and Cn(P + 1 <*y <p-\ q) be the sets of constants corresponding

to the tensors S* and Sη, respectively. Then we define H to be the subgroup

of GL(n> R) consisting of those elements of GL(n, R) such that

where ψτ\h) are unspecified and nowhere-zero functions of h. Correspondingly,

we define BB to be the subset of B consisting of those points z of B such that

where 0η are unspecified functions of z. The rest of the proof is exactly the

same as before.

Remark 1. Let S be any tensor of type (r, 5) on Af, and S(z) the set of

components of S relative to the frame z. Then the conditions in Theorems 1.1

and 1.2 can be expressed respectively as

3(*(w)) = C, S(z(u))=p(u)C,

where C denotes a set of constants, not all zero. Since S (zg) = g~ι S (z) for any

element g of GL(n, R), changing the family of frames z(u) to z(u)g changes

the set C of constants to g~ι C. Now if we regard C as the set of components

of a tensor C of type (r, s) over the w-dtmensional vector space Rn relative to

some basis {e*}f then g'1 C is the set of components of the same tensor C

relative to the basis {eag}. Therefore, with each parallel or recurrent 'tensor S

of type (r, s) on M, there is associated a tensor C of type (r, s) over Rn.

Remark 2. Since local cross-sections of Bn-*M exist, as is the case of all
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principal fiber bundles, we have the following interesting corollary to Theorems

1.1-1.3:

Let Si, ' , Sp+Q be any pΛ q tensors on M. Assume that we can assign

{in any manner) to each point u^M a frame z(u) such that the components

of Siy , Sp relative to ziu) are not all zero and are independent of w, and

the components of each of Sp+U , Sp+q are not all zero and are proportional

to a fixed set of constants {which are independent of u), the factors of pro-

portionality being generally different for the different tensors Sp+u , Sp+Q.

Then for each point u^M there is a neighborhood U^u and a C°° family of

frames z'iu) in U such that the components of the tensors Su , Sp+q relative

to z'iu) have the same properties as the components of these tensors relative to

ziu).

1.3. Some applications

A number of known theorems on existence of linear connections with speci-

fied properties are direct consequences of Theorem 1.3 and certain algebraic

facts. For example, we can easily deduce that

If S is any tensor of type (0, 2) on M which (i) is symmetric and of con-

stant rank or (ii) is skew-symmetric and of constant rankf then there exists on

M a linear connection with respect to which S is parallel.

We now give another example to illustrate the arguments used. A com-

plete system Dh , Dp of p distributions on M is such that at every point

w e M t h e tangent space to M at u is the direct sum of Di(u)y . . . , Dp(u).

With such a complete system of distributions there is associated a system of p

projection tensors Pu , Pp (of type (1,1)) which satisfy the conditions

(1.9) ΣμPμ = Ey i£ = Pμ, jPμPv = 0, (l<μ, v<p ', μ*v)

where E is the unit tensor of type (1,1). It is easy to show that if a linear

connection has been given on M, a necessary and sufficient condition for each

distribution Dμ to be parallel is that each tensor Pμ is parallel (see, for example,

Fukami [4], p. 431).

On the other hand, we know from algebra (see, for example, Jacobson [6]

p. 62) that, in the real field, if P μ (l<μ<p) are any p matrices of order n

satisfying (1.9), then there exists a non-singular matrix F such that, for μ = 1,

https://doi.org/10.1017/S002776300001134X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001134X


78 YUNG-CHOW WONG

FPμF"1 = diag[0, . 0, 1, , 1, 0, , 0],

where wμ is the rank of Pμ, and the number of the first set of zeros in the

diagonal is m+ • + Wμ-i.

This fact implies, in our notation and terminology, that at each point u e M,

there exists a frame z(u) relative to which the components of the tensors

Pμ(z{u)) are all independent of u. Thus, by Theorem 1.3, there exists on M

a linear connection with respect to which each of the tensors Pμ is parallel.

This proves the well-known theorem that

Given any complete system of distributions on M, there exists a linear con-

nection with respect to which each of the distributions is parallel.

2. Condition for a recurrent tensor to be almost-parallel

The results in Theorems 1.1 and 1.2 give rise naturally to the question:

Given on M a tensor S which is recurrent with respect to some given linear

connection on M, when does there exist on M a linear connection with respect

to which S is paralllel? In other words, when is a given recurrent tensor

almost-parallel? Here we recall from definitions (cf. Introduction) that a re-

current tensor is never a parallel tensor with respect to the same linear con-

nection.

The answer to this question is completely different according as the re-

current tensor is of type (r, s), r^st or of type (r, r). The case of recurrent

tensors of type (r, s), r*sy or of type (1,1) can be dealt with easily (Theorems

2.1 and 2.8). But the case of recurrent tensors of type (r, r)t r>2, is much

more difficult. It leads us to the equation

Af C = tfC, I.e. # α i * AJαr.Cp1...pr/?εi ' * * ksr =(TCε 1 . . . ε Γ ,

where C denotes the set of constants Cpi'.'.'.^ associated with the recurrent

tensor, <;>0 is a parameter, k = (kl) is an element of GL(n, R)t and (M) -k'1

(Theorem 2.2).

For given C and <;>0, we say that C is consistent with a if there exists

an element k^GL(n,R) such that k C ~aC. It is easy to see that the con-

sistency of C with a is actually a property of the tensor C of type (r, r) over

Rn associated with the recurrent tensor (i.e. the tensor C of type (r, r) over
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Rn with components C relative to some basis of Rn see Remark 1 at the end

of § 1.2). We prove that any given tensor C of type (r, r) over Rn is consistent

either with every a e (0, oo ) or with only the elements of a totally disconnected

subgroup of the multiplicative group (0, oo) (Proposition 2.1), and that a re-

current tensor S of type (r, r) on M is or is not almost-parallel according as

its associated tensor C over Rn is or is not consistent with every <je(0, oo)

(Theorem 2.3). Although a more explicit criterion for deciding when a recurrent

tensor of type (r9r) is almost-parallel has not yet been found, we are able to

obtain several very interesting results. First we prove that for a recurrent

tensor of type (r, r) which is not almost-parallel, the recurrence covector is

locally a gradient (Theorem 2.4). Next, we prove that if C is consistent with

some tfo^l such that the characteristic roots of one of the k^GL(n, R) satis-

fying the equation k C = <roC are all real, then C is consistent with every

</<= (0, oo) moreover, we are able to construct all the tensors C having this

property (Proposition 2.2). This gives us a fairly general sufficient condition

for a recurrent tensor of type (r, r) to be almost-parallel (Theorems 2.5-2.6).

In § 2.6 we introduce the concept of nilpotence and complete nilpotence for

tensors of type (r,r), and obtain three necessary conditions for a recurrent

tensor of type {r,r) to be almost-parallel (Theorems 2.7 and 2.10). We also

prove that a recurrent tensor of type (1,1) is almost-parallel iff it is nilpotent

(Theorem 2.8). As examples, we show in §2.7 how recurrent tensors which

are or are not almost-parallel can be constructed on parallelisable C°°-manifolds.

Results on tensors over Rn will be stated as propositions and those on re-

current tensors on M will be stated as theorems.

2.1. The case r*s

We prove

THEOREM 2.1. Every recurrent tensor of type ir, s)yr*sy is almost-parallel.

