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Abstract. The IAU framework for relativistic reference systems is based upon the work by
Brumberg and Kopeikin and by Damour, Soffel and Xu (DSX). We begin with a brief intro-
duction into the DSX-formalism. After that the various IAU Resolutions concerning relativistic
astronomical reference systems are discussed. Finally, it is indicated how the expansion of the
universe can be considered in the BCRS.
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1. Introduction
Soon after Einstein’s seminal paper Einstein (1915) on General Relativity appeared it

became obvious that solving Einstein’s field equations for applications in the solar system
becomes extremely complicated and one has to resort to approximation schemes. Con-
sequently a slow-motion weak-field approximation called post-Newtonian approximation
was worked out by Droste (1916), de Sitter (1916), Lorentz and Droste (1917) and then
later by Fock (1959), Nordtvedt (1970) and Will (1993) who added a certain set of post-
Newtonian parameters allowing for a violation of Einstein’s theory of gravity in nature
at the corresponding level of approximation. This classical post-Newtonian framework
(e.g., Will 1993), however, has a certain number of drawbacks. First, one single coordi-
nate system is used e.g., for the description of the gravitational N body problem. Second,
matter is described as an ideal fluid (an exception can be found in Misner et al., 1973).
And third, after the paper by Blanchet and Damour (1989) it became obvious that the
classical post-Newtonian center-of-mass and mass definitions should be improved. With
respect to the coordinate system problem, it is obvious that for the description of local
physics in the vicinity of a body A that is a member of some gravitational N -body prob-
lem, some local co-moving system, where the influence of external bodies is effaced and
described in terms of tidal terms, should be employed.

2. The DSX-framework

In a series of papers Damour, Soffel and Xu (DSX) (Damour et al., 1991–1994; see also
Brumberg and Kopeikin 1988) laid the foundations of a new and improved relativistic
celestial mechanics describing a system of N gravitationally interacting rotating bodies of
arbitrary shape and composition at the first post-Newtonian approximation of Einstein’s
theory of gravity. No assumption is made on the internal composition of bodies. The
basic matter variables of the DSX-formalism are the gravitational mass-energy

σ ≡ T 00 + T ss

c2

1

https://doi.org/10.1017/S174392130999007X Published online by Cambridge University Press

https://doi.org/10.1017/S174392130999007X


2 M. H. Soffel

where Tμν are the components of the energy-momentum tensor and the gravitational
mass-energy current density

σi ≡ T 0i

c
.

In the gravitational N -body problem the DSX-framework employs a total of N +1 differ-
ent coordinate systems: one global system with coordinates (ct,x) that covers the entire
model manifold and one local A-system with coordinates (cTA ,XA ) that is comoving
with body A (Fig. 1). In each of the N +1 different coordinate systems the metric tensor
is written in a special form. E.g., in the global system it is written as

g00 = −1 +
2w

c2 − 2w2

c4 + . . . ,

g0i = − 4
c3 wi + . . . , (2.1)

gij = δij

(
1 +

2w

c2

)
+ . . . .

Hence, the global metric tensor is completely determined by means of two potentials:
a gravito-electric scalar potential w and a gravito-magnetic vector potential wi . The
gravito-electric potential merely generalizes the usual Newtonian potential U ; the vec-
tor potential wi describes the gravitational action of mass-energy currents (moving or
rotating masses; Lense-Thirring effects). The corresponding Einstein field equations read:(

− 1
c2

∂2

∂t2
+ Δ

)
w = −4πGσ + O(c−4),

Δwi = −4πGσi + O(c−2). (2.2)

In the local A-system the metric is written in the same form but with potentials W
and Wa ; there, the mass-energy density and corresponding current is written as Σ
and Σa .

