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Abstract. In this report, we present results of analytical and numerical calculations of evolution
the axis of rotation of planets moving at very close orbits. We consider the evolution of the
axis of rotation caused by tidal perturbations of a parent star and obtain estimates of the
principal moment of inertia and the dynamical flattening for nine exoplanets. From analysis of
evolutionary equations, we obtain the critical values of the kinetic momentum vector, �L, for
different values of orbital eccentricity. We find a general tendency of vector �L to evolve to the
direction perpendicular to the orbital plane.
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1. Introduction
Investigations of the spin motion of celestial bodies were started by d’Alembert, Euler,

Lagrange and Laplace. Their results led to the theories of precession and nutation of the
Earth’s axis and libration of the Moon, and to the general perturbation theory.

Discoveries of extra-solar planets have inspired intensive developments of the planetary
dynamics. Unfortunately, the current technical capabilities do not allow us to measure
dynamical and physical characteristics of exoplanets, such as the spin period, dynamical
flattening, elastic properties, etc. However, the problems of planetary and stellar spins and
physical properties of exoplanets can be studied for observed planetary systems through
modeling. In particular, the planets in close-in orbits are of great interest for planetary
dynamics because of the extreme orbital characteristics, which are quite different from
properties of planetary orbits in the Solar System.

In this report, we discuss the spin evolution of hot Jupiters under the action of tidal
perturbations. In the next section, we will obtain estimates of the principal moment of
inertia of a planet, and calculate the main moments of inertia for nine exoplanets.

2. Estimates of the principal moment of inertia and dynamical
flattening of exoplanets

The basic properties of evolution of the axis of rotation of a planet, caused by tidal
effects are illustrated in Fig. 1. The tidal deformations lead to changes of the planet
rotational axis. If the planet has a permanent volume and is liquid with small viscosity,
then the tidal bulge is always directed along a line connecting the centers of masses of
the star and planet. Otherwise, the tidal bulge lags behind this line by angle γπ (Fig. 1).
For quantitative estimates of tidal perturbations, the dissipative factor, Q−1 = sin γπ ,
is often used. The deformation of planets may be non-elastic, and, hence, it can be
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Figure 1. Illustration of the star-planet tidal interaction.

accompanied by significant dissipation of energy. In the case when a central star with
mass M� distorts a spherical exoplanet, dynamic flattening of the planet due to to the
tides can be described by the following expression (Alfven & Arrhenius 1979):

χ =
15M�R

3

4Mpa3 , (2.1)

where χ is dynamical flattening, M� and Mp are the masses of the star and the planet
correspondingly, R is the planetary radius, a is the semi-major axes.

It is obvious that for planets with very close orbits the spin evolution strongly depends
on the tidal forces of the parent star. For numerical estimates we consider the spin
evolution of nine exoplanets, listed in Table 1. Assuming that the planets are uniform
bodies, we calculate the principal momenta of inertia, I, and the values of their dynamical
flattening, χ. Then using these data we estimate the main moments of inertia A and B,
shown in Table 2.

In the next section, we consider the basic equations describing the spin evolution of
exoplanets under the action of tidal perturbation of a parent star and calculate the basic
evolutionary effects.

Table 1. Some properties of close-in planets.

Planet M, MJ R, RJ a, AU P , days e M, MS un

OGLE-TR-10b 0.63 1.26 0.042 3.10 0 1.18

OGLE-TR-56b 1.29 1.3 0.023 1.212 0 1.17

OGLE-TR-111 0.53 1.067 0.047 4.01 0 0.82

OGLE-TR-113b 1.32 1.09 0.023 1.43 0 0.78

OGLE-TR-132b 1.14 1.18 0.031 1.69 0 1.26

TrES-1b 0.61 1.081 0.039 3.03 0.135 0.87

TrES-2b 1.98 1.22 0.037 2.47 0 0.98

HAT-P-1b 0.53 1.36 0.055 4.47 0.09 1.12

HD 209458b 0.69 1.32 0.045 3.52 0.07 1.01
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Figure 2. Orientation of kinetic moment vector, �L, relative to the pericentre of the orbit, P.

3. Spin evolution of planets under action tidal perturbations
For investigation of the spin evolution of the hot Jupiter planets we use the reference

frame, X1Y1Z1, which is connected to the orbital pericentre, P. In this case, axes X1 and
Y1 are rotated relative to the orbital reference frame, XYZ, by an angle of the longitude
of the pericentre, ω̃ (Fig. 2). The orientation of the kinetic momentum vector �L relative
to the pericentre of the orbit of a planet is described by angles ρ and σ.

The perturbed rotation of a planet can be described by the following system of evolu-
tionary equations in the case when the angular spin velocity of a planet is significantly
higher than its angular orbital velocity (Beletskii & Khentov 1995):

dρ

dt
=

1
L sin ρ

(
∂U

∂ψ
cos ρ − ∂U

∂σ

)
+

M1

L
− KΩ sin i cos(σ + ωπ ), (3.1)

Table 2. Estimates of the surface gravity, dynamical flattening and the moment of inertia for
”hot Jupiters”.

