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We descr ibe methods to fi t structured latent growth curves to data from MZ and DZ twins. The
wel l -known Gompertz, logistic and exponential  curves may be wr i tten as a function of three
components – asymptote, ini tial  value, and rate of change. These components are al lowed to vary
and covary wi thin individuals in a structured latent growth model . Such models are highly
economical , requi r ing a smal l  number  of parameters to descr ibe covar iation across many
occasions of measurement. We extend these methods to analyse longi tudinal  data from MZ and DZ
twins and focus on the estimation of genetic and envi ronmental  var iation and covar iation in each
of the asymptote, ini tial  and rate of growth factors. For  i l lustration, the models are fi tted to
longi tudinal  Bayley Infant Mental  Development Scale data publ ished by McArdle (1986). In these
data, al l  three components of growth appear  strongly fami l ial  w i th the major i ty of var iance
associated wi th the shared envi ronment; di fferences between the models were not great. Occasion-
specific residual  factors not associated wi th the curve components account for  approximately 40%
of var iance of which a significant propor tion is addi tive genetic. Though the growth curve model
fi t less wel l  than some others, they make restr ictive, falsifiable predictions about the mean,
var iance and twin covar iance of other  (not yet measured) occasions of measurement. Twin
Research (2000) 3, 165–177.
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Introduction

Growth and decay are essential  properties of l iving
organisms. An improved understanding of the mech-
anisms of development seems fundamental  to
explaining individual  di fferences in almost al l  bio-
logical  science, and behavior genetics is no excep-
tion. In this paper, we describe, extend and apply
growth curve models which predict changes in
mean, variance, and covariance over time. These
curve models can predict non-monotonic increases
and decreases in means and covariances, and the
two types of statistics do not necessari ly change in
paral lel .

Growth curve models are wel l -sui ted to data
where the number of occasions of measurement is
large, because they describe changes in mean, vari -
ance and covariance wi th a l imi ted number of
parameters. We begin wi th a review of the con-
ceptual  background to the curves, and then show
how they may be used to derive an appropriate set of
factor loadings for model -fi tting. Our methods are
based on those previously publ ished by Browne

1

and Browne and Du Toi t.
2

We extend them to model
genetic and envi ronmental  components of variation

in growth curves, using data from relatives, and
provide Mx scripts to make the methods readi ly
avai lable.

At present, behavior genetic analyses of longi tudi -
nal  data usual ly employ one of a few basic models: a)
the Cholesky factorization; b) a Markov chain; or c)
growth curves. As described by Neale and Cardon,

3

the Cholesky factor model , also known as the square
root factorization,

4,5
(see Figure1a) is a transforma-

tion of a covariance matrix. This model , presented as
a path diagram in Figure1a, has the same number of
parameters as there are covariances (m(m + 1)/2 for
m variables), and wi l l  always fi t perfectly. In a
genetic Cholesky model , the addi tive genetic (A),
common (C) or specific (E) envi ronmental  covari -
ance matrices are each decomposed into thei r Chol -
esky factors. Whi le they describe the covariance of
each of the components perfectly, the Cholesky
factor model  may fai l  because the wi thin-person
covariances are estimated from four di fferent sources
in the classical  tw in model , and these repl icate
statistics may be unstable. Simi larly, the cross-twin
cross-variable covariances may be non-symmetric
and therefore contribute to lack of fi t of the Cholesky.
Such statistical  fluctuations of the data do not reflect
the appropriateness of the Cholesky as a model .
Other causes of fai lure – such as DZ covariances
being less than hal f the corresponding MZ covar-
iances, or phenotypic variance di fferences between
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MZ and DZ twins – would be informative about the
general  sui tabi l i ty of the ACE model  for the data, but
sti l l  do not test the number of factors or the
triangular pattern of thei r loadings.

In contrast to i ts use in the mul tivariate analysis of
a set of variables, the Cholesky decomposi tion may
have a useful  conceptual  interpretation when
appl ied to longi tudinal  data which are ordered from
time1 to time m. A l l  factors are constrained to
impact variation at current and later – but not earl ier
– occasions. Thus the first factor (F1) may create

variation at al l  occasions, but F2 may influence al l
occasions except the first. Just as the model  may
predict any change in variation and covariation over
time, so i t can predict any pattern of change in
means. However, this explanatory power can be seen
as a disadvantage, because the model  is not falsifi-
able. No pattern of genetic covariances over time
exists that could not be accounted for by the
Cholesky model . Even worse, i t makes no prediction
about genetic variation or covariation on future, not
yet measured, occasions.

Figure 1 Two path models for longi tudinal  data from an individual : (top) Cholesky factor; and (bottom) Simplex or Markov
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The ‘Simplex’ or ‘Markov chain’ model  of Fig-
ure1b provides an al ternative account of changes in
variance over time. Dolan and col leagues

6,7
describe

a constrained version of this model  which specifies a
l inear relationship between longi tudinal  changes in
variance and concurrent changes in mean. In con-
trast to the Cholesky factor model , the simplex
model  makes highly restrictive predictions about
covariances and hence is falsifiable wi th sufficient
occasions.

8
Di fferences in mean and variance (ei ther

at the phenotypic or genetic factor level ) may be
related in a non-l inear fashion, and the l inear model
may fai l . For example, a decrease in variance might
be accompanied by an increase in mean on one
occasion, whi le at other times both may increase or
decrease. Certain growth curve models predict more
complex patterns of relationship between mean,
variance and covariance, and they may be empiri -
cal ly tested against simpler models; hence our
interest in them.