The formalism employs a spatial set of post-Newtonian mass- and spin-multipole mo-
ments (Blanchet-Damour moments) that is used to skeletonize the metric potentials in

Figure 1. Various coordinate systems in the gravitational N -body system.
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the local A-system, generated by body A itself outside of A:

MA
L (T ) ≡

∫
A

d3XX̂LΣ +
1

2(2l + 3)c2

d2

dT 2

∫
A

d3XX̂LX2Σ

− 4(2l + 1)
(l + 1)(2l + 3)c2

d

dT

∫
A

d3XX̂aLΣa (l � 0),

SA
L (T ) ≡

∫
A

d3Xεab<cl X̂L−1>aΣb (l � 1). (2.3)

Here, the formalism of Cartesian STF- (symmetric and trace-free) tensors is used. The
index L is a multi-index standing for l Cartesian indices: L ≡ i1i2 . . . il with each Carte-
sian index i = 1, 2, 3 = x, y, z. The hat as well as the sharp brackets indicate that the
corresponding symmetric and trace-free part (see e.g., Damour et al., 1991 for more
details) has to be taken.

The heart of the DSX-formalism are the transformation rules for both the coordinates

(ct,x) ←→ (cTA ,XA )

and the metric potentials

(w,wi) ←→ (W,Wa)A .

It is interesting to note that the Einstein-Infeld Hoffmann equations of motion that form
the basis of any modern numerical ephemeris can simply be derived from

WA =
GMA

RA

and Wa
A = 0 by a transformation of the metric in the local A-systems into the global

(BCRS) system as geodetic equations of the BCRS metric tensor (Damour et al., 1991).

3. Standard astronomical reference systems and IAU resolutions
The IAU has recommended the use of two basic celestial reference systems: the Barycen-

tric Celestial Reference System (BCRS) and the Geocentric Celestial Reference System
(GCRS) (Soffel et al., 2003). Both systems are needed to replace the Newtonian con-
cept of a quasi-inertial space fixed system. The BCRS with coordinates (ct,x) is defined
by the form of the metric tensor as in (2.1) together with the condition for asymptotic
flatness:

lim
r→∞

(w,wi) = 0. (3.1)

This definition leaves the orientation of spatial BCRS axes open. Later this was fixed
by the ICRF. IAU 2006 Resolution B2 (Default orientation of the Barycentric Celestial
Reference System (BCRS) and Geocentric Celestial Reference System (GCRS) reads:

.... Recommends
‘that the BCRS definition is completed with the following: ”For all practical appli-

cations, unless otherwise stated, the BCRS is assumed to be oriented according to the
ICRS axes. The orientation of the GCRS is derived from the ICRS-oriented BCRS.’

Note, that the BCRS is used for solar system ephemerides (dynamical equations of mo-
tion for solar system bodies), for problems of interplanetary spacecraft navigation, high-
precision astrometry, for a definition of proper motion or radial velocity, etc.
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The GCRS was adopted by the IAU (2000) to model physical processes in the vicinity
of the Earth. It is defined by the form of the metric tensor.

G00 = −1 +
2W

c2 − 2W 2

c4 + . . .

G0a = − 4
c3 Wa + . . . (3.2)

Gab = δab

(
1 +

2W

c2

)
+ . . .

In addition it is assumed that the spatial GCRS-coordinates are kinematically non-
rotating with respect to the BCRS, i.e, they are locally non-inertial.

The quasi-linearity of the post-Newtonian field equations allows a unique split of the
metric potentials W and Wa into three parts: i) internal, ii) inertial and iii) external parts.
The internal parts result from the gravitational action of the Earth itself. In the absence of
external bodies they present the post-Newtonian potentials of an isolated Earth, usually
skeletonized by corresponding Blanchet-Damour moments. Outside the Earth these parts
admit an expansion in terms of negative powers of R (the coordinate distance to the
geocenter). For practical applications the internal parts of W , the gravitational potentials
of the Earth itself, can be written as an expansion that is given by IAU2000 Resolution
B1.4 (see below). Terms of first order in R are inertial terms. The corresponding term
in W describes a deviation from free-fall due to the oblateness of the Earth, the one
in Wa describes a Coriolis-force due to geodesic precession. A geocentric dynamically
non-rotating system, where inertial forces are absent in dynamical equations of motion
thus rotates with respect to the GCRS. The influence of external bodies is described as
tidal terms, i.e., terms in the metric potentials that are at least quadratic in R. For more
details the reader is referred to Soffel et al. (2003). The Geocentric Coordinate Time T
is called TCG.