Proof. Assume that S is a recurrent tensor of type (r, s) on M. Then

(see Theorem 1.2 and (1.5)), we may assign to each point u in M a frame

z(u) such that

where the function p(u) is of the same sign for every point u. By replacing

C by - C if necessary, we may assume that p(u)>0.
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Now assume that r # s . Since p(u)>0y we can find a non-zero number σ(u)

such that σr~s(u) = p(u). Let g(u) = (tf(«)ft)eGL(w, /?). Then we have

This shows that S satisfies the condition in Theorem 1.1, and consequently,

there exists on i l ia linear connection with respect to which S is parallel.

2.2. The case of recurrent tensors of type (r, r).

The object of this paragraph and the next is to prove Theorem 2.3 which

gives a necessary and sufficient condition for a recurrent tensor of type (r, r)

to be almost-parallel.

Let S be a tensor of type (r, r) which, with respect to some linear con-

nection on My is recurrent. Then by (1.4) and (1.5), there exists, at each

point u^M, a frame z(u) such that

(2.1) 5(z(u))=p(u)ΰ,

where C = (Cpί'.'.'̂ Γ) is a set of constants not all zero, and p(u) = <ρ(z(u)) is of the

same sign for every u^M. We can prove that in this case the frame z{u) at

each point u(=M can be so chosen that the number p(u) is not independent of

u (see Lemma 2.1 at the end of this paragraph).

Now assume that there exists on M a linear connection with respect to

which S is parallel. Then at each point weM, there exists a frame z'(u) such

that

(2.2) S(

where D = (Dyi'.l'.p'ΐ) is a set of constants, not all zero. But

z'(u) =z(u)g(u) for some g(u) ^GL(n, R),

and

Therefore, it follows from (2.1) and (2.2) that

(2.3)

Let us fix a point m in M. From equation (2.3) and the same equation

for u = u\ we deduce that

(2.4)
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where

(2.5) k(u)=g(u)g(ui)'\ σ(u) = μ(u)/p(uι)>0 and * 1.

That σ(u)>0 and Φl follows from the fact that p(u) is of the same sign for

every point M G M and is not independent of u. Thus the assumption that there

exists on M a linear connection with respect to which the recurrent tensor S

is parallel implies that, for each point «<=ikf, there exists an element k(u) of

GL(n,R) such that (2.4) is satisfied.

Conversely, if this condition is satisfied, then it follows from (2.1) and

(2.4) that

S (z(u)k(u)) = pirikiuV1 C = p(«i)C.

This means that, at each point weM, there exists a frame zf(u) = z(u)k(u)

relative to which the components of S are the constants p(ui)C.

We have therefore proved

THEOREM 2.2. Let S be a recurrent tensor of type (r, r) on M so that, for

each point u^M, there is a frame ziu) relative to which S(z(u)) = p(u)C. Then

a necessary and sufficient condition for S to be almost-parallel is that there

exists, for each point u^M, an element k(u) of GL(n, R) such that

where σ(u) ~p(u)/p(uι) and u\ is some fixed point in M.

We end this paragraph by proving the following lemma which was used in

the proof of Theorem 2.2 and will be used again in the next paragraph.

LEMMA 2.1. If S is recurrent so that S (z) = φ(z)C on BLZQI, the assignment

u-*z(u) <=Btzo~] can be so chosen that the function p(u)=φ{z(u)) on M has

the property that, for some fixed ui&M and variable u^M, the set of values

σ{u) =Ξ p(u)/p{ui) covers entirely some interval [1, a{\ where at>l.

Proof. Since S is recurrent but not parallel, it follows from Lemmas 1.1

and 1.2 that the C°° function φ on Bίzo] is non-constant. Let Zz^Bίzol be a

point such that φ(zΆ)^φ(zo) and let z(τ) be a horizontal curve joining z0 to z3.

Then φ(z(τ)) is continuous in r. Let Zχ-z(τι) be the farthest point from z0

in z(τ) such that φ(zι) = #Uo). Then since z{τ) is horizontal and 0(z(r)) is

continuous in r, there exists a point Z2=z(τz), r i<r 2 ) in z(τ) sufficiently near
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Zi such that φ(z2) ^φ(zi) and the curve u(τ) Ξ=πz(τ), r o < r < r 2 , has no self-

intersection. Now let us choose z(τ), τ ! < r < r 2 , as the frame in M a t u(τ),

ri < τ < r2. Then piu) = φ(z(u)) has the property that (θ(w(τ )) is continuous in τ

and p(#2) # β(uι). One of these values is larger, and there is no loss of generality

in assuming that p(ut)>p(uι) (>0). Then putting p(th)/p(ui) = σu we prove

our lemma.

2. 3. Continuation. A main result

Theorem 2.2 leads us to the study of the consistency of the equation

(2.6) k-C=σC, i.e. kl\ k^C^M JR; = *C£::2Γ,

where C is a set of components Cl\'.'.'.*£ of a tensor of type (r, r) over Rn, k is

some element of GL(n, R), and a is a positive number.

We denote by K the set of all elements k^GL(n,R) such that for each

h^K there exists some <;e (0, °°) satisfying (2.6), and denote by Σ the set of

all a e (0, °°) such that for each <; e 21 there exists some h e GL(n, R) satisfying

(2.6^. The sets iΓ and Σ are both non-empty because, for any C, equation

(2.6) is satisfied by a = 1 and & = identity matrix.

We now prove two lemmas on K and Σ.

LEMMA 2.2. K is a subgroup of GL(n,R), Σ is a subgroup of the multi-

plicative group (0, oo), and the correspondence k-+a defines a homomorphism K-+Σ.

Furthermore, if σ& Σ, then am (m = ± 1, ± 2, ) all belong to Σ.

Proof. The statements in the Lemma are easy consequences of the fact

that ki C = σι C and fe C = σ2C imply that

kV C = tfΓ'C and (fefe) C = (<y2tfx)C.

LEMMA 2.3. T&£ subgroup Σ of the multiplicative group (0, °°) is either

totally disconnected or identical with the multiplicative group (0, °°).

Proof. Let Σo be the connected component of the neutral element 1 in Σ.

If 2Ό = {1}, Σ is totally disconnected. If 2Ό^F{1}, then 2Ό is a closed interval

containing {1}. From this and the fact that a^Σ implies / e i 1 for m = ± 1 ,

± 2, , it follows that Σ= (0, o©), as was to be proved.

It was pointed out in § 1.3 that with a recurrent or parallel tensor S on

Mt there is associated a tensor C over Rn whose components relative to some

basis are the set C of constants. Now let C be a tensor of type (r, r) over Rn
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with components C relative to some basis in Rn. We say that C is consistent

with the real number σe (0, °°) if the equation k C=σC holds for some ele-

ment k of GL(n,R). This definition is legitimate because k C = σC and C" =

g~ι C, g<=GL(n, R), imply (g^kg)'Cf = σC' so that the consistency of C with

a is independent of the choice of basis in Rn. Thus we may say that a tensor

C is consistent with the number <;e(0, °°) if it can be transformed into the

tensor aC by the transformation extended from some non-singular linear trans-

formation in Rn. If C is consistent with some <;E(0, °°), any h e GL(ny R) that

satisfies k C = σC is said to be corresponding to a. It is seen from above that

the characteristic roots of k are also independent of the choice of basis in Rn.