A popular, modern approach to the study and
model ing of change is to use dynamical  systems
theory.

1,9
Essential ly these methods focus on the rate

of change of a variable of interest (ie i ts slope or
partial  derivative) as a way to predict the level  at a
series of points in time. These methods have many
appl ications, including pol lution levels, disease
epidemics, supermarket queues, population growth,
radioactive decay, weather and chaotic systems. In
this paper we relate structural  equation model ing of
genetical ly informative longi tudinal  data to dynam-
ical  systems.

A growth curve approach to behavioral  genetic
analysis was introduced by Vandenberg and Falk-
ner

10
who first fi tted polynomial  growth curves for

each subject and then estimated heri tabi l i ties of the
components. The latent variable growth model  ver-
sion of this idea was later presented by McArdle.

11

Here we extend models of this type by incorporating
structured factor loadings that represent elementary
theories about growth and change. In every case, we
model  the genetic and envi ronmental  sources of
variance covariance in the latent growth compo-
nents. This approach is analogous to using the
phenotypic factors (common pathway) model  rather
than the biometric factors (independent pathway)
model .

3,12
The latter framework, though appeal ing,

cannot be identified for growth curves because there
is no predicted mean di fference between MZ and DZ
twins. In this respect, the growth curve models are
qui te di fferent from the Simplex and Cholesky
which are variants of biometric factor models.

Growth curves

Fi rst we present the theoretical  background behind
three growth curves which display asymptotic

behavior: the exponential , the logistic, and the
gompertz. The basic idea behind these curves is that
individuals start at some ini tial  point, then grow at a
rate which accelerates. This exponential  growth
characterizes the early stages of development, where
the gradient gels steeper and steeper. However, i t
also seems reasonable to assume that growth does
not continue to accelerate forever; some l imi ting
factor takes over, progressively slowing down
growth, making the gradient less and less steep unti l
the growth curve asymptotes at an equi l ibrium
point. Di fferent hypotheses about the type of growth
and l imi ting factors lead to the di fferent growth
curves, and some of these wi l l  be discussed below.

The exponential  curve

One of the simplest models for changing growth rate
is where current growth rate is proportional  to
current size (see Mal thus (1798) as reported by
Murray

13
). If we were to plot size against time, the

gradient would get steeper and steeper (see Figure2).
Mathematical ly, we can wri te this concept as 

= y(t)c,
dy

dt
(1)

where c is a constant and y(t) is the size at time t.
This di fferential  equation involves both y and the
derivative of y over time t. Some di fferential  equa-
tions, including this one, can be solved to find an
expression for y(t) by i tsel f: 

y(t) = y(0)e
tc
. (2)

Braun
9

gives a good account of methods for solving
such equations, and symbol ic calculus software such
as Mathematica

14
may be used to veri fy resul ts. Note

how y(t) increases exponential ly over time from the

Figure 2 Plot of y = e
x

i l lustrating perpetual  acceleration of
growth for a system where growth rate is proportional  to current
size, dy and dx i l lustrate the derivative of the curve dy/dx
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ini tial  period y(0) at time zero. Whi le such growth
may be a good approximation during ini tial  stages of
many biological  systems, i t rarely appl ies to the later
ones, so we need to add a ‘carrying capaci ty’ to
represent an upper l imi t on size.

One form of asymptomatic behavior arises when
the growth rate is proportional  to the distance from
the maximum height or asymptote (a = y( ∞ )). In this
case the di fferential  may be wri tten:

= c(a – y(t)),
dy

dt
(3)

which may solved to give 

y(t) = a – (a – y(0))e
–tc

. (4)

Note how this resul t scales the growth curve to l ie
between the ini tial  value, y(0), and the asymptote, a.
When t is zero, the exponential  part gives e

0
= 1 so

that a – (a – y(0)) = y(0). Conversely, when t is large,
e

–∞
= 0, giving y( ∞ ) = a. This meets the requi rement

for asymptotic behavior, as i l lustrated by the sol id
l ine in Figure3.

The logistic curve

Another model  for l imi ted growth was proposed by
Verhulst in 1838,

15
for changes in population size.

He suggested that populations would grow in the
exponential  fashion of equation 1 above, but would
be l imi ted by the square of thei r size. Thus, 

= ay(t) – by(t)
2

dy

dt
(5)

= ay(t)(1 – y(t)b) (6)

where a is the ul timate size or asymptote, and b is
the ini tial  level . The solution of this equation is 

ay(0)

by(0) + (a – by(0))e
–at

(7)y(t) =

which is fami l iar to many researchers as the logistic
curve. The middle l ine in Figure3 is an example of a
logistic curve. Whi le i t was developed for the growth
of populations, i t has (l ike many mathematical
models) proved useful  in a variety of contexts.

The Gompertz curve

A thi rd model  for asymptotic growth comes from
Gompertz.

16
It is simi lar to the logistic in that the rate

of growth decays as a non-l inear function of current
height. Instead of the square of the current size, the
product of logari thm of current height and the height
i tsel f are used. We wri te the di fferential  equation for
this model  as 

= ay(t) – blog[y(t)]y(t),
dy

dt
(8)

so growth is ini tial ly exponential  (from ay(t)), but as
time passes the term on the right may counteract i t.
This equation can be solved and rearranged to give

a – e
b (c – t)

b
(9)y(t) = exp [ ]

The behavior of the Gompertz curve varies according
to the parameters; for some values of b the curve
does not asymptote but increases exponential ly. An
example Gompertz curve is the bottom l ine in
Figure3. Whi le the model  was developed for cel l
reproduction during ontogeny (the growth of
chicken hearts), i t has been widely used in tumor
growth and models of population death rates.

