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Abstract

We remark on pseudo-elliptic integrals and on exceptional function fields, namely function fields defined
over an infinite base field but nonetheless containing non-trivial units. Our emphasis is on some elementary
criteria that must be satisfied by a squarefree polynomial D{x) whose square root generates a quadratic
function field with non-trivial unit. We detail the genus 1 case.
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1. Pseudo-elliptic integrals

The surprising integral

6xdxf x4 + 4A:3 - 6x2 + Ax + 1

= log (A:6 + 12A:5 + 45A:4 + 44A:3 - 33A:2 + 43

+ (;c4 + 10A:3 + 30A:2 + 22A: - l l ) / * : 4 + 4A:3 - 6A:2 + 4 A : + 1

is a nice example of a class of pseudo-elliptic integrals

(1) f ^ ^ = log(a(x) + b(x)/D(x~)).

Here we take D to be a monic polynomial defined over Q, of even degree 2g + 2,

and not the square of a polynomial; / , a, and b denote appropriate polynomials. We
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336 Francesco Pappalardi and Alfred J. van der Poorten [2]

suppose a to be nonzero, say of degree m at least g + 1. We will see that necessarily
degb = m — g — 1, that d e g / = g, and that / has leading coefficient m. In our
example, m = 6 and g = 1.

Plainly, if (1) holds then it remains true with ~/D replaced by its conjugate —J~D.
Adding the two conjugate identities, we see that

/ •
(2) / Odx = log(a2 - Db2).

Thus a2 — Db2 is some constant k, and must be nonzero because D is not a square. In
other words, u = a 4- bs/~D is a nontrivial unit in the function field Q(x, -f~D); and
deg a = m implies deg b = m — g — 1 is immediate.

Differentiating (2) yields 2aa' - 2bb'D ~ b2D' — 0. Hence b \ aa\ and since
a and b must be relatively prime because u is a unit, it follows that b \ a'. Set
/ = a'/b, noting that indeed deg f = g and that / has leading coefficient m because
a and b must have the same leading coefficient. That common coefficient is 1 without
loss of generality since we may freely choose the constant produced by the indefinite
integration.

Moreover,

, ,- bD' , 2bb'D + b2D' , aa!
u =a:' 4- bWD 4- —r= = a'+ = = a' +2sfi5 Ib-JD bs/~D '

So, remarkably, u' = f(bJ~D + a)/<jD = fu/-J7).
Thus, to verify (1) it suffices to make the not altogether obvious substitution

u(x) = a + bJ~D, of course given that u is a unit of the order Q[JC, ~J~D ].

REMARK. The case g = 0, say D(x) = x2 + 2vx + w, is useful for orienting
oneself. Here (x + v) + \/~D is a unit, of norm v2 — w, and indeed

/
— - = = = = arsinh — = = = = log (x + v + -Jx2 4- 2vx + w).
VJC2 + 2vx + w Vw - v2 ^ '

Notice that deg / = 0 and has leading coefficient 1, as predicted.

2. Units in quadratic extension fields, and torsion

2.1. Number fields Let A 'bea positive integer, not a square, and set co = \/N. It
is easy to apply the Dirichlet box principle to prove that an order Z[co] of a quadratic
number field Q(co) contains nontrivial units. Indeed, by that principle there are
infinitely many pairs of integers (p, q) so that \qu> — p\ < l/q, whence \p2 — Nq2\ <
2y/TJ + 1. It follows, again by the box principle, that there is an integer / with
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[3] Pseudo-elliptic integrals 337

0 < |/| < 2-/N+ 1 so that the equation p2 — Nq2 = I has infinitely many pairs (p, q)
and (p1, q') of solutions with p = p' and q = q' (mod /). For each such distinct pair,
al = pp' — Nqq', bl = pq' — p'q, yields a2 — Nb2 = 1.