(On the other hand, a change of basis in Rn changes the group K to one of its

conjugates.)

We now restate Lemma 2.3 as

PROPOSITION 2.1. A tensor C of type (r, r) over Rn is consistent either with

arbitrary a e (0, oo) or only with the elements of a totally disconnected subgroup

of the multiplicative group (0, °°).

As a direct consequence of Theorem 2.2, Lemma 2.1 and Proposition 2.1,

we have the following main result of this paragraph-

THEOREM 2.3. A recurrent tensor S of type (r,r) on M is almost-parallel

or not almost-parallel according as the tensor C of type (r, r) over Rn associated

with it is consistent with every a e (0, oo) or only with the elements of a totally

disconnected subgroup of the multiplicative group (0, °°).

We shall make a few applications of this theorem.

2.4. A theorem on recurrent tensors of type (r, r) which are not almost-
parallel.

The object of this paragraph is to prove the interesting result stated in

Theorem 2.4 below. To simplify the notation, composite indices will be used

in part of this paragraph and in § 2.6. The composite indices A, B, /, / are

respectively the sets of ordered indices (acu ,<xr), (ft, , βr), Uu * , ir),

Uu m ' ' > jr)> Since each of the indices as β'sy is, /s has the range 1, , n,

each of the composite indices A, B, I,J has the range of nr values (1, , 1),

• , (w, , n) which we assume to have been arranged in the lexico-

graphical order. Moreover, Λ=J5 .means that αi = |9if , ar = βr.
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In the notation of § 1.1, for any tensor S of type (r, r) on M, we denote

by Sί(z) = S%i:::&(z) the components of S relative to the frame z = {X«} and by

Sj = Sj\'.Y.)r and Xa the components of S and XΛ in some local coordinate system

in M. If (x*) is the inverse of the matrix (x*), g = (gl>) any element of GL(n, R),

and (££') the inverse of the matrix (gl')> then we have (§1.1)

Using composite indices, we write these equations as

(2.7) Si = xf&xί, Si'+zg) = si'Si{z)gS>.

We now prove

THEOREM 2. 4. // Λ recurrent tensor of type (r, r) on M is not almost-

parallel, its recurrence covector is locally a gradient.

Proof. It follows from FS= W®S that

(2.8) VιSιj=WιSιj

in every local coordinate system (U, u%) in M. The theorem asserts that if

there exists no linear connection on M with respect to which S is parallel, then

for each point uχ^M there exist a coordinate neighborhood U^u\ and a C00

function ω on U such that Wι = dω/du1.

Since S is recurrent, we have from Lemma 1.2 and (1.4) that

(2.9) SU)=0(2)C on-BDzol

where φ is a Cro, non-constant, nowhere-^ero function on Bίzol, and C are n2r

constants, not all zero.

Let 2, zg be two points in B\jzo~], where g^GLin, R). Then we have from

(2.9) that

S(zg)=φ(zg)C,

which, together with S(zg) =#~ 1 # S(z), give

(2.10) g~1-C

Since S is not almost-parallel, the tensor C over Rn with components C is con-

sistent only with the elements of a totally disconnected subgroup Σ of the

multiplicative group (0, «>) (see Theorem 2.3). Thus it follows from (2.10) that
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if 2, zg are two points in J9[2O1

(2.11) ψ(zg) =σχφ(z),

where σ\ is some element of Σ.

Let u\ be any point of M. Equation (2.11) shows that on each component

(which is arcwise connected) of n"x{ux) Π Blzo], the function φ is constant. Let

us choose a sufficiently small coordinate neighborhood U^ui'm M so that each

component of π~1(uι) Π Bίzol is contained in one and only one component of

π~\U) ΠBίzol. Take any of the components, say F, of π~\U) Π Bίzol. Then

φ is C™ on V and is constant on each fiber in F. Hence we can write the

equation

S(z)=φ(z)C on V

as

(2.12) S(z) = p(u)C on F,

where p(u) ==φ(z(u))t so that p is a nowhere-zero, C00 function on U.

Now we prove that on U, Wι = dι\ogp. Let u(τ) be any Cro-curve in U

passing through uu z\ any point in π~ι(ud Π F, and z(τ) the lift of u(τ) passing

through z\. Then z(τ) is a horizontal curve lying entirely in 7 c β [ z o l There-

fore, g(r) ={Za(w(r))} is a C°°-field of parallel frames in M along the curve

u(τ), so that

(2.13) ^ Γ ' ^ = °. ^ f 7 ^ = °

Let us write (2.12) in the form

Sί(2)=p(ιι)Cί on F,

evaluate it along z(r), and use (2.7)i. Then we have

(2.14) (xfSΪxtiiuiτ)) = p{u(τ))Ci.

If we differentiate this equation covariantly along the curve u(τ) and make

use of (2.8) and (2.13), the result is

which, together with (2.14), gives
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Since the constants Cί are not all zero and the function p is nowhere zero in

Uy it follows from the above equation that

duι

 τrr duι

W

But the curve u(τ) through ui can be so chosen as to make its tangent vector

duι/dτ at wx coincide with any given tangent vector in M at uu Therefore, we

have Wι = 9/logpat«iGM and consequently everywhere in U. This completes

the proof of Theorem 2.4.

Remark. It follows from (2.11) that if another component V1 of π~\U) Π Bίzol

is used, the corresponding function pi is a constant multiple of the function p

corresponding to V. Therefore, we have

Wι = dι log p = 3/ log pi.

2. 5. A sufficient condition for a recurrent tensor of type (r, r) to be almost-

parallel

Let us now return to Theorem 2.3 and recall that the problem of deciding

when a recurrent tensor of type (r, r) is almost-parallel is equivalent to the

problem of consistency of a tensor of type (r, r) over Rn with a number <;>0.

We shall prove later in § 3 some remarkable results stated below in Proposition

2.2 which enable us to give a fairly general sufficient condition for a recurrent

tensor of type (r, r) to be almost-parallel (Theorem 2.5). In order to state our

results in a convenient form we say that C* is a variable tensor (over Rn) if,

relative to some basis in Rn, its non-zero components are independent variables.

A tensor C is called a specialization of the variable tensor C* if its components

C relative to some basis in Rn are obtained from the components C* of C* re-

lative to the same basis by giving constant values to the independent variables

contained in C*.

PROPOSITION 2.2. If a tensor C of type (r, r) over Rn is consistent with

some σ0>0, # 1 , such that among the elements k^GL(nf R) corresponding to <?o

there is one whose characteristic roots are all real, then C is consistent with

any σ>0', and, for each σ>0, there exists a corresponding k&GL{n> R) whose

characteristic roots are all real.
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Furthermore, a tensor C of type (r, r) over Rn has the property described

above iff it is a specialization of one of the variable tensors C*'s determined as

follows:

(i) Let σ>0 be a parameter. Take any set (*) of n-1 independent and con-

sistent equations of the form

in the n unknowns λlt . . . , λn.

(ii) Solve (*) for the ratios of λu . . . , Λ«, obtaining

h * λn = εκJQx : ε r tΛ,

where each εXt , en is + 1 or — 1, and qu , qn are rational numbers.