17,18

We emphasize that the three curves presented here
are only a smal l  sample from the set of possibi l i ties.
However, they provide a foundation for a bridge
between dynamical  systems theory widely used in
mathematical  biology and structural  equation mod-
el ing of genetical ly informative data.

Model ing phenotypic data

Now that we have mathematical  equations for
growth curves, we need to find a way to generate
appropriate predictions for population means, vari -
ances and covariances across time. Each curve has
parameters which control  the ini tial  level , the
growth rate, and the asymptote. Suppose that there
are latent factors which represent individual  di ffer-
ences in these components, and that observed scores
at di fferent time points are a l inear combination of
these components and some random error. This can
be described as a factor model  wi th three latent

Figure 3 Growth curves from three functions that may display
asymptotic behavior: exponential  (– – – – ––), logistic (– – –),
Gompertz (- - - -). Parameter values used to draw the curves were:
a = 3, i = 0.3, r = 0.2
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factors, as shown in Figure4. A lgebraical ly, we can
wri te

(10)p = Ff + Ee,

where p, f and e are respectively vectors of pheno-
types, factors and residual  errors, F is the (ful l )
matrix of factor loadings, and E is the diagonal
matrix of loadings on the residual  components. The
rules of path analysis

19–22
or mul tivariate path

analysis
23

may be useful  to derive predicted covar-
iances from this model  as 

(11)Σ = FRF’ + EE’
where R is the covariance matrix of the latent factors
f. Population variation in the latent factors is
assumed to be symmetric, so the predicted mean for
occasion t equals the height of growth curve at that
time point. We can wri te this model  using factor
means,

(12)µt = Fµf,

where µt i s the nt � 1 vector of means, nt is the
number of timepoints, and µf = (a,i ,0)' is the 1 � 3
vector of factor means. As we later show, wi thin a
computer program such as Mx, the expression for the
growth curve (Equations4, 7 and 9) can be specified
di rectly for the predicted means.

Our next task is to find expressions for the
elements of F, the factor loadings, that generate
predicted covariances according to the growth curve
model  in use. We fol low Browne

1
by using a first-

order Taylor series to reproduce the growth curve. In
brief, this involves use of the partial  derivatives of
the growth curve function (Equation 4 or 7 or 9
above) wi th respect to the parameters a, b and c. For
the vector of factor loadings from the asymptote
factor under the exponential  model  we use the
partial  derivatives of Equation 4 wi th respect to a.
These partial  derivatives involve t, so the loadings
are di fferent from the di fferent occasions t = 1,2…T.
They form the columns of the matrix F in Equa-
tion 10. Whi le these expressions have been pub-
l ished elsewhere, we reproduce them in Table1 for
convenience. We could di rectly fol low the equations
for the three curves derived in equations4, 7 and 9
above, but a sl ight reparameterization due to
Browne

1
makes the estimates easier to interpret,

wi th a being the final  asymptote and i being the
value at time t = 0 for al l  three curves.

Figure 4 Three-factor model  which represents variation in
asymptote, ini tial  level , and growth rate. A l l  factors cause
phenotypic variation on al l  occasions (T1, T2, T3), but the factor
loadings are constrained according to the predictions of the
model . Residual  genetic and envi ronmental  components that
influence only one time each are not shown

exp [– (t – 1)r + log [  ] exp [– (t – 1)r]]

Table 1 Exponential , logistic and Gompertz growth curve
functions and thei r partial  derivatives

– a log [  ](t – 1) exp [– (t – 1)r + log [  ] exp [– (t – 1)r]]i
a

i
a

a
i

dFG

dr
= (24)

[1 – exp [ – (t – 1)r]] exp [log [  ] exp [– (t – 1)r]]i
a

dFG

da
= (22)

(a – i) (t – 1) exp [– (t – 1)r]
dFE

dr
= (16)

a – (a – i) exp [– (t – 1)r]FE = (13)

exp [– (t – 1)r]
dFE

di
= (15)

1 – exp [– (t – 1)r]
dFE

da
= (14)

(a – i) (t – 1) exp [– (t – 1)r]FL

i + (a – i) exp [– (t – 1)r]

dFL

dr
= (20)

a – (1 – exp [– (t – 1)r])FL

i + (a – i) exp [– (t – 1)r]

dFL

di
= (19)

i – exp [– (t – 1)r]FL

i + (a – i) exp [– (t – 1)r]

dFL

da
= (18)

ai

i + (a – i) exp [– (t – 1)r]
FL = (17)

a exp [log [  ] exp [– (t – 1)r]]i
aFG = (21)

i
a

dFG

di
= (23)

Gompertz

Logistic

Exponential
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Thus the only di fferences between the growth
curve models are the constraints on the factor
loadings in the matrix F. Figure5 plots the factor
loadings for the Gompertz curve for time points
t = 1,…10. As would be expected, the loadings on
the asymptote factor increase paral lel  to the height of
the curve i tsel f. Loadings on the ini tial  factor are
highest at the start of the process, whereas those on
the rate factor are highest when growth is most
rapid.