2.2. Function fields Just so, in the function field case already introduced, there are
infinitely many pairs of polynomials p(x) andq{x) sothatdeg(^\/D — p) < — degq,
whence deg(p2 — Dq2) < g. But a second application of the box principle fails when
the base field, Q in our introductory discussion, is infinite; because there are then
infinitely many distinct polynomials of bounded degree. In that case, the existence of
a nontrivial unit (thus, one not an element of the base field) is unusual happenstance.
Accordingly, we say that a function field Q(x, \fD) with a nontrivial unit a + b\J~D
is an exceptional function field and we call D an exceptional polynomial.

2.3. Torsion on the Jacobian of a hyperelliptic curve A slight change of viewpoint,
emphasising the hyperelliptic curve ff : y2 = D(x), may clarify matters. A function
u = a + by is a unit precisely if its divisor is supported only at infinity. However,
¥? has two points at infinity, say O and 5 (or oo_ and oo+ if one prefers) and so the
divisor of u is some multiple, say m(S — O), of the divisor S — O at infinity. Because
u is a function, this is to say that the class of 5 — O on the Jacobian of ^ is torsion of
order m. In the case deg D = 4, so genus g = 1 if D is squarefree, we may take O
as the zero of the elliptic curve ^ and report that the point 5 on 'tf is torsion of order
m = deg a.

3. Exceptional quadratic fields

It is appropriate to identify straightforward properties of the squarefree polynomial
D{x) — y2 sufficient or just necessary that the field Q(x, y) be exceptional.

Suppose, therefore, that QC*, y) is exceptional, so that we have a unit u = a + by
or, more helpfully, an identity b2D = a2 - k with a,b e Q[x] and k e Q \ {0}. It
will be helpful to set k = c2. We note immediately that the two polynomials a — c
and a + c, which are conjugate over Q if k is not a square, are relatively prime.

We have b2D = (a — c){a + c). Hence if k is not a square in Q, b must factor
in Q(c)[;t] as a norm dd, where the overline ~ denotes conjugation in the quadratic
extension Q(c), and D factorisesoverQ(c) as the product of the polynomial (a—c)/d2,
and of its conjugate. In particular, deg b = m — g — 1 must be even.

If, however, k is a square in Q (thus, in particular, always if deg b — m — g — 1 is
odd) then we seem to see only that b must have a factor d defined over Q so that both
2degd and 2m - (2g + 2) — 2degd do not exceed m = deg(a — c) = deg a. That
is, we have m — (2g + 2) < 2 deg d <m.
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THEOREM 3.1. Set y2 = D(x), with D monic, squarefree, and of degree 2g + 2.
Suppose the domain Q[x, y] contains a unit of degree m > g and norm k.

(a) If m and g have the same parity then k = c2 is a square.
(b) If k = c2 with c 6 Q, there is a positive integer s so that D is a product of

polynomials over Q of degrees m — 2s and 2g + 2 + 2s — m. Thus D is reducible
over Qifm is odd.
(c) Ifk= c2 is not a square in Q then D factorises over Q(c) as a product of two

polynomials conjugate over Q(c), so each of degree g + 1.

Note that the compactly written assertion (b) includes the possibility that D is
irreducible if m is even, and (since both the stated degrees must be nonnegative) that
it implicitly entails upper and lower bounds on the integer s. Assertion (c) implies
that the Galois group of D is restricted by #Gal(D) | 2((g + I)!)2. Thus, if g = 1 it
is the dihedral group on four elements or one of its subgroups.

We observe also that the statements of the theorem, which refer only to the poly-
nomial D and the torsion order m, do not include all the information that may be
extracted from the remarks preceding the proclamation of the theorem.

REMARK. It should be no surprise that none of the criteria of the theorem suffices to
guarantee obtaining an exceptional quadratic function field. We detail the case g = 1
in Section 6 at page 342 below.

4. Continued fractions

4.1. Number fields There is a well-known algorithm in the number field case
yielding the fundamental unit of the order 1[\fN]. As before set co = >/N and
suppose A is the integer part of co. The zero-th step in the continued fraction expansion
of a) + A is

(3) (o + A = 2A-(co + A)

and this and a typical consequent step is of the shape

(co+ Ph)/Qh=ah-(aJ+ Ph+\)/Qh\ in brief coh=ah-ph.