IAU 2000 Resolution B1.4, concerning the post-Newtonian expansion of the Earth’s grav-
itational potentials reads:

The IAU .... Recommends
1. expansion of the post-Newtonian potential of the Earth in the Geocentric Celestial
Reference System (GCRS) outside the Earth in the form

WE =
GME

R

[
1 +

∞∑
l=2

l∑
m=0

(
RE

R

)l

Plm (cos θ)(CE
lm (T ) cos mφ + SE

lm (T ) sin mφ

]
,

where CE
lm and SE

lm are, to sufficient accuracy, equivalent to the post-Newtonian multipole
moments introduced by Damour et al. (Damour et al., Phys. Rev. D, 43, 3273, 1991).
θ and φ are the polar angles corresponding to the spatial coordinates Xa of the GCRS
and R = |X|, and
2. expression of the vector potential outside the Earth, leading to the well-known Lense-
Thirring effect, in terms of the Earth’s total angular momentum vector SE in the form

Wa
E = −G

2
(X × SE )a

R3 .

Though the expansion for WE looks completely Newtonian it is relativistic due to the
use of BD-moments or their spherical equivalents (CE

lm , SE
lm ). That implies that the DSX-

formalism has been designed so that many relativistic terms are absorbed in the
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definitions of multipole moments. In practice they simply will be fit-parameters and a
split into Newtonian- and post-Newtonian parts is superfluous, dangerous and confusing.

The GCRS is used to describe physical processes in the vicinity of the Earth, for
the definitions of potentials coefficients (multipole moments), for satellite theory, for the
description of dynamics of the Earth itself, for the definition of the CIP the CIO, etc,
and for a direct relation to terrestrial systems and frames (ITRS and ITRF).

A set of auxiliary times scales has been linked to TCG and TCB. Originally Terrestrial
Time was related with proper time of a clock located on the rotating geoid. However,
IAU 2000 Resolution B1.9 (Re-definition of Terrestrial Time TT) recommends

that TT be a time scale differing from TCG by a constant rate: dTT/dTCG = 1 − LG ,
where LG = 6.969290134× 10−10 is a defining constant. International Atomic Time TAI
is related with TT by

TT = TAI + 32.184 s.

For barycentric ephemerides the times scale TDB was introduced. IAU 2006 Resolution
B3 recommends:

that, in situations calling for the use of a coordinate time scale that is linearly related to
Barycentric Coordinate Time (TCB) for an extended time span, TDB be defined as the
following linear transformation of TCB:

TDB = TCB − LB × (JDTCB − T0) × 86400 + TDB0 ,

where T0 = 2443144.5003725, and LB = 1.550519768×10−8 and TDB0 = −6.55×10−5 s
are defining constants. Note, that TDB was chosen to practically agree with the time
argument of DE405.

4. The BCRS-metric and the expansion of the universe
So far the BCRS-metric was chosen to be asymptotically flat and all cosmological

effects have been ignored, That is fine for the description of planetary motion and the
propagation of light-rays in the solar system. However, at cosmological distances the
expansion of the universe should be considered to deal with cosmological redshifts and
the problem of various distance indicators (parallax-, luminosity-, angular diameter- and
proper motion distance) that have to be distinguished for remote objects. Motivated also
by the so-called Pioneer anomaly we included the expansion of the universe in the BCRS-
metric and estimated orders of magnitude for corresponding effects in the solar system.
Details can be found in Klioner and Soffel (2004). In the BCRS the expansion of the
universe can be considered as a cosmic tidal force. The corresponding tidal acceleration
grows with heliocentric distance; at Pluto’s orbit it amounts to 2×10−23 m/s2 and points
away from the Sun (Note, that the Pioneer anomaly amounts to 8.7 × 10−10m/s2 and
points towards the Sun). The perturbations of planetary orbits are completely negligible
(the cosmic perihelion precession of Pluto’s orbits is of order 10−5 μas/century).
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