The model  al lows for both variation wi thin, and
covariation between the latent growth factors. So, for
example, wi thin a population, ini tial  value might be
correlated wi th asymptote, giving rise to one of the
three possible covariances between the components
of growth. Second, the model  is specified for dis-
crete, evenly spaced time periods, but i t is not
l imi ted to data of this type. If we had data assessed at
ages1, 2, 4 and 7, we could create or select the rows
of L accordingly.

Model ing data from relatives

It is a relatively di rect matter to extend the pheno-
typic growth models to cover data from relatives
such as twins, but there are several  important
options. McArdle,

11
fol lowing Vandenberg and Falk-

ner
24

presented a model  of the genetic decomposi -
tion of the growth parameters. In this case, we have
three covarying latent factors (asymptote, ini tial  and
rate) and uncorrelated residual  variance. When there
are data from relatives, we can model  the fami l ial
resemblance for both the latent factors and the
residual  components. A mul tivariate path diagram

23

of such a model  is shown in Figure6. In moving from
Figure4, we have substi tuted the vector of latent
variables G for the three growth factors a, i and r, and
Pi represents the nt observed measures. The covari -

ance between the factors, A, I and R in Figure4, is
now model led in the A, C and E matrices. Likewise,
we have substi tuted AS, CS and ES for the residual
variance. The model  gives predicted covariance
among twins which may be wri tten: 

Σ = (I � F) (I � F)’

+

A’ + C’ + E’ αA’ + C’
αA’ + C’ A’ + C’ + E’

AS’ + CS’ + ES’ αAS’ + CS’
αAS’ + CS’ AS’ + CS’ + ES’)

)

(

(

where α = 1 for MZ and 0.5 for DZ twins, I is a 2 � 2
identi ty matrix, F is the factor loading matrix, and �
denotes right kronecker product. The structure of the
matrices in this model  may be chosen from a variety
of identified forms. A l l  the usual  tools of mul ti -
variate genetic analysis may be appl ied to the three
covarying latent growth factors. We could, for exam-
ple, use a Cholesky decomposi tion of the addi tive
genetic, common and specific envi ronmental  factors
i f MZ and DZ twin data are avai lable, in which case
the matrices A, C and E would be lower triangular.
The matrices could be restricted to represent single-
factor or independent sources of variation for the

Figure 5 Plot of factor loadings according to partial  derivatives
of the Gompertz curve for time points t = 1,...10. Key: – – – – ––
asymptote, a; - - - - ini tial , i ; – – – rate, r

Figure 6 Mul tivariate path diagram of resemblance between MZ
or DZ twins under a growth curve model . Addi tive genetic,
common and specific envi ronmental  components (G, C and E) act
addi tively to produce variation and covariation in growth curve
factors G, which in turn cause variation and covariation in the
phenotypes (P) over time. Residual  components, not explained by
individual  di fferences in growth curve factors, may also be
parti tioned into genetic (As), and envi ronmental  (Cs and Es)
components
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components by making them 3 � 1 or 3 � 3 diago-
nal , respectively.

We can take simi lar l iberties wi th model ing the
residual  variation not explained by the growth
curve. One approach, used here, is to al low time-
specific A, C and E factors, which requi res As, Cs and
Es to be diagonal . In factor models, model ing of
residual  variation is often l imi ted to such simple
structure of the residuals because of the large
number of parameters used to fi t the factor structure,
which can explain almost any covariance structure.
However, growth curve models are highly efficient,
requi ring only nine parameters, regardless of the
number of occasions. Many options for exploring
residual  covariation not explained by the growth
curve are therefore avai lable, including conventional
general  factors or simplex models, or combinations
thereof. In this article we use only the time-specific
approach to model ing the residual  covariances.

Note that the method described here is a single-
step analysis. This is in contrast to the approach
used by Baker et al

25
which uses two steps. Fi rst,

individual  growth curve parameters are estimated
from each subject in the sample. Second, genetic and
envi ronmental  parameters are estimated from the
individual  parameters.

Appl ication to the Bayley Infant Mental
Development Scale

Data to i l lustrate the approach come from the
Louisvi l le Twin Study

26
and were publ ished and

analyzed by McArdle.
11

The Bayley Infant Mental
Development scale was administered to twins aged
from 6 months to 2 years, at regular 6-month inter-
vals. As described in McArdle’s paper, means,
standard deviations and correlation matrices for MZ
and DZ pai rs were computed from the data based on
unequal  sample sizes ranging from 72 to 105. Scores
were computed as 100 times raw score divided by
the maximum BIMD of 163, and are thus interpreted
as a ‘percentage correct’ metric. For analysis in this
article, covariance matrices and means are used.
These statistics are less than optimal  for the analysis
of incomplete data, especial ly since Mx is capable of
analyzing raw data via maximum l ikel ihood.

27–30

However, these summary statistics are sufficient for
the purposes of i l lustration.

An Mx script for fi tting the genetic growth curve
model  is given in Appendix 1. It is relatively simple.
The first group is used to compute the partial
derivative vectors for each of the time points; these
form the columns of matrix F, the factor loadings.
The second group sets up the A, C and E components
of covariance between the asymptote, ini tial  and rate
factors. The thi rd and fourth groups fi t the model  to

the MZ and DZ data, respectively. Several  sub-
models are then fi tted using the mul tiple fi t option.

As a starting point for comparison, we note that
McArdle

11
fi tted a latent growth curve model  wi th:

a) an ini tial  level

b) unrestricted loadings on a second component;
and

c) common and specific biometric components.

