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ABSTRACT 

The stability of the three-body problem formed by the Sun, Jupiter 
and Saturn is investigated using surfaces of zero velocity. The re
sults obtained with the models of the restricted and general problems 
of three bodies are compared with numerical integration. The system 
is found to be stable in the sense that Saturn will neither interrupt 
the (perturbed) binary orbit of Jupiter around the Sun, nor will it 
escape from the system. It is shown that the known classical triple 
stellar systems are "more stable" than the solar system, which in turn 
is "more stable" than the Earth-Moon system. 

INTRODUCTION 

A general trend for instability of three-body systems containing 
masses of the same orders of magnitude was demonstrated ten years ago 
by Agekian (1967) and Szebehely (1967-a). These results suggested to 
Kuiper (1973) that the onset of instability of planetary systems may 
be enhanced by increasing the masses of the participating planets. In 
this way the method known as the K-N-S theory (Kuiper-Nacozy-Szebehely) 
was born and announced by Nacozy (1976). Numerical integrations using 
increased planetary masses were performed by Nacozy (1976), and others. 
Nacozy could not detect secular terms in the orbital elements of Saturn 
unless the masses of Jupiter and Saturn were increased by a factor 
(y) of 29. When this factor was below 29 the system was stable (as 
found by numerical integration and as defined by the absence of secular 
terms). When y was larger than 29 instability set in very soon after 
the beginning of the motion, as displayed by the appearance of secular 
terms. 

This paper uses analytic qualitative methods as opposed to numeri
cal integration to find the value of the above mentioned factor y 
at which instability sets in. The raison d'etre for such study is that 
the establishment of stability or the detection of long-period secular 
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terms by numerical means is always open to questions. 

ANALYSIS 

First the admittedly weak model of the restricted problem is used 
to evaluate the effect of y as described for instance by Szebehely 
(1967-b). The Jacobian constant for the orbit of Saturn is computed 
using the Sun and Jupiter as the primaries. In this way the mass-para
meter of the restricted problem becomes y = m /(m~ + m ) = 9.539 x 10-^, 

J W J 
where mT and mffl are the masses of Jupiter and of the Sun. When the 

masses of Jupiter and Saturn are increased by a factor of y we have 
for the new mass-parameter y = yin /(m + Ym

T) = YV- The assumption 
is made at this point that Saturn's orbit is fixed while y changes. 
In this way the Jacobian constant (C) for Saturn's orbit may be com
puted as a function of the mass-parameter y' or as a function of y. In 
fact, we have 

C = 3.2516 - 0.00128y . 

On the other hand, the topology of the permissible regions of 
motion is controlled by the critical value of the Jacobian constant, 
C , corresponding to the above introduced value of y'. The functional 

relation C = C (y) is complicated but it may be approximated by 
cr cr 

C = 3.0831 + 0.00774y 
cr 

in the range of interest. The intersection of the above two straight 
lines corresponds to C = C and y = 18.7. Therefore, the system is 
unstable (in the sense that Saturn may penetrate the Sun-Jupiter region) 
if Y > 18.7. On the other hand, if y < 18.7 Saturn cannot enter the 
region occupied by the Sun and Jupiter. 

The second model is the general problem of three bodies when orbi
tal eccentricies as well as Saturn's effect on Jupiter and on the Sun 
are included in the analysis. The role of the Jacobian constant is 

2 2-5 
now played by the dimensionless stability parameter s = -c H/(G m ) 
which controls the topology of the zero-velocity surfaces. Here c is 
the angular momentum, H is the total energy, m is the average mass and 
G the gravitational constant. Once again, we compute the actual and 
the critical values of s for various values of y and the intersection 
of the curves s = S(Y) and s = s (Y) will furnish the separation 

cr cr 
between stability and instability. In the range of interest we have 

s - s = 10~6(14.33 - 1.09Y), 
cr 

giving Y = 13.6 for the intersection. Therefore, instability sets in 
sooner (at a lower value of y) when the (more realistic) model of the 
general problem of three bodies is used, while the model of the 
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restricted problem gives more tolerance. 

The computation of the stability parameter is described by 
Szebehely and McKenzie (1977) with additional details. 

Similar analysis may be used to study the stability of classical 
triple stellar systems. For observed systems the measure of stability 
is given by S = (s - s )/s and it is found to be of the order of one. 
The same measure of st for the above described model of the 
solar system (y = 1) is S = 3.6 x 10 , consequently, the known triple 
stellar systems are "more stable" than the solar system. 

The Sun-Earth-Moon system is stable according to Hill's (1878) 
computation as well as according to the restricted problem (Szebehely, 
1967-b). The measure of stability found by using the model of the 

~ —4 
restricted problem for the moon's orbit is S = (C - C )/C = 1 0 , r cr cr 

consequently, the moon's orbit is much "less stable" than the solar 
system. Corresponding values for the moon's stability, using the 
general problem are not available yet, but the stability is expected 
to be reduced because of the eccentricities of the orbits and because 
of the presence of general three-body effects. The hierarchy of 
stability according to these results is: triple stellar systems, 
planetary systems and satellites, in order of decreasing stability. 
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