Thus Ph + Ph+I + (co + co) = ai,Qh, and because the next complete quotient a>A+1 is the
reciprocal of the remainder —~ph we must also have (oo+Ph+i)(co+ Ph+t) = —QhQh+\-
In particular, certainly Qh+I divides the norm (co + Ph+[)(co+ Ph+I).

Here the Ph and Qh are integers, and it is readily shown they all satisfy

(4) 0 < 2Ph + (co + to) < co- co, 0 < Qh < co-To
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[5] Pseudo-elliptic integrals 339

proving, by the box principle, that the continued fraction expansion of co is periodic.
Moreover, one notices that always both

(5) coh > 1 while — 1 < c5h < 0, and ph > 1 while — 1 < p;, < 0.

It follows that conjugation of the continued fraction tableau, replacing

coh=ah~ p,, by ph = ah - «,,,

again gives a continued fraction expansion — in particular, ah which began life as the
integer part of coh, also is the integer part of ph —reversing the order of the lines of
the original expansion. Because line zero (3) is symmetric it occurs in the expansion
of ph, and because the expansion of co + A is periodic it follows that it is in fact
purely periodic, moreover with a symmetry: if the period length is r then the word
a\, a2,..., ar_] must be a palindrome.

One obtains the fundamental unit a + bco by computing the convergent

(6) [A,aua2,...,ar-i]=a/b.

4.2. Function fields Mutatis mutandis, the function field argument is identical.
We set y2 = D(x) as before. Plainly we may write D as D = A2 + R, where
deg A = g + 1 and deg R < g; then A is the polynomial part of the Laurent series
y e Q( ( JC" ' ) ) . We expand y + A in complete analogy with the numerical case, but
now selecting the partial quotients ah as the polynomial part of the respective complete
quotients yh := (y + Ph)/Qh- The bounds (4) become

(4') deg Ph = g + l and deg Qh < g

and of course do not guarantee periodicity, because the base field Q is infinite. The
conditions (5) for reduction turn into

degCy + Ph) > deg Qh but deg(J + Ph) < deg Qh and therefore

d ( + Ph+i) > deg Qh but deg(y + Ph+l) < deg Qh.

As in the number field case, conjugation reverses the continued fraction tableaux.
Thus, if the expansion of y + A happens to be periodic then it has the symmetries of
the number field case and the continued fraction expansion yields a unit of norm 1,
given by the convergent (6). Note that in the function field case there is the possibility of
quasi-periodicity ah+r = chah, non-zero constants ch, see [19], rather than periodicity
proper: ah+r = ah.
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4.3. Quasi-periodicity Suppose now that D is exceptional in that the function field
Q(x, y) contains a unit u, of norm —K. By general principles that entails that some
Qi is ±K, say Qr = K with r odd. That is, line r of the continued fraction expansion
of y + A is

line r: yr := (y + A)/K = 2A/K - (y + A)/K ;

here we have used (5') to deduce that necessarily Pr = Pr+] = A. We recall that

line 0: y + A = 2A-(y + A).

By conjugation of the (r + l)-line tableau showing that y + A is quasi-periodic we
see immediately also that

line 2r: y2r := y + A = 2A - (y + A),

so that in any case if y + A has a quasi-periodic continued fraction expansion then it
is periodic of period twice the quasi-period. This is a result of Berry [3]; it applies to
arbitrary quadratic irrational functions whose trace is a polynomial. Other elements
(y + P)IQ of Q(x, y), with Q dividing the norm (y + P)(y + P), may be honest-
to-goodness quasi-periodic, that is, not also periodic. If y has trace t, rather than zero
trace, replace line zero of the expansion by y + A — t =2A — t — (y + A — t) and so
on in the story just told. To be able to do that t should of course be 'integral', that is,
a polynomial.

Further, if K ^ — 1 then r must be odd. To see that, notice the identity

B[Ca0, Bai,Ca2, Ba3, . . . ] = C[BaQ, Cau Ba2, C a 3 , . . . ] ,

reminding one how one multiplies a continued fraction expansion by some quantity;
this cute formulation of the multiplication rule is due to Schmidt [15]. The 'twisted
symmetry' occasioned by division by K, equivalent to the existence of a non-trivial
quasi-period, is noted by Christian Friesen [7].