This model  achieved a fi t of �2
= 169 on 21 degrees

of freedom, compared wi th a saturated basel ine
model . We hope to improve on this fi t here.

Resul ts

Table2 shows the parameter estimates for al l  three
growth curve genetic models. The estimates of the
means are i l lustrated graphical ly in Figure7, which
also shows the estimated exponential , logistic and
Gompertz growth curves, based on the parameters a,
i and r for the four models. Evidently, the models fi t
the means wel l , as would be expected since these
statistics have smal l  standard errors relative to the
covariances. The figure suggests that addi tional
measurement occasions would help discriminate
between the curves, as thei r closely paral lel  forms
diverge after the two-year final  measurement.

In Table2, there are 3 � 3 matrices reported for
each of Af, Cf and Ef. Each matrix contains estimates
of the A, C or E contribution to the covariance matrix
among the three growth components: the asymptote,
ini tial  and rate. The top-left element in each matrix
represents the variance in the asymptote factor,
which is much greater for the C component than for
A or E in the exponential  model  (1756.19 vs 4.76 or
4.90). The same is true, to a lesser extent, for the
logistic and Gompertz models. It is also the case that
the C component is larger than the A or E for the
variance of the ini tial  factor (10.4 vs 1.14 or 0.16).
There is l i ttle evidence of variation in the rate
parameter; i t is estimated to be near zero across al l
three models. This boundary condi tion may be one
reason that the growth curve models do not fi t as
wel l  as the Cholesky decomposi tion for these data. It
suggests that the pattern of change in mean and
variance does not match the partial  derivative of the
growth curve wi th respect to the rate parameter r.

Wi th only four occasions, there is l i ttle informa-
tion to assess individual  di fferences in rates of
growth. Likewise, there is l i ttle power to estimate the
covariances between the addi tive genetic factors that
contribute to variance in asymptote, ini tial  and rate;
the correlations between these components are esti -
mated at uni ty so a single factor would suffice. The
same is true of the specific envi ronmental  factors in
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growth. For shared envi ronmental  effects, which
have a much greater effect on phenotypic variation,
the correlations are large between ini tial  and rate for
al l  models. This would suggest that shared envi ron-
mental  factors that contribute to ini tial  level  are very
simi lar to those that influence rate of growth.
However, variabi l i ty in rate is smal l , and therefore
these high correlations are of l i ttle consequence.

The relative contribution of the factors to the
phenotypic variance changes across occasion. This
is because the factor loadings are strict functions of
the parameters a, i and r and the time point t. The

proportion of variance accounted for by each compo-
nent could be computed for al l  four occasions, and
for al l  three models. In al l  three models, the growth
curve accounts for approximately 64%, 88%, 74%
and 100% of the variance in occasions one to four
respectively.

Approximate �2
fi t statistics vary from 129 to 138

across the di fferent growth curve models, despi te
thei r having the same number of degrees of freedom.
This suggests that, even wi th these few occasions,
information in the pattern of variances and covar-
iances over time can effect some discrimination
between the models, and that these di fferences
would be enhanced wi th more occasions of measure-
ment. A further indication of model  qual i ty is the
reasonableness of the parameter estimates. The
logistic and Gompertz curves have asymptote param-
eters qui te close to the theoretical  maximum (100)
for these test scores, whi lst the exponential  suggests
a less plausible maximum of 139.

The ful l  models demonstrate the identification
and feasibi l i ty of fi tting genetic growth curves, and
that some fit the data better than others. To test some
specific hypotheses about individual  di fferences in
growth, we can compare the fi t of submodels. A
series of comparative fi t statistics for the three
growth curves is shown in Table3. On the whole, the
changes in fi t from a model  to a submodel  are simi lar
across the three types of curve, so we focus on one
curve, the logistic. The submodels address the
fol lowing hypotheses:

Table 2 Parameter estimates for three growth curve models fi tted to Bayley Infant Mental  Development data on MZ and DZ twins
assessed on four occasions

Model

Parameter Exponential Logistic Gompertz

a 140.05 97.29 108.01
i 39.88 40.17 40.00
r 0.17 0.64 0.41

a i r a i r a i r
Gf a 4.76 –1.00 –1.00 a 5.74 1.00 1.00 a 2.88 1.00 1.00

i –2.32 1.14 1.00 i 2.80 1.37 1.00 i 1.89 1.25 1.00
r –0.03 0.02 0.00 r 0.02 0.01 0.00 r 0.02 0.01 0.00

a i r a i r a i r
Cf a 1756.19 –0.16 –1.00 a 88.66 0.06 –0.90 a 223.12 –0.04 –0.99

i –21.49 10.40 0.16 i 1.67 9.46 –0.49 i –1.72 9.92 –0.08
r –3.07 0.04 0.01 r –0.37 –0.07 0.00 r –0.83 –0.01 0.00

a i r a i r a i r
Ef a 146.94 1.00 –1.00 a 8.96 1.00 –1.00 a 21.32 1.00 –1.00

i 4.90 0.16 –1.00 i 1.18 0.16 –1.00 i 1.86 0.16 –1.00
r –0.27 –0.01 0.00 r –0.06 –0.01 0.00 r –0.10 –0.01 0.00

t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t3 t4

As 2.21 –1.19 –2.09 0.00 2.21 1.19 2.10 0.00 2.21 –1.18 2.11 0.00
Cs –1.10 0.00 0.00 0.00 –1.33 0.00 0.43 0.00 1.23 0.00 0.00 0.00
Es 2.07 1.96 1.79 1.94 2.06 1.95 1.79 1.94 2.06 1.96 1.79 1.94

Variance in the growth curve components a, i and r due to genetic (Gf), common environment (Cf) and speci fic environment (Ef) factors are
shown on the diagonal  of matrices, wi th covariances below and correlations above. Variance due to occasion-speci fic genetic and
environmental  factors As, Cs and Es are shown for the four occasions t1 to t4.