(iii) Then the variable tensor C* corresponding to (*) is obtained by putting

C*JjW'.'Jr = 0 or an independent variable

according as the λh , λn given in (ii) satisfy

σλh λξr - AT, ' * * λrr # 0 Or = 0.

We note that since the number of such sets (*) of equations of the form

aλ^ λpr — λΛl ' - ' λar is finite, there are only a finite number of such variable

tensors C*'s.

Thus, combining Theorem 2.3 with Proposition 2.2, we obtain the following

theorem.

THEOREM 2.5. A recurrent tensor S of type (r, r) on M is almost-parallel

if the tensor C of type (r, r) over Rn associated with it is consistent with some

<τo>0, # 1 , and if corresponding to σ0 there is a ko&GL(nt R) whose character-

istic roots are all real.

A recurrent tensor of type (r> r) on M has the above property iff the tensor

C associated with it is a specialization of one of the variable tensors C*fs de-

termined in Proposition 2.2.

For small values of n and r, the variable tensors C*'s described in Pro-

position 2.2. can be determined easily (§3.3). For example, we have

THEOREM 2.6. A recurrent tensor of type (2,2) on a 2-dimensional C°°-

manifold is almost-parallel if the tensor C of type (2,2) over i?2 associated with
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it is a specialization of one or the other of two variable tensors C*'s whose

components C* arranged lexicographically as elements of a 22x22 matrix are

respectively as follows:

where a dot denotes the zero, and a star denotes an independent variable,

2. 6. Some other conditions for a recurrent teosor of type (r, r) to be almost-

parallel

We recall from algebra that a square matrix N is said to be nilpotent if

Nm = 0 for some integer m > 1, and the smallest such integer m is called the

index of nilpotence. We shall introduce the concepts of nilpotence and complete

nilpotence for tensors of type (r, r).

Consider first a tensor C of type (r, r) over Rn. Let C% be the components

of C relative to some basis {ea} of Rn. We say that C is nilpotent of index m

if the matrix (Cί) is nilpotent of index m. To justify this definition we must

show that it is independent of the basis {eΛ} of Rn used. In fact, if {ea

f) =

{eagi>} is another basis of Rn, then the components C^> of C relative to the

basis {eΛ>} are

Since (gj') = ί^I*)"1, the matrices (Ci'>) and (Cί) are similar, and so, they are

either both non-nilpotent or both nilpotent with the same index.

We now write equation (2.6) as

(2.15) kc

ACtk% = σCc

E,

where σ>Q, ikc

A) = (kl\ klζ) is a non-singular matrix of order nr and (kε)

= (kc

AV
x. Equating the characteristic determinants of the two sides of (2.15),

we get

detU<5έ - Cί) = άet(λδB - σCi).

When this is expressed in the polynomial form

λp + a^'1 +

where p = nr, we see that
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CL\ = <2itf, , dp = tf/>α .

Since a > 0, it follows from these that either a = 1 or all the «i, , ap are

zero. But ai, - ' - , ap are all zero iff the matrix (Ci) is nilpotent. Hence we

have proved

LEMMA 2.4. If a tensor C of type (r, r) over Rn is consistent with some

σ^l, then it is nilpotent. In other words, if C is not nilpotent, then it is con-

sistent with only a = 1.

Let D be any contraction of C, i.e. any tensor obtained from C by con-

traction. Then D is a tensor of type (5, s). Let Dί\ be the components of D,

where we denote by Ait the composite indices A,- (ai, > ccs), •

Then equation (2.15) implies that

It follows from these and Lemma 2.4 that if C is consistent with some <;>0

and =¥1, then C, its contractions, and the contractions of the (finite) tensor

products of C and its contractions are all nilpotent. This gives rise to the

following definition and proves Proposition 2.3 below.

A tensor C of type (r, r) over Rn is said to be completely nilpotent if the

following tensors constructed from C are all nilpotent:

(i) C and its contractions.

(ii) The contractions of the (finite) tensor products of the tensors in (i)2).

PROPOSITION 2.3. If a tensor C of type (r,r) over Rn is consistent with

some σ>0 and # 1, then C is completely nilpotent. In other words, if C is not

completely nilpotent, then C is consistent with only a = 1.

For tensors of type (1,1), nilpotence implies complete nilpotence. In this

case, we can prove

PROPOSITION 2.4. A tensor C of type (1,1) over Rn is either consistent

with arbitary a>0 or consistent with only a = l. Furthermore, C is consistent

with arbitary a>0 iff it is nilpotent.

Proof. For a tensor C of type (1,1), equation (2.6) becomes

2> In this respect we note that the tensor product of a tensor of type (r, r) with a
nilpotent tensor of type (s, s) is nilpotent (a consequence of Lemma 3.1 (ii)).
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(2.16) klCVϊ! = σCi (l<x, ft <n).

As in the proof of Lemma 2.4, equation (2.16) implies that either the matrix

(C?) is nilpotent or σ = l. Thus, to prove Proposition 2.4, it suffices to show-

that if (C?) is nilpotent, then the tensor C is consistent with arbitrary σ>0,

i.e., for any c;>0, there exists a k<EGL(n, R) such that equation (2.16) is

satisfied.

Let λlf (λ - λι)e\ be respectively the characteristic roots and the

elementary divisors of (Cp), and let <;>0 be any number. Then (λ — σfa)\ . . .

are the elementary divisors of (σC%). Since (Cp) is nilpotent, its characteristic

roots are all zero. Therefore, the two matrices (Cp) and UC£) have the same

elementary divisors λ*\ . . . and consequently are similar. Hence, there exists

some non-singular matrix (kl) with real elements such that (2.16) is satisfied.

This completes the proof of the proposition.

We now consider tensors on M. Let S be a tensor of type (r, r) on Λf, and

u any point in M. Then S(u) is a tensor of type (r, r) over the w-dimensional

tangent space to M at u, and the definitions of nilpotence and complete nil-

potence of tensors of type (r, r) over Rn apply to S(u). We now show that if

a parallel or recurrent tensor S of type (r, r) on M is nilpotent of index m (resp.

completely nilpotent) at some point u in M, then it is nilpotent of index m (resp.

completely nilpotent) everywhere in M. In fact, since S is parallel or recurrent,

there exists at each point u^M a frame z(u) in M such that

(2.17) SUz(u)) = Cί or Si(z(u)) = φ(z(u) )d s p(u)Ci,

where the Ci are constants but not all zero, and p(u) is nowhere zero in M.

If S is nilpotent of index m (resp. completely nilpotent) at some point in M,

then it follows from (2.17) that the matrix (Cί) is nilpotent of index m (resp.

completely nilpotent). Hence by (2.17) again, S is nilpotent of index m (resp.

completely nilpotent) everywhere in M

A consequence of Proposition 2.3 and Theorem 2.3 is the following

THEOREM 2.7. A necessary condition for a recurrent tensor of type (r, r)

on M to be almost-parallel is that it is completely nilpotent.

Proof. Let S be a recurrent tensor of type (r, r) on M and C the tensor

over Rn associated with it. Assume that S is not completely nilpotent. Then

by Proposition 2.3, C is consistent with only a = 1. Therefore, by Theorem 2.3,
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S is not almost-parallel, as was to be proved.

The following theorem is an immediate consequence of Proposition 2.4 and

Theorem 2.3:

THEOREM 2.8. A recurrent tensor of type (1,1) on M is almost-parallel iff

it is nilpotent.