Planet Surface gravity χ I ×1042 , A ×1042 C ×1042 Ftida l × 10−10 ,
m s−2 kg m2 kg m2 kg m2 N/kg

OGLE-TR-10b 10.07 0.020 3.79 3.82 3.74 6.49

OGLE-TR-56b 19.38 0.072 8.26 8.47 7.85 40.72

OGLE-TR-111 11.82 0.007 2.29 2.29 2.28 3.13

OGLE-TR-113b 28.20 0.026 5.94 6 5.84 25.74

OGLE-TR-132b 20.78 0.026 6.02 6.07 5.91 17.43

TrES-1b 13.25 0.012 2.70 2.71 2.68 5.68

TrES-2b 33.77 0.0075 11.17 11.2 11.11 7.86

HAT-P-1b 7.27 0.013 3.72 3.73 3.68 2.65

HD 209458b 10.05 0.015 4.56 4.58 4.511 4.39

Note:
1 For comparison: the tidal force of the Jupiter on Io is equal to 9 × 10−3 7 N/kg; for the Moon, the tidal action
of the Earth is 3.6 × 10−3 9 N/kg.
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dσ

dt
=

1
L sin ρ

∂U

∂ρ
+

M2

L sin ρ
+ KΩ (sin i cot ρ sin(σ + ωπ ) − cos i) , (3.2)

dL

dt
=

∂U

∂ψ
+ M3 , (3.3)

dϑ

dt
= L sin ϑ sinφ cos φ

(
1
A

− 1
B

)
+

1
L sin ϑ

(
cos ϑ

∂U

∂ψ
− ∂U

∂φ

)
+

+
M2 cos ψ − M1 sin ψ

L
, (3.4)

dψ

dt
= L

(
sin2 φ

A
+

cos2 φ

B

)
− 1

L

(
∂U

∂ϑ
cot ϑ +

∂U

∂ρ
cot ρ

)
− (3.5)

−M1 cos ψ + M2 sin ψ

L
cot ϑ − M2

L
cot ρ − KΩ

sin i

sin ρ
sin(σ + ωπ ),

dφ

dt
= L cos ϑ

(
1
C

− sin2 φ

A
− cos2 φ

C

)
+

1
L sin ϑ

∂U

∂ϑ
+ (3.6)

+
M1 cos ψ + M2 sin ψ

L sin ϑ
,

where angles ρ, σ describe the orientation of vector �L in the orbital reference frame (Fig.
1); ψ, φ and ϑ are the Euler’s angles, U is the potential force function of perturbations,
M1 , M2 and M3 are projections of the nonpotential perturbation forces on components
of vector �L, and A, B and C are the main moments of inertia of the planet.

In a first approximation we assume that the planet is a dynamically symmetrical body
(A = B �= C) and divide all variables in the system (3.1 - 3.6) into fast and slow. We define
fast variables as the variables, which change in the unperturbed motion. The variables,
which are constants for the unperturbed motion but vary in the case of perturbations,
are called slow variables. Hence, in the case of a dynamically symmetrical planet the slow
variables are angles ρ and σ, which describe position of vector �L in space (Fig. 2), the
value of �L, and the angle of spin rotation, φ. Thus, for the tidal perturbations the spin
evolution of ”hot Jupiters” can be described by the following dynamical system:

dρ

dt
=

M1

L
, (3.7)

dσ

dt
=

M2

L sin ρ
, (3.8)

dL

dt
= M3 , (3.9)

dφ

dt
= L cos ϑ

(
1
C

− 1
A

)
+

M1 cos ψ + M2 sinψ

L sin ϑ
. (3.10)

It is known, that if a celestial body has fast non-resonant rotation then the moment
of the tidal interaction in the first approximation is described as

�M =
l1 l3
r6 {[(�ωspin − �ωrot) × �er ] × �er} , (3.11)

where �er is the unit vector of the radius-vector �r, l1 = 1.51l2γgM
2
� R5

pl is a constant
coefficient, l2 is a coefficient that depends on elastic properties of the planet (for Jupiter
l2 = 5/2).