Figure 7 Plots of the exponential  (– – – – ––), logistic (– – –) and
Gompertz (- - - - -) curves wi th parameters estimates set to the
solution of fi tting the growth curve models to the MZ and DZ data
on Bayley Infant Mental  Development scales
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1. The asymptote, ini tial  and rate factors covary;

2. Genetic factors contribute to factor variance
and covariance;

3. Envi ronmental  factors contribute to factor vari -
ance and covariance; and

4. Residual  variance not due to the latent growth
curve does not covary between fami ly
members.

The ful l  models do not fi t very wel l  by the �2

cri terion. This may be due to non-normal i ty in the
data or the use of covariance matrices as summary
statistics. As we shal l  see below, this problem is also
present for the Cholesky model , which suggests that
the loss of fi t is due to inconsistencies of the four
wi thin-person covariance matrices (MZ and DZ
twin 1 and twin 2). A l ikely consequence of this poor
fit is that al l  �2

di fference statistics (the l ikel ihood
ratio tests we use to test the di fference between
models) are inflated (Kendal l  and Stuart p.230).

31

Evidence for significant loss of fi t would be weaker,
and evidence for non-significantly poorer fi t would
be stronger than usual .

The orthogonal  model  does not fi t significantly
worse than the ful l  model , so there is no evidence
that the growth curve components covary. There is
l i ttle evidence for ei ther genetic or random envi ron-
mental  variation in the growth curve components,
but significant variation is associated wi th the
shared envi ronment. The picture for the residual
variance is qui te di fferent; fami l ial  resemblance
appears to be addi tive genetic rather than shared
envi ronmental  in origin. Thus of our four hypoth-
eses above, 1, 2 and 4 are rejected and 3 is not.

Comparison with Cholesky and Simplex

To provide a comparative framework for the fi t of the
growth curve models, we fi tted two standard behav-
ior genetic models for longi tudinal  data, the Chol -
esky and the Simplex. The A, C, E Cholesky
(Figure1a) gave a fi t of 117.75, wi th 50 df which
yields Akaike’s Information Cri terion, AIC;

32

= 17.75. Several  of the growth curve submodels
fitted better by AIC, so the poor fi t (significant �2

) to
these data does not seem to be a feature of growth
curves models per se.

We fol lowed Dolan’s
7

treatment and specified
separate A, C and E factor means which were
constrained to equal  a constant times the variance of
each factor. The simplex model  has a lower AIC (is
more parsimonious) than most of the growth curves
�2

= 134.59, df = 63, AIC = 8.59). It al lows for A, C
and E transmission and innovation components as
shown in Figure1b. Further improvement in AIC
was found by el iminating the means on the common
and random envi ronment components (�2

= 135.64,
df = 65, AIC = 4.64), as they had only minor effects
on the goodness of fi t �2

. Though this ‘genetic means’
model  fi ts wel l , there seems no theoretical  justifica-
tion to expect that genetic factors affect the means
whereas envi ronmental  factors – especial ly shared
envi ronmental  which are not due to measurement
error – do not.

Discussion

We have reviewed growth curve theory from a
dynamical  systems perspective. In addi tion to i ts
didactic value, i t opens the door to genetic model ing
of more complex dynamical  systems wi thin the
structural  equation model ing framework. Both bal -
anced and incomplete data can be analyzed wi th this
method.

The i l lustrative appl ication to the publ ished BIMD
data has some novel  substantive conclusions. The
variance growth curve parameters are largely under
shared envi ronmental  control  is in agreement wi th
McArdle’s

11
resul ts for l inear latent growth models.

Table 3 Fi t statistics obtained for growth curve models and
submodels appl ied to Bayley Infant Mental  Development data on
MZ and DZ twins

Fit statistic Difference �2

Model �2 d.f. AIC �2 d.f. P

Exponential
Ful l 129.06 55 19.06 – – –
Orthogonal 143.20 64 15.20 14.14 9 0.12
No A 140.78 61 18.78 11.72 6 0.07
No C 169.27 61 47.27 40.21 6 0.00
No E 134.15 61 12.15 5.09 6 0.53
No As, Cs 166.86 63 40.86 37.80 8 0.00
No As 136.88 59 18.89 7.82 4 0.10
No Cs 129.21 59 11.21 0.15 4 0.99

Logistic
Ful l 137.89 55 27.89 – – –
Orthogonal 148.73 64 20.73 10.84 9 0.29
No A 149.49 61 27.49 11.60 6 0.07
No C 177.04 61 55.04 39.15 6 0.00
No E 142.74 61 20.74 4.85 6 0.56
No As, Cs 183.91 63 57.91 46.02 8 0.00
No As 145.83 59 27.83 7.94 4 0.09
No Cs 138.30 59 20.30 0.41 4 0.98