In summary: if quasi-periodic it is periodic, and then the continued fraction ex-
pansion of y = y/D(x) has the symmetries of the more familiar number field case, as
well as the twisted symmetries occasioned by a nontrivial K.

REMARK. The conclusion just stated is surely well known. Certainly it is asserted
by Adams and Razar [1], but without the couple of lines of argument we add here.
The second of us is indebted to notes of Street [16], and related enquiries from Brian
Conrad, for being reminded of this unneeded gap in the literature and of the desirability
of detailing a straightforward argument. A much clumsier version of the story told
here is given in [19], however with additional introductory details that may be helpful
to the reader.
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THEOREM 4.1. Set ft : y2 = D(x), with D monk, squarefree, and of degree 2g+ 2.
Suppose the divisor at infinity on the Jacobian of the curve 'tf is torsion of order m > 1,
equivalently the domain Q[JC, y] is exceptional in containing nontrivial units, and its
fundamental unit u = a + by is of degree m, and say of norm k. Denote the continued
fraction expansion ofy by y = [A, a\, a2, a 3 , . . . ]. Then, further to Theorem 3.1,

(a) if [A, <2[, a2,..., ar_i] = a/b with r even, then k = 1;
(b) ifk = c2 with c € Q, then the polynomial b factorises over Q as say b = d+d^,

and D is reducible over Q because it factorises as the product of the nontrivial
polynomials (a + c)/d2_ and (a — c)/dl_\
(c) ifk = c2 is not a square in Q then the polynomial b factorises over Q(c) as a

product b = dd of polynomials conjugate over Q(c), and D factorises over Q(c) as
a product of the two polynomials (a + c)/d2 and (a + c)/d 2.

For g = 1, we must have m = r + 1 by the bounds (4'), so the parities of m and r are
of course different; in particular, m odd entails the norm k = 1. One readily notices
that symmetry implies that always if r is odd the parities of m and g are different; the
converse is not true if g > 1. For the rest, Theorem 4.1 fills in details omitted from
Theorem 3.1.

An important such 'detail', is the observation that if, say, 2degd+ = m s o ^ =
a + c, then Dd2_ = a - c = d2_ — 2c. So also d+ + yd- is a unit of Q[x, y] plainly
contradicting the minimality of m, that is, that u is a fundamental unit.

Furthermore, we see that D has a factor of degree at most g if the period length
r = 2h is even. For then, by conjugation, the line

(y + Ph)/Qh =ah-(y + Ph+i)/Qh

is symmetric, that is Ph+i = Ph, and so Qh divides Ph. But then Qh also divides the
norm (y + A)(y + Ph) and that entails Qh is a factor of D.

There are contexts in which one would like to be certain that a polynomial D is not
exceptional. Our results have the following consequence.

COROLLARY 4.2. If a monk polynomial D of even degree at least 4 is irreducible
and with Galois group the full symmetric group then D is not exceptional; that is, the
continued fraction expansion of \/~D is not periodic.

5. Exceptional polynomials

In practice, the start of the continued fraction expansion of y — \fi5 quickly reveals
whether or not D is exceptional. For example, it is shown in [1] for g = 1 that in
yh = (y + Ph)j Qh the divisor of Qh is h + 1 times the divisor at infinity. Thus, by well
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known properties of Neron-Tate height, the number of decimal digits of the numerators
and denominators of the coefficients of Qh (and then also of Ph) is O(h2) unless the
divisor at infinity is torsion. Moreover, in practice that explosion in complexity of Qh

is immediately evident; see [17] for an example. Moreover, that same explosion in
complexity occurs for arbitrary g > 0 since it follows from addition on the Jacobian
of the curve y2 = D(x) being given by composition of quadratic forms, that is, by the
continued fraction expansion of y; [5] or [ 11 ] explain this connection. In any case, [4],
the matter of explosion of complexity of Pade approximants of algebraic functions of
positive genus is far more general yet.