If the tidal perturbations can be described by equation (3.11), then evolutionary
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equations (3.7 - 3.10) become (Beletskii 1981):

dρ

dt
=

δ

2LP 6 sin ρ {−2ων1 + αβL cos ρ (ν2 + 0.5ν3 cos 2σ)} , (3.12)

dσ

dt
= − δ

4P 6 αβν3 sin 2σ, (3.13)

dL

dt
=

δ

P 6

{
ων1 cos ρ − αβL

(
ν2(1 − 0.5 sin2 ρ) − 0.5ν3 sin2 ρ cos 2σ

)}
, (3.14)

dφ

dt
= L cos ϑ

(
1
C

− 1
A

)
. (3.15)

where α = sin2 ϑ/A + cos2 ϑ/C, β = (1 − e2)3/2 , P is the semilatus rectum, δ = l1 l3 ,
ω =

√
GM�/a3 is the angular velocity of the orbital motion, G is the gravity constant, e

is eccentricity, ν1 = 1 + 7.5e2 + 5.625e4 + ..., ν2 = 1 + 3e2 + 0.375e4 , ν3 = 1.5e2 + 0.25e4 .
Equation (3.15) that describes evolution of the angle of the planet’s spin φ, depends

only on the vector of kinetic moment �L of a planet and the values of the main moments of
inertia (we assume that the angle of nutation, ϑ, is constant). Consequently we have only
three independent equations (3.12 - 3.14). In addition, equation (3.13) is independent
from the other two. Therefore, we can reduce the evolutionary equations to a system of
two equations (3.12, 3.14). After the change of variables:

x = ρ, y = L, ẋ = dρ/dt, ẏ = dL/dt,

a = δ/(2P 6), b = ων1 , c = αβ, d = ν2 + 0.5ν3 cos 2σ

we obtain the following system:

ẋ =
a

y
sin ρ(−2b + cdy cos x), (3.16)

ẏ = 2a
[
b cos x − 0.5cy

(
ν2(1 + cos2 x) − ν3 cos 2σ sin2 x

)]
.

We investigate stability of the dynamic system (3.16) from the point of view the Lya-
punov’s stability by methods of the qualitative analysis (Kitiashvili & Gusev 2008). The
dynamical system (3.16) has six equilibrium states (ESs) with coordinates:

x1,2 = 0, π, y1,2 = ± b

cν2
(3.17)

x3,4 = ± arccos ξ, y3,4 =
2b

cd
ξ (3.18)

x5,6 = ± arccos(−ξ), y3,4 = −2b

cd
ξ, (3.19)

where

ξ =
√

0.5ν3 cos 2σ

ν3 cos 2σ − ν2

Table 3. Critical values of parameters for planets at close-in orbits (e = 0).

Planet ES 1-2: L for ρ = 00 , 1800 Planet ES 1-2: L for ρ = 00 , 1800

OGLE-TR-10b 1.39 × 1037 OGLE-TR-113b 4.72 × 1037

OGLE-TR-56b 7.51 × 1037 OGLE-TR-132b 4.05 × 1037

OGLE-TR-111 6.6 × 1036 TrES-2b 5.21 × 1037
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Table 4. Critical values of parameters for planets with e �= 0.

Planet ES 1-2: ES 3-4: ES 3-4: ES 5-6: ES 5-6:
L × 1037 ρ L × 1035 ρ L × 1035

HD 209458b 1.52 ± (1.560 − 1.530 ) 3.14 − 13.08 ± (1.580 − 1.610 ) 3.14 − 13.08

HAT-P-1b 1.00 ± (1.560 − 1.520 ) 2.64 − 10.99 ± (1.580 − 1.630 ) 2.64 − 10.99

TrES-1b 1.14 ± (1.560 − 1.490 ) 4.43 − 18.45 ± (1.590 − 1.650 ) 4.43 − 18.45

The six equilibrium states (3.17 - 3.19) are possible only at e �= 0. In the case of a
circular orbit, there are only two ESs. Numerical estimates of angle ρ and the value of
the kinetic moment �L for the ESs are presented in Table 3 for the planets with e = 0,
and in Table 4 for the planets with e �= 0. The phase trajectories in the vicinity of ES
1 and 2 are of the steady node type, while the trajectories for other ES have the type
of steady focus. Thus, the value of �L evolves to the value of b/(cν2) (∼ 1.14 × 1037) or
2bξ/(cd) (∼ 4.43 × 1035 for TrES-1b in Table 4. The orientation of the kinetic moment
vector, �L, tend to evolve to the direction perpendicular to the orbital plane of a planet,
ρ = 00 or ρ ∼ 1.60 for TrES-1b. In Table 4, we show the numerical estimates of the
critical values of angle ρ and �L. Possible variations of the ρ and �L values, which depend
on the assumed angle σ, are shown in the brackets.

According to our results, under the action of the tidal forces between a hot Jupiter
planet and a parent star the vector of the kinetic moment �L of the planet evolves to the
position perpendicular to the orbital plane in the case of a circular orbit or close to this
position for elliptical orbits.

4. Conclusions
In this report, we have considered possible scenarios of the spin evolution of exoplanets

at close orbits. We have found the effect of the evolution of orientation of the exoplanet
spin to the position perpendicular to the orbital plane for circular orbits or close to this
orientation in the case of elliptical orbits. We have obtained the dynamical estimates
of the principal moment of inertia of some hot Jupiter planets, and their dynamical
flattening under the action of tidal forces from the parent stars.
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