Gompertz
Ful l 131.93 55 21.93 – – –
Orthogonal 144.13 64 16.13 12.20 9 0.20
No A 143.54 61 21.54 11.60 6 0.07
No C 171.72 61 49.72 39.79 6 0.00
No E 137.00 61 15.00 5.07 6 0.54
No As, Cs 172.76 63 46.76 40.83 8 0.00
No As 139.81 59 21.81 7.88 4 0.01
No Cs 132.21 59 14.21 0.27 4 0.99

Cholesky and Simplex
Ful l  Cholesky 117.75 50 17.75 – – –
Simplex 134.59 63 8.59 – – –
Simplex G Means 135.64 65 5.64 – – –
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We have expanded on this ini tial  treatment both by
speci fying di fferent functional  forms for growth
(logistic etc.) and by parti tioning the residual  vari -
ance into A, C and E components. This latter
parti tion is qui te informative; in al l  models we found
evidence for genetic factors in the residual  variance,
which suggests several  possibi l i ties. Fi rst, we may be
measuring cogni tive development at too few and too
widely spaced intervals of time. Perhaps what we are
ascribing to occasion-specific variance encompasses
other growth processes which are partly under
genetic control . A l ternatively, i t might be that the
response of the individual  to testing on that partic-
ular occasion (the ‘person � si tuation interaction’)
is genetical ly mediated. It seems di fficul t to discrim-
inate between these possibi l i ties wi thout addi tional
data.

Inferences we draw from the appl ication should be
viewed in the l ight of several  potential ly important
l imi tations. Fi rst, the BIMD scores were treated as
raw percentage scores, and this may not be appro-
priate for a scale that was not developed wi th, for
example, Rasch

33
scal ing.

34,35
Second, we would

expect simi lar answers i f the raw data were analyzed
instead of the means and covariances used here, but
di fferences might occur i f the data are not missing
completely at random. It would be interesting to see
how robust the findings are wi th raw data. Thi rd, we
have ignored the effect of sex in these analyses.
Substantial  sex di fferences in growth parameters
might have inflated our estimates of common envi -
ronmental  variance. Future analyses separating
males and females would be valuable, al though qui te
large sample sizes would be requi red to detect sex
di fferences in the model  parameters.

Possible extensions to the methods presented here
are many. Fi rst, i t would be very simple to apply
them to data col lected from larger pedigrees than the
pai rs used here. Such datasets could include i rregu-
lar fami ly structures, wi th varying ages. A practical
l imi tation of such studies – especial ly of cogni tive
development – would be finding parents who had
been assessed in thei r early chi ldhood. However,
wi th appropriately scaled tests i t should be possible
to analyse data across wide age ranges. It may not be
necessary to assess parents and thei r chi ldren at
comparable ages, so long as there is sufficient
overlap between the two samples. Indeed non-
overlapping samples might suffice i f, as in this study,
the sources of variabi l i ty appear to be enti rely
fami l ial  in origin, but we would advocate against
designing studies which cannot assess the lasting
impact of specific envi ronmental  factors. Measure-
ment of di fferent-aged relatives would be a poor
substi tute for longi tudinal  data, whose cost to col lect
can be reduced wi th cohort-sequential  designs.

36

Whi le parents and offspring may be the most

obvious addi tion to a twin study, other col lateral
relative groups – such as husbands and wives or ful l
and hal f-sibl ings may be used in the short term to
test assumptions of the twin study.

Second, the methods could be combined wi th
those of standard behavior genetic analysis to enable
testing of many types of hypothesis. For example, we
could test for sibl ing interaction in development by
model ing di fferences in MZ and DZ variance in the
growth factors. We might test for G � E interaction
by testing for heterogenei ty of the growth curve
parameters – or even types of growth curve –
between groups subdivided according to some envi -
ronmental  factor. Mul tivariate extensions are readi ly
incorporated, where we could al low for growth
factors which influence several  di fferent variables
simul taneously, or feedback mechanisms between
the growth factors of di fferent variables. Simi larly,
quanti tative trai t loci  for the growth factors could be
sought wi th appropriate data on DNA markers.

37,38

Future work on these methods has great potential  for
understanding individual  di fferences in change
which could be appl ied to many areas of human
development.

Extensions to ordinal  or binary data requi re
addi tional  considerations. We could impose thresh-
olds at various heights on the curve and via numer-
ical  integration compute the predicted proportion
that would l ie between each pai r of consecutive
thresholds. However, for two time points and twins
we have four variables, requi ring four-dimensional
integration to compute the joint l ikel ihood. Whi le
this is feasible wi th current computer hardware and
software, studies wi th more than six occasions of
measurement per subject (or 12 per fami ly when
larger pedigrees are considered) would prove di ffi-
cul t to analyze. Polychoric correlations and thei r
associated weight matrices (ADF methods

39
) can be a

useful  way to summarize ordinal  data, and they
would capture changes in covariance over time.
However, they would lack the information on
changes in mean and variance which provide much
of the information to fi t growth curves. Perhaps joint
analysis of polychorics and thresholds and thei r
overal l  weight matrix would be a good approach,
al though the large sample sizes requi red for ADF
methods are presumably even larger when the
thresholds are included.