In the number field case, the fundamental unit of an order Z[fco] is some power of
the fundamental unit of the domain of all integers of Q(co). For function fields over
a base field of characteristic zero, however, an order Q[JC, f(x)y] need not possess a
unit at all, notwithstanding that D = y2 be exceptional. In other words, periodicity
of y does not at all guarantee quasi-periodicity of fy for a polynomial / of positive
degree. The requirement in our theorems that D be squarefree thus really does matter.
Specifically, although the continued fraction expansion is trivially quasi-periodic for
deg D = 2, thus y2 — D of genus g = 0, this may not hold for y2 = f2D, even
though that curve is of genus 0. There are interesting papers, see [9] and its references,
discussing this issue.

6. The quartic case

The case g = 1 is completely known over Q, see [18] and its references, or
for example [2]. In particular, one knows by Mazur's Theorem [13] that the only
possibilities for m are m = 2, 3 , . . . , 10, and 12. From [20] one learns that in the
cases m = 10 and m = 12 it happens that in fact k = c2 never is the square of a
rational; that is, then c is never rational.

For torsion m > 4, one may take Dm(jc)as (x2 + v — w2)2 + 4v(x + w) without loss
of generality; D3(x) = (x2 -w2)2+4v(x + w), while D2{x) = (x2 + u)2 + 4w. Here
u, v and w are rational parameters. For each m — 4, 5 , . . . , 10, 12 these parameters
are rational functions, detailed in [20], in a single rational parameter t.

THEOREM 6.1. Set^ : y2 = Dm(x;t), with Dm monic, squarefree, and of degree 4.
Suppose the divisor at infinity on the Jacobian of the curve ^m is torsion of exact order
m > 3. Then Dm(x; t) is reducible over Q ifm is odd or in the cases listed in Table 2.
Otherwise, its Galois group is the dihedral group 3>4, other than for the exceptions
listed in Table 1.

PROOF. We know from the preceding theorems that Dm(x, t) is reducible i fm is
odd or if the norm km (t) of the fundamental unit happens anyhow to be a square.
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Specifically, [20] reports that *„(/) = 4(r — 1)(2/ — l)2/r3, /t6(0 = 4t, and k4(t) = 4t,
explaining several of the entries in Table 2. Thus we may suppose that k = c2 with c
quadratic irrational over Q.

The Galois group GD of D = Dm is the dihedral group f̂ 4 exactly when the zeros
of D are a,, a3, a2 = a3, and a4 = au where ~ = (14)(23) is conjugation over Q(c).
Then GD is generated by that conjugation and a = (1234).

Conversely, given that D factorises over Q(c), the cubic resolvent CD of D must
have a rational zero a , ^ + a2a4. The other two zeros «ia2 + «3«4 and oria4 + a2«3
are invariant under the conjugation but are transposed by a and, for that matter, also
by the 4-cycle r = (1243).

If these other zeros of CD are rational then both a and r must be involutions
commuting with the conjugation. Then, recalling that D is irreducible over Q, its
Galois group G o is the Viergruppe y. If the pair of zeros is irrational but D factorises
over the splitting field of CD then r generates GD and the Galois group of D is the
cyclic group ^4. Incidentally, we use the helpful remarks [10, Algorithm 4.2 on
page 10], explicitly to distinguish the case ^ from %.

Even calculations We investigate each case m = 12, 10, 8, 6, 4 in detail using the
data listed in [20]. For example, the cases m = 12 and m = 10 are given by

vl2(t) = (r - l)(2f - l)(3t2 - 3/ + l)(2t2 -2t + l)/t4;

u;I2(f) = -(6f4 - 16/3 + 14f2 - 6/

Here the parameter t runs through all 'regular' elements of Q; in both cases the
irregular rational values are t = 1, t = 1 /2 , and t = 0.

