ON THE CONSTRUCTION OF THE KUROSH LOWER RADICAL CLASS FOR ASSOCIATIVE RINGS

DARYL KREILING and TERRY L. JENKINS

(Received 18 november 1969)

Communicated by B. Mond

All rings considered are to be associative. For definitions not included in this paper see [2].

Let R be a ring and S a subring of R. We say that S is accessible through zero extensions if there exists

$$S = A_0 \lhd A_1 \lhd \cdots \lhd A_n = R$$

such that $(A_i/A_{i-1})^2 = (0), i = 1, 2, \dots n$.

We require the following lemma due to S. E. Dickson.

LEMMA. [1, p. 447]. Let R_1 be a homomorphically closed class of rings containing the zero rings and having the additional property that if $I \in R_1$ is an ideal of A with $(A/I)^2 = (0)$, it follows that $A \in R_1$ (i.e., R_1 is closed under extensions by zero rings), then $R_2 = \{A \mid \text{ each non-zero homomorphic image of } A$ contains a nonzero idea from $R_1\}$ is the lower radical class containing R_1 .

Let P be a non-empty, homomorphically closed class of rings. Define the class P_1 by,

 $P_1 = \{A \mid A \text{ has a subring } S \text{ accessible through zero extensions, where } S \in P\}.$

THEOREM 1. With P_1 as defined above P_1 is homomorphically closed, contains the class of all zero rings and is closed under extensions by zero rings.

PROOF. Let $A \in P_1$ and let ϕ be any homomorphism of A. Then there exists

 $A_0 \lhd A_1 \lhd \cdots \lhd A_n = A$

where $A_0 \in P$ and $(A_i/A_{i-1})^2 = (0)$. Hence,

$$A_0\phi \lhd A_1\phi \lhd \cdots \lhd A_n\phi = A\phi,$$

 $A_0\phi \in P$ and $(A_i\phi/A_{i-1}\phi)^2 = (0)$ so $A\phi \in P_1$ and P_1 is homomorphically closed. If A is a zero ring, $(0) \lhd A$, $(0) \in P$ and $(A/(0))^2 = (0)$ so $A \in P_1$.

Finally, let A be a ring such that there exists $I \triangleleft A$, $I \in P_1$ and $(A/I)^2 = (0)$. Since $I \in P_1$ there exists

362

$$I_0 \lhd I_1 \lhd \cdots \lhd I_n = I \lhd A,$$

 $I_0 \in P, (I_i/I_{i-1})^2 = (0), i = 1, 2, \dots n \text{ and } (A/I)^2 = (0).$ Hence, $A \in P_1$.

Let L(P) denote the Kurosh lower radical class determined by P. Define $P_{i} = \{A \mid each nonzero homomorphic image of A contains a nonzero ide$

 $P_2 = \{A | \text{ each nonzero homomorphic image of } A \text{ contains a nonzero ideal from } P_1.\}$

COROLLARY 1. P_2 is a radical class containing P and $L(P) \subseteq P_2$.

PROOF. That P_2 is a radical class follows from the Lemma and Theorem 1. Since L(P) is the smallest radical class containing $P, L(P) \subseteq P_2$.

COROLLARY 2. If L(P) (in particular if P) contains the class of zero rings, then $P_2 = L(P)$.

PROOF. Since L(P) contains all zero rings and is closed under extensions $(I \in L(P), R/I \in L(P) \text{ implies } R \in L(P))$ [4, p. 13], we have that $P_1 \subseteq L(P)$. Since L(P) is a radical class $P_2 \subseteq L(P)$. Hence, $P_2 = L(P)$.

REMARK. It is not true, in general, that $P_2 = L(P)$. For example, let P be the class of nontrivial simple rings plus the zero ring. Then L(P) contains no simple zero rings but P_2 contains all zero rings. Hence in this case $L(P) \neq P_2$.

THEOREM 2. If the class P is hereditary then P_2 is hereditary.

PROOF. Let $A \in P_1$ and let I be an ideal of A. Since $A \in P_1$ there exists

$$A_0 \lhd A_1 \lhd \cdots \lhd A_n = A,$$

where $A_0 \in P$ and $(A_i/A_{i-1})^2 = (0)$. Now

$$(A_0 \cap I) \lhd (A_1 \cap I) \lhd \cdots \lhd (A_n \cap I) = I.$$

Since P is hereditary and since $(A_0 \cap I) \lhd A_0, A_0 \cap I \in P$.

Moreover,

$$((A_i \cap I)/(A_{i-1} \cap I))^2 = (0)$$

so $I \in P_1$. Thus P_1 is hereditary. Leavitt [3, p. 29] has shown that if P_1 is hereditary, then P_2 is hereditary.

REMARK. It is known that a radical class of associative rings contains all zero rings if and only if it contains all nilpotent rings [4, p. 18]. Since the lower Baer radical class, B, is the smallest radical class containing the nilpotent rings [2, p. 59], we have that $B \subseteq P_2$.

THEOREM 3. If P contains no complete matrix rings over division rings then P_2 contains none. Hence, if A is a ring with descending chain condition (d.c.c.) on left ideals and W(A) denotes the classical Wedderburn radical of A, then $W(A) = P_2(A)$.

[2]

D. Kreiling and T. L. Jenkins

[3]

364

PROOF. If P contains no complete matrix ring over a division ring, then from the definition of P_1 it is clear that P_1 contains none. From the definition of P_2 it is then clear that P_2 contains no complete matrix rings over division rings. It then follows from [4, p. 19] that if A is a ring with d.c.c. on left ideals, then $W(A) = P_2(A)$.

References

- S. E. Dickson, 'A note on hypernilpotent radical properties for associative rings', Canadian Journal of Mathematics 19 (1967), 447-448.
- [2] N. J. Divinsky, Rings and Radicals (University of Toronto Press, Toronto, 1965).
- [3] Anthony E. Hoffman, *The Constructions of the General Theory of Radicals* (Doctoral Dissertation, University of Nebraska, 1966).
- [4] Terry L. Jenkins, *The Theory of Radicals and Radical Rings* (Doctoral Dissertation, University of Nebraska, 1965).

Western Illinois University University of Wyoming