Proposition 2.3 says that if C is not completely nilpotent, then it is con-

sistent with only a = 1. Using this fact and the method of proving Theorem

2.4, we can prove

THEOREM 2.9. For a recurrent tensor of type (r, r) on M which is not

completely nilpotent, the recurrence covector is globally a gradient.

A direct and simpler proof of this theorem is the following. Since S is

recurrent, we have by definition

Let T be any one of the tensors constructed from S in the manner described

in the definition of complete nilpotence of C. Then T satisfies the equation

FT= W®T> and consequently also the equation

(2.18) FTφ = qW®T{Q\

where q is any positive integer and T{q) denotes the "#th power" of T.

Since S is not completely nilpotent, there exists at least one such tensor T

which is not nilpotent. For this T, there exists some positive integer q and

some point u in M such that the trace of Tiφ(u) is not zero. On the other

hand, it follows from (2.18) that

Fttrace tQ)) = <?(trace T{Q))W.

Hence the C00-function (trace T^) on M is nowhere zero, and W is globally a

gradient, as was to be proved.

It is an open question whether complete nilpotence is a sufficient condition

for a recurrent tensor of type (r, r), r > 2 , on M to be almost-parallel (i.e. for

a tensor C of type (r, r), r > 2 , over Rn to be consistent with arbitrary <7>0).

And algebraically, it would be an interesting problem to determine for each

r > 2 all the completely nilpotent tensors of type (r, r).

Other algebraic considerations of the consistency of equation (2.6) lead to
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the following theorem the proof of which will be given later in § 4.

THEOREM 2.10. For a recurrent tensor of type (r,r) to be almost-parallel

it is necessary

(i) that it is nilpotent and its index of nilpotence is at most equal to

(ii) that it has at least

rl/(ql)n(q + l)p {r

elementary divisors.

Here the elementary divisors of a tensor S of type (r, r) at u e M is defined

as the elementary divisors of the matrix iSί(z{u))). By arguments similar to

those used in the first part of §2.6, it can easily be shown that this definition

is legitimate and that the number of elementary divisors of a parallel or re-

current tensor of type (r, r) on M is everywhere the same in M.

2.7. Examples

Some easy examples can be given to illustrate the theorems in this section.

First let M be any connected C°°-manifold, gij a Riemannian metric on M and

p a non-constant nowhere-zero Cro-function on M. Then the tensor Sij = pgij of

type (0,2) is recurrent with respect to the Riemannian connection arising from

gij, while it is parallel with respect to the Riemannian connection arising from

the metric tensor Sij. On the other hand, the tensor S} = pδ} of type (1,1) on

My where p is as above and d) is the Kronecker delta, is recurrent with respect

to every linear connection on M, but is never parallel with respect to any linear

connection on M. Furthermore, for this recurrent tensor S), which is not nil-

potent, the recurrence covector is dι log p and is therefore globally a gradient.

Next, let M be a connected parallelisable Cro-manifold, and {XΛ} a C^-field

of frames on M Then it is well known (cf. Eisenhart [3D, p. 48) that

are local components of a linear connection Γ on M with respect to which each

vector Xa is parallel. Now let CB be any set of n2r constants not all zero, and

p any non-constant nowhere-zero C°°-function on M. Then the tensor S of type

(r, r) on M defined by the components
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is such that ViS'j = {dι\ogp)Sj. S is therefore recurrent with respect to Γ. It

is almost-parallel if, for example, the tensor C over Rn with components Ci is

a specialization of one of the variable tensors C*'s determined in Proposition

2.2; it is not almost-parallel if, for example, the tensor C is not completely

nilpotent.

3. The matrix equation (®rk)C(®rk~1)=σC, and

proof of Proposition 2. 2

The object of this section is to prove Proposition 2.2 on the consistency of

a tensor C of type (r, r) over /?n with a real number σ>0 corresponding to which

there is a keΞGL(n,R) whose characteristic roots are all real. Let C =

(Cpί.'.'.'fcΓ) be the set of components of C relative to some basis {eΛ} in Rn. Then

by definition, C is consistent with a if the equation k C = <τC, i.e.

holds for some non-singular matrix (kl) with real elements.

Let g be any element of GL{n, R). Then, changing the basis {eΛ} in Rn to

{£«•#} changes the equation k C = aC to (g^kg)* C' = C', where C' is the set

of components of C relative to the basis {eΛ g} (see §2.3). This change does

not change the characteristic roots of k. Since we now confine ourselves to

the case where the characteristic roots of k are all real, we can always choose

g<=GL{n, R) so that the matrix of g~xkg is in Jordan canonical form. There-

fore, to study the consistency of a tensor C with a number σ>0 for which there

exists a corresponding k e GL(n, R) whose characteristic roots are all real, it

suffices to study the consistency of equation (3.1) in the case when the matrix

(kl) is in Jordan canonical form.

We shall treat equation (3.1) as a matrix equation by using the concept

of direct products (i.e. Kronecker products) of matrices. It will be seen (§3.4)

that the discussions in this section completely solve the problem of consistency

of the equation k C = oC in an algebraically closed field.

3.1. Direct sums and direct prodncts of matrices (cf. MacDuffee [8], pp. 81-

86).

We need a few definitions and results on matrices.
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If Li, L2 are two matrices of order mh m2, the matrix

r Li O - i

L 0 L 2

J

of order mi + m2 is called the direct sum of Li and Z .̂ If Li = (/&), (1 <, a, b< m1)}

then the matrix

l\L2 ' ' ' Inj^

ln\L2

of order mrm2 is called the direct product of Li and L2. Neither the direct

sum nor the direct product is commutative. Direct sums and direct products

of more than two matrices are defined in a natural way, and it is easily seen

that they are both associative. In particular, we have the direct rth power of

a square matrix Z, defined by

®rL = L® - 0 L (r factors).

In what follows, s and r are some fixed positive integers; the indices μ>

μu - ' ' > Mr all have the range 1, , s and matrices except the non-singular

n x n matrix k are denoted by capital latin letters. By a permutation matrix

we mean a square matrix whose elements are one or zero and which has exactly

one nonzero element in each row and exactly one in each column. We write

F-^F if the matrices F and F are similar.

The following lemma contains some properties of the direct products of

matrices. The proof will be omitted if it is obvious.

LEMMA 3.1.

(i) (Lι + L2)®U = Lι®Lz + U®Lz,

Li ® (L2 -f Lz) = Li ® L% + Li ® L*.

(ii)

(iii) ( Θ A ) ® i = ®μ(Kμ®L).

(iv)

where the similarity can be accomplished by a permutation matrix which depends

only on the orders of the matrices L and Kμ.
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(v) Kμ^Kμ imply ΘμKμ^ ®μϊtμ and ®μKμ^ ®μKμ.

(VI) ( Θ μ ^ Y ® ® ( θ μ r # μ r ) ~ θμ j L μ.r(Kμi® ®UCμr),

where the similarity can be accomplished by a permutation matrix which depends

only on the orders n1} . . . , ns of the matrices Kh . . . , Ks.