Final ly, we recognize the l imi tations to dynamical
systems; many di fferential  equations cannot be
solved, and that even those that can may not be
identified when implemented as a structural  model .
For example, the general  sine wave function a
sin[b + ct] has partial  derivatives which are l inearly
dependent, so the three factor model  is not identi -
fied. Nevertheless, the methods offer much promise
for model ing change over time. Whi le time is the
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natural  dimension wi th which to study change,
other dimensions such as physical  distance might be
substi tuted to study genetic and envi ronmental
variation in other phenomena such as EEG waves or
cel lular chemical  concentrations. Future research on
these methods could grow in many di rections.
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Appendix 1 Mx scr ipt to fi t logistic growth
curve to twin data

!
! Mx script to fi t logistic growth curve to data

col lected from
! twins on nocc occasions of measurement
!
#define nt 4 ! Number of time points
#define nt � 8 ! Twice number of time points
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Group 1: compute factor loading vectors ! Ti tle of
group 1

Calculation Ngroups = 5 ! Type of group & total
No. of groups

Begin Matrices; ! declare matrices
A ful l  1 1 free ! asymptote parameter
I ful l  1 1 free ! ini tial  parameter
R ful l  1 1 free ! rate parameter
T ful l  nt 1 ! vector of occasions t = 1,…nt
U uni t nt 1
End Matrices
! A few starting values
Matrix T 1 2 3 4 5 6 7 8 9 10 ! extend i f nt > 10
Start 100 a 1 1
Start 10 i  1 1
Start 1 r 1 1
! Boundaries for the parameters
Bound -500 500 al l
!
! Now we use matrix algebra to compute the

vectors and paste them together
! into a single matrix of factor loadings, F
!
Begin Algebra;
J = i@U + (a-i )@(\ exp(-(t-u)@r)); ! Logistic func-

tion i tsel f
K = (i@u-(\ exp(-(t-u)@r)).(((a* i )@U)%J)) % J;

!dJ/da
L = ( (a@u) - (u-(\ exp(-(t-u)@r))). (((a* i )@U)%J) ) %

J ; ! dJ/di
M = ( ((a-i )@(t-u)). (\ exp(-(t-u)@r)). (((a* i )@U)%J) )

% J ; ! dJ/dr
F = K| L| M ;
End Algebra;
End Group
Group 2 Compute the MZ and DZ twin pai rs’

predicted factor covariances
Calculation
Begin Matrices
H ful l  1 1 ! to put 0.5 in for DZ twin genetic

covariance
X Lower 3 3 free ! lower triangular decomposi tion

used ini tial ly
Y Lower 3 3 free
Z Lower 3 3 free
End Matrices;
Matrix H .5
Start 2 X 1 1 Y 1 1 Z 1 1
Start 0.1 X 2 2 X 3 3 Y 2 2 Y 3 3 Z 2 2 Z 3 3
Begin Algebra;
A = X* X' ;
C = Y* Y' ;
E = Z* Z' ;
M = A + C + E| A + C —
A + C| A + C + E ;
D = A + C + E| h@A + C —
h@A + C| A + C + E /

End Algebra;
End Group
Group 3 fi t the model  to the MZ data
Data Ninput = ntx2 nobs = 75
CMatrix ful l  fi le = bayleymz.cov ! observed cov

matrix
Mean fi le = bayleymz.mean ! observed means
Matrices
F Computed = F1 ! Factor loading matrix
R Computed = M2 ! MZ factor covariances
A diag nt nt free ! Residual  genetic factors

(occasion specific)
C diag nt nt free ! Residual  C factors
E diag nt nt free ! Residual  E factors
I iden 2 2
U uni t 1 2
V uni t 2 2
X ful l  3 1
End Matrices
Speci fy X 1 2 0
Start 3 E 1 1 to E 4 4
Bound 0.5 20 E 1 1 to E 4 4
Means U@(F* X)' /
Covariance (I@F) & R + I@(E* E') + V@(C-

* C' + A* A') /
Option rs
End Group
Group 4 fi t the model  to the DZ data
Data ninput = ntx2 nobs = 75
CMatrix ful l  fi le = bayleydz.cov
Means fi le = bayleydz.mean
Begin Matrices;
F Computed = F1 ! Factor loading matrix
R Computed + D2 ! DZ factor covariances
A diag nt nt = A3 ! Residual  genetic factors

(occasion specific)
C diag nt nt = C3 ! Residual  C factors
E diag nt nt = E3 ! Residual  E factors
H Ful l  1 1 = H2
I Iden 2 2
U uni t 1 2
V uni t 2 2
X ful l  3 1 = X3
End Matrices;
Means U@(F* X)' /
Covariance (I@F)&R + I@(E* E') + V@(C* C') + (H-

@(V + I))@(A* A') /
Option rs ! Print residuals
Option Mul tiple ! Fi t submodels next
End Group
!
! Save current solution then fi t seven submodels

from above solution
!
save baylog.mxs
!
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! 1. make asymptote, ini tial  and rate factors
orthogonal

!
drop 17 19 20
drop 5 7 8
drop 11 13 14
end
! 2. delete al l  genetic effects on factors
get baylog.mxs
drop 4 5 6 7 8 9
end
! 3. delete al l  C effects on factors
get baylog.mxs
drop 10 11 12 13 14 15
end
! 4. delete al l  E effects on factors

get baylog.mxs
drop 16 17 18 19 20 21
end
! 5. delete G parts of residuals
get baylog.mxs
drop 22 23 24 25
end
! 6. delete C parts of residuals
get baylog.mxs
drop 26 27 28 29
end
! 7. delete G & C parts of residuals
get baylog.mxs
drop 22 23 24 25 26 27 28 29
end
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