Proof of (iv). Let L = (β), (1< c, ί/< m). Then

ι\

Ks

•ιl,

IT

Kι

• lm •

KM,

l\Ks

ι?κ3 Cκs)

The two matrices on the right sides can be transformed one into the other by

suitable rearrangements of the rows and the corresponding columns they are

therefore similar to each other under a permutation matrix which is easily

seen to depend only on the orders of the matrices L and Kμ.

Proof of (vi). The formula is trivially true for r = 1. By (iii), (iv) and

(v), we have successively

( Θ μ2 = Θ μ i {

Therefore formula (vi) is true for r = 2. Now assume that it is true for r<

m-l. Then
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(θμiϋrμj)<g> ®(Θμmκμj = {(®μiκμi)® 0 ( θ μ r a . A m - 1 ) } ^ ( Φ μ A J

(by induction hypothesis) = { < - 0 μ i . . .μm_,{Kμι® ®Kμm_1)} ® (®μmKμm)

(by Lemma 3.1 (v)) M θ μ χ . . . ih^ι(Kμι® ®Kμm_1)}® ( Θ μ JΓμJ

(by formula (vi) for r = 2) - θ μ i . . .μm(HΓμι® ®Kμ>n_1)®Kμm

= θ μ i . . .μjKμi® 0/fμJ.

This completes the proof of formula (vi). The assertion that the similarity

can be accomplished by a permutation matrix follows from the fact that direct

sums and direct products of permutation matrices are permutation matrices.

We now prove

LEMMA 3.2. Let λμ be any fixed numbers, Eμ the unit matrix of order nμ,

and Nμ any nilpotent matrix of order nμ. Then the matrix

Nμi . . . μic= UμιEμι + Nμι)® - ®(λμrEμr + Nμr) -λμι - - λμrEμι® - ®Eμr

of order nμι nμr is nilpotent.

Proof. If we expand the first term on the right side of the above equation

by using Lemma 3.1 (i), we see that iVμl . . . μ,, is the sum of a finite number

of matrices each of which is a direct product containing at least one of the nil-

potent matrices Nμ as factor. But an easy consequence of Lemma 3.1 (ii) is

that a direct product containing a nilpotent matrix as factor is itself nilpotent.

Therefore, Nμι . . . Mr is the sum of nilpotent matrices and is consequently a

nilpotent matrix itself.

3. 2. Proof of Proposition 2. 2

We now confine ourselves to the field of real numbers. Let us first fix the

notation and give a few definitions. Denote by k the square non-singular

matrix of order n with elements k\, and by C the squaer matrix of order nr with

elements C|&!.'j£ arranged in the lexicographical order. Then equation (3.1)

can be written as

(3.2) (

where the left side is the (ordinary) product of the matrices ®rk> C, ®rk~ι

of order nr. Corresponding to the definitions given in §2.5 for tensors of type

(r, r) over Rn> we shall say that a matrix C of constants (i.e. a matrix C whose

elements are constants) is consistent with the number σ>0 if equation (3.2)

holds for some non-singular matrix k. A matrix C* = (C*Jί.'.'.'",Γ) is called a
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matrix of variables if its non-zero elements are independent variables. A matrix

C of constants is called a specialization of the matrix C* of variables if C is

obtained from C* by giving constant values to the variable elements contained

in C*. It is obvious that if for some k and a equation (3.2) is satisfied by a

variable matrix C*, then it is satisfied by any specialization C of C*.

Three lemmas are needed for the proof of Proposition 2.2. In what follows,

we assume that s is some fixed integer such that 1 < s < n the indices μ, μι,

' - > μr, pu , vr all have the range 1, , s\ λμ are some fixed (real)

numbers Eμ is the unit matrix of order nμ such that Σμnλ = n and Nμ is the

nilpotent matrix of order nμ and index nλ in Jordan canonical form (i.e. all its

elements on the first superdiagonal are 1 and all the other elements are 0).

LEMMA 3.3. Let the equation

(3.2) (®rk)C(®rk~ι)=σC

be satisfied by

C = C 0 ^ 0 , </ = <;0>0, k= Θ^UμEμ + iVμ) Qμ ^ 0)

and let C = Co* be the most general solution of (3.2) when

<7 = <70, * = Θ μ Q μ E μ ) .

Then Co* is a matrix of variables and Co is a specialization of Co*.

Proof Let us study equation (3.2) when

(J = σo, k =-θμUΓμ=s ΦμUμ.Eμ + tfμiVμ),

where the eμ are all equal to 1 or are all 0. By Lemma 3.1 (iv) we have

where L is a permutation matrix of order nr which depends only on nu > ns.

Therefore equation (3.2) can be written

( θ μ i . . . μrKμi® ®K^LCL-1 = σvLCL-'i®μi . . . μΓϋΓμι(g) - ®Kμr).

Thus putting

ZΞΞLCIΓ1,

equation (3.2) is equivalent to

(3.3) ( θ μ i . . . μrKμι® - ®ΛΓμr)Z=<;oZ(Θμχ. . . μrKμι® ' ® Kμ,).

https://doi.org/10.1017/S002776300001134X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001134X


98 YUNG-CHOW WONG

We note that since L is a permutation matrix, C can be obtained from Z by a

rearrangement of its rows and the corresponding columns.

To study equation (3.3), we partition Z into blocks

Z = ( 2 / v ι vr )> \X — βlt ' * ' > A r̂> ZΊ> * " * > Z r̂ ^ S ) ,

corresponding to the partition ( θ μ i . . .μrKμι® ®Kμr). Then Ẑ V.'.'vr is an

(wμi Mμr) x (ΛVI * Wvr) matrix and (3.3) is equivalent to the following set

of equations

Here and in similar equations appearing below, no summation is assumed over

the repeated indices.

Now by Lemma 3.1 (i),

= λμι - λμrEμi ®

where

On account of this and the fact that Eμι® ®Eμr is equal to the unit

matrix of order n^ Wμr, equation (3.4) can be written

(3.5) i r μ i μ r 1 μ! r i r i r i r

There are two cases to be considered.

Case 1. <τoΛvi" ΛVr-/μi AμrΦθ. Iterating equation (3.5) (m-l)-times,

we get

. . . 2 — 2 . . . 2 \myμι...\ιrΛVr, Λ μ i ^ μ r ' ' ^Vj. .Vr

where the summation is taken over the integers mi, m2 such that mi+-nh = m

and 0 < mi, m2 < mf and ( ) are binomial coefficients. Since by Lemma 3.2,

iVμi . . . μr and iVVl . . . vr are nilpotent, the right side of the above equation is

zero for sufficiently large m. Therefore, in this case, Zv/ ifjΓ = 0.
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Case 2. σoλ^ λVr- λμί A^ = 0. In this case, equation (3.5) reduces

to

When all the £μ are equal to 1, these equations generally impose some con-

ditions on Zi\'.\'Xr

r. But when all the e^ are zero, the matrices JVμι . . . μr and

iVVl . . . Vr are both zero so that the above equations all reduce to 0 = 0; there-

fore, in this case, 2%l'.'.'Xΐ are arbitrary.

From the above properties of Zi^ .ϊi^ it follows that LC*L~ι is a matrix of

variables and that LCQL'1 is a specialization of LCfLΓ1. Since L is a permutation

matrix, what has just been said of the matrices LCtLΓ1 and LCQL'1 hold for

the matrices Co* and Co. Lemma 3.3 is thus completely proved.

LEMMA 3.4. For any fixed number a>0 and any fixed diagonal matrix k =

θ αAα Q β # 0,1 < a, β < n), the most general solution of (3.2) for C is the matrix

C* of variables whose element

C*pί;.\>α; = 0 or an independent variable

according

Proof.

as

For K = = vP

ah, •

cΛcc, w e

) — )
Λβ r Λotj

have

• A«r
=*0 or = 0.

®rk= θ t f l . . . β r U β l λΛr),

and the equation

is equivalent to

(<;Ap1 Λp r-" λ« x

 # * AC(r)Cβ1.'!!pr :=: 0 ,

where no summation is taken over the indices αi, . . . , α r, Lemma 3.4 is an

immediate consequence of this.

LEMMA 3.5. Let σ>0 be a parameter. Then any set of(n-l) independent

and consistent equations of the form

(3.6) ί7^p1 * * λ$r = X(t± ' ' λa.γ.f

together with the condition λi •"• λ«=V0, completely determines the ratios of
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Λi, , λn in the form

λi : : λn = εισQl : : ε*<Λ

where each ei, , e» is +1 or — 1, awd <2u - - , Qn are rational numbers.

Proof. Let there be given ti - 1 independent and consistent equations of

the form (3.6). Each of these equations can be written in the form

(3.7) /2

α* •••/?• = *,

where/2 = λzlλu ,/n = W^i and each α2, . . . , α* is — 1,0, or + 1, and, because

<; is a parameter, not all a2, . . . , an are zero. If we eliminate /„ from the n - 1

equations of the form (3.7) which are equivalent to the n-1 given equations,

we obtain n — 2 independent and consistent equations of the form

where each b0, b2, , £«-i is an integer or zero, but not all b2, , £«-ι are

zero. Repeating this process of elimination n — 3 times, we arrive in the end

at a single equation of the form

yf2 = cm\

where m%, mo are integers, and m2 is not zero because a is a parameter. This

proves our lemma.

We are now ready to prove Proposition 2.2. Let us return to Lemma 3.3

and write the matrix ΘμUμ2?μ) there as θ t t k = diagUoi, , λon), where

1 < a, β < n. Since CO=*F 0, so Cf =¥ 0. Therefore, by Lemma 3.4, a§ and λoa must

satisfy one or more equations of the form

(3.6) σλpλ ' λpv = λ Λ l ' * * ^« r.

Denote by (*)o the set of independent equations of this form satisfied by ao and

Λoα. Since σ0>0 and # 1 , and Λoα^O, there exist, for each a, a unique εOα = 4-1

or — 1, and a unique number </o* such that Λoα = εotf<;?oce. Then the equations (*)o,

being satisfied by a = σo and λa = εo«ί;?Oct, are satisfied by λΛ = εo«ί;ίoa for arbitrary

σ>0. From this it follows that the equation

holds for

k(σ) = diag(εoi^01, , εonσQ(>n) and arbitrary σ>0.
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And since Co is a specialization of Co*, the same is true of the equation

This proves the first part of Proposition 2.2.

To prove the second part of Proposition 2.2, we observe that the set (*) 0

of equations satisfied by σ0 and ΛOα can always be extended in some way to a

maximal set (*) of n -1 independent and consistent equations of the form

(3.6) with σ>0 as parameter. By Lemma 3.5, the most general solution of

(*) is of the form

h : : χn = eισQί : : enσ
Qu,

where each εα is + 1 or — 1 and qu . . . , qn are rational numbers. Now by

Lemma 3.4, for

k(σ) =diag(eκ;<l1, . . . , enσ
9n) and arbitrary σ>0,

the most general solution for C of the equation

(®rk(σ))C(®rk(σ)-1) = aC

is a matrix C* of variables. And since the set (*)o of equations is contained

in the set (*) of equations, Co* is a special case of C*. But Co is a specialization

of Co*. Therefore Co is a specialization of C*. This completes the proof of

Proposition 2.2.

3. 3. The complete set of C*'s for small n and r

As examples, we now determine the complete set of the variable tensors

C*'s in Proposition 2.2 for a few simple cases. It should be noted that when

two sets of w - 1 independent and consistent equations of the form (3.6) de-

termine two sets of ratios of λh , λn which differ from each other only by

a permutation, they give rise to two matrices of variables whose elements are

components, relative to two different bases, of the same variable tensor C*

over Rn for then the two corresponding matrices k's are similar under a per-

mutation matrix (see the introductory remarks at the beginning of § 3). It is

not known whether, even after allowance has been made for the permutations

of λi, - , λn, the variable tensors determined in Proposition 2.2 are all dis-

tinct. But we shall not pursue this question as its answer is of no importance

to our present problem.
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(i) The case n = 2, r = 2.

Here 1 < cch a2, βι, β2<2 and the composite indices A = (ecu #2), B = (βlt ft)

have the range (11), (12), (21), (22). Among the equations of the form όλ^λ^

= λaiλai we need only consider

Oλl — λ\λ2 y θλ\ = λl,

which give respectively,

λι : λ2 = 1 : <y Ji : Λ2 = 1 : ^1/2.

Since the element C*pί?2

2 of C* is zero or an independent variable according as

ehMz ~ «̂î «2 ̂  0 or = 0, we can easily see that the C* corresponding to these

two equations are respectively

where a dot denotes the zero and the stars * denote independent variables.

(ii) The case n = 2, r = 3.

Here 1 < ah ct2, as, βu ft, βz<2 and the composite indices A~ (ah a2, <xz),

B=(j91, β2, β5) have the range (111), (112), (121), (122), (211), (212), (221),

(222). Among the equations of the form σλ^λ^λ^ = λΛiλΛzλas, we need only con-

sider

which give respectively

λi λ2 — 1 0 I

The corresponding C* are

= 1 a 1 λ2 = 1 j

* * * * *

* * . ήc *

* * . * *
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(iii) The case n = 3, r = 2.

Here 1 < och a2, βu &< 3 and the composite indices A = (αi, α:2), 5 = (j9ι, ft)

have the range (11), (12), (13), (21), (22), (23), (31), (32), (33). Each C* =

(C*pίp?) is a 9 x 9 matrix. There are altogether 15 C*'s. Instead of listing them

here, we only point out that each C* is determined from a set of two inde-

pendent and consistent equations of the form σλ^λ^ = λaχλa2 such as

which give

a2f\

3. 4. The equation k C = <;C in an algebraically closed field

It is easily seen that the discussions of the equation k C =oC in this

section completely solve the problem of consistency of this equation in any

algebraically closed field. In the case of field of real numbers, we have to

confine ourselves to the case where the equation k C~oC is satisfied by some

<7>0 and # 1 and some k^GL(n, R) whose characteristic roots are all real.

The reason for this restriction is to ensure the existence of an element # e

GL(nt R) so that the matrix g~ιkg is in Jordan canonical form. In the case of

an algebraically closed field F, there is no need for any such restriction. Since

all the characteristic roots of any &e GL(nt F) belong to F, there always exists

some g^GL(n, F) so that g~xkg is in Jordan canonical form. (Here we denote

by GL(n, F) the w-dimensional general linear group over the algebraically closed

field F). Moreover, the content of §§ 3.1-3.3 obviously holds for any field.

Thus, we have as a by-product the following remarkable and perhaps important

results:

PROPOSITION 3.1. Let F be any algebraically closed field. Let C be a tensor

of type (r, r) over the n-dimensional vector space over F, and a a non-zero ele-

ment of F. C is said to be consistent with a if there exists an element k of

GL(n} F) such that k C~aC, where C is a set of components of C.

Then any given C is consistent either with arbitrary a # 0 or with only σ = l.

Furthermorey C is consistent with arbitrary σ^O iff it is a specialization of one

of the variable tensors C*'s determined as follows:

(i) Let σ^O be a parameter. Take any set (*) of n — 1 independent and con-

sistent equations of the form
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tfΛj^ * * * Λ(*r

 = / « ! * " * ΛcCr

in the n unknowns λi, , λn>

(ii) Solve (*) /or ί/z£ rafί'os of λu - . - , Λrt, obtaining

where qh . . . , qn are rational numbers.

(iii) T&£w ίft# variable tensor C* corresponding to (*) zs obtained by putting

C*Ίΐ.'.lsϊ = 0 or an independent variable

according as the Λi, , λn given in (ii) satisfy

aλh Aε r - ATl ' * Λrr=*O or = 0 .

4. Proof of Theorem 2.10

The proof is based on certain algebraic considerations of the equation (3.2).

4.1. Two lemmas

Consider the equation (3.2) namely

(4.1) (

where C i s a / x / matrix whose elements are constants, σ>0 is a parameter,

and k(σ) is a non-singular matrix of order n. Let N be the Jordan canonical

form of C. Then there exists a non-singular constant matrix T such that

(4.2) TCT'1 =N.

We note that since C is nilpotent (see §2.6), N has real elements, so that T

can be chosen to have real elements. Now using (4.2), we can write (4.1) as

iT-\®rk{σ))T}N{T-\®rk(ayι)T) = σN.

Therefore, the matrix

(4.3) F(a)^T-\®rk{aYι)T

satisfies the equation

(4.4) F(σΓ1NF(σ)^σN.

Hence

LEMMA 4.1 A necessary condition for C to be consistent with arbitrary
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σ>0 is that there exists some matrix F(σ) which satisfies (4.4) and which is

similar to the direct rth power (&rk(σ)~ι of a non-singular matrix k(σ)~ι.

We shall prove Theorem 2.9 by first finding the characteristic roots of the

matrix F{a) satisfying (4.4) and then comparing them with those of the direct

rth power ®rk(a)'1.

Since any C satisfying (4.1) is nilpotent (cf. §2.6), the Jordan canonical

form JV of C is of the form

(4.5)
r$

N=NPι® ®NPι®NPi® ®NPi® ®NPβ® ®NPt

where pi<p2< <pSy r^pxΛ npiΛ' + rsps = nr, and NpΛ (l<μ, v<s) is

the nilpotent matrix of order pμ and index pμ in Jordan canonical form. It is

easy to see that the index of nilpotence of N, and therefore also of C, is p$.

We now prove

LEMMA 4.2. If the matrix N is given by (4.5), the characteristic roots of

any F(σ) satisfying (4.4) are (all non-zero and) of the form

(«i, , Urj), (wi, , urι)σ, . . . , {uu , Ur^σ*1'1;

(Vh ' , Vr2), (VU , Vr2)σ, . . . , (vU ' ' ' 9 Vrja**"1 I

(WU , Wrs), (tVi, , Wrs)<J, . . . , (wh , Wrjd**"1.

Proof Following a well-kncwn procedure for finding all the matrices

commutative with a given matrix (cf. Gantmacher [5], p. 220), we can easily

show that the most general solution of (4.4) for F(σ) is

where, for ξ, η satisfying

is a p\ιXpv matrix of the following form

(i)

0

0

b
aa

0

c
ab

σ'a
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(ii) 0 a

0 0

0 0

b

aa

0

c

ab

a2a

(iii)

• 0
a b

0 aa

0 0

ab

a2a

0
0

0
0 0

0 0 0

where 0, b, c are arbitrary parameters. Now by suitably rearranging the

rows and the corresponding columns of F(σ), we can obtain a matrix which is

similar to F(a) and whose characteristic equation can be found easily. For

example, if

1

• 1
iV =

where and in the next two matrices a dot denotes the zero, then the most

general F(a) satisfying (4.4) is

011 #11 012 bi2 ' 013 #13

#011 " #012 " " #013

021 #21 022 #22 * 023 ^23

#022 * * #023

31 032 bz2 033

#032 ' #033

#2033

and this matrix is similar to

an 0i2 * t>a biz 013 mz

021 022 * ^21 ^22 023 ^23

031 032 033 bzi bz2

* ' * aan aa n * #0i3

#021 #022 * #023

#031 #032 #033

#2033
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This shows that the characteristic roots of F(a) are equal to those of the

matrices

ranran «„-, r « u «*« ,

" 2 i &22 βa2\ oa<ι>L

and are therefore of the form

(uu tk), («i, Ui)o\ vlt Viσ, Vtf2.

The general case is similar.

4. 2. The proof

First, if 0i, . . . , θn are the characteristic roots of k(o) ~\ the characteristic roots

of the direct rth power ®rk(σ)~1 are the terms in the expansion of (#i+

Λ-βnY (cf. MacDuffee [8] p. 84). Therefore, since # ? = (n + r- 1 ) ! / (Λ - l ) ! r ! is

the largest possible number of distinct terms in the expansion of (0i -t- + 0«)r,

the matrix ®rk(σ)"1 has βf wosf H? distinct characteristic roots.

On the other hand, since σ>0 and =^1, it follows from Lemma 4.2 that any

F(σ) satisfying (4.4) has at leastps distinct characteristic roots. Now by Lemma

4.1, F(σ) and ®rk{σ)"1 have the same characteristic roots. Therefore, we have

ps<Hr- But ps is the index of nilpotence of C. Hence Theorem 2.10 (i) is

proved.

Next, we know (Chrystal [2], pp. 16-17) that the largest coefficient in the

expansion of (0i+ -\-θn)
r is

M? = r!/(ql)n(q + Dp (r = nq+p, 0<p<n).

Therefore, at least M? of the characteristic roots of <S>rk{σ)~1 are equal. By

Lemma 4.1, the same must be true of F(σ). By Lemma 4.2, these M? equal

characteristic roots of F{a) must be distributed one in each of the ri+ * Λ-rs

different sets

(«i, Utf, , Wicr^1"1), . . . , (Wrs, Wra<r, , Wr^8'1)

because no two characteristic roots in the same set are equal. Therefore, we

must have Mr < n + + rs> But τ\ -h -f rs is equal to the number of

elementary divisors of the matrix N given by (4.5) and consequently also of

C. Hence Theorem 2.10 (ii) is proved.

Remark. Better results than Theorem 2.10 would have been obtained if
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we could compute the elementary divisors of the matrices F(σ) and ®rk(σ) 1

and compare them instead of the characterstic roots. Since ®rk(a)~1 is the

direct rth power of k(σ)~\ its elementary divisors can be explicitly expressed

in terms of those of k{a)~ι (Roth [10]). But unfortunately, there appears to

be no simple way to compute the elementary divisors of F(σ) already the

elementary divisors of

a b c

0 a b •

0 0 a

0 0 a

are rather complicated (cf. Gantmacher [5], p. 156).
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