By Theorem 3.1 (c) we know that Dm(x;t) factorises over Q(c); here of course
c = c(t) depends the rational parameter t. If Dm(x;t) also factorises over Q it must
do so as a product (x2 — px + q)(x2 + px + q'). One solves (rather, Maple [12]
solves) this condition for p = p(t), in each case obtaining two polynomial equations
in p and t, with one an elliptic curve and the other a quadratic in an auxiliary variable.
The condition that its discriminant be a square also is an elliptic curve.

In the case m = 12, both of these equations ultimately transform birationally (here
PARI-GP [14] lends a hand) to the minimal model y2 = x* - x2 + x. This is is 24A4
in Cremona's tables [6]; thus with conductor 24. It has rank 0 and cyclic torsion
of order 4; the torsion points are (0, 0), (1, 1), (1, —1), and oo and correspond to
irregular values oft. So Dl2(x\ t) is irreducible over Q for all regular t € Q.

When, instead, we check the cubic resolvent, for example when m = 10, we find
that its rational zero is (2?3 - At2 + 4t - 1)(2/3 - At2 + l)/2(f2 - 3r + I)2 and if the
discriminant of the remaining quadratic factor of CD is a square then the elliptic curve
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s2 — (At2 — 2t — 1)(2? — 1) must have admissible rational points. However, its minimal
model y2 = x3 + x2 — x is 20A2 in Cremona's tables and it has rank 0 and cyclic
torsion of order 6. The torsion points are (0, 0), (±1 , ±1), and oo and correspond to
irregular values of t.

Following both the alternative approaches for each of m = 12 and m = 10 verifies
a result we have used above, to wit Tran's result [20, page 400$r] that neither Ki2(t)
nor K\o(O — see Section 4.3 on page 340 above — can be the square of a rational for
regular/ € Q.

For these and the remaining even cases m — 8, m = 6, and m — 4, where we know
that k = Km(t) may be a square for some regular t, we followed both approaches and
found that when Dm{x\ t) is irreducible its Galois group GD is the dihedral group %
except in the cases encapsulated in the following table.

TABLE 1.

m

4

6

8

10

12

(/(/

( ( / - 1 X 2 / -

( / 3 ( 2 / - l ) (z

2/3 - 2/2 -

((/ - 1)(2/ - 1)(3/

- ( 6 / 4 - 16/3 +

(v, w)

it, 1/2)

- 1), 1 -

1 ) , - ( 2 / 2

- D/(/2

-2 / + 1/
2 - 3 / +

14r2 - 6/

t/2)
-4 /+D/2 / )

- 3 / +I)2,
2(/2-3/ + l))
l)(2/2-2/ + l)//4,
+ D/2/3)

Go

t =

t ~ 8/(9 -s2)

-

-

-

GD=VA

/ = -.l/(.52+l)
-

-

*

-

Moreover, for m even, Dm(x, t) is irreducible except in the following cases:

TABLE 2.

m

4

6

8

(i>, "))

(/, 1/2)

( / ( / - I ) , 1 - / / 2 )

( ( / - 1 X 2 / - 1 ) ,

D = f\h

/ l ^ 2 '
I454-.2

[ I - , 2

' - | (l+.v2)2

, . w . + ,,

D = Uhh
. 2 v 2

t

D = fxhhU

—

The notes * and t refer to two special cases we resolved not to attempt to resolve.
We found that rational points (f, u) on the curve

M2 = (/ - i)(4r2 - 2JC - l)(2r - l)(t2 - 3t + \)t
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give rise to cases Di0(x;t) with Galois group f̂ 4; and rational points on the curve

give cases where D8(x;O splits into three factors over Q. We expect that neither
curve provides regular rational such t.

We leave the degenerate case m = 2, where D(x; u, k) = (x2 + u)2 — k, as an easy
exercise. •

Odd remarks In the odd cases m = 9, m = 7, and m = 5, the final remark following
Theorem 4.1 at page 341, together with the detailed continued fraction expansions in
[20], shows that

(x - |(f3 - 3r2 + At - 1)) divides D9(x;t),

(x + ±(t2-3t+ 1)) divides D7(x;t),

(x - \(t + 1)) divides D5(x;t);

here

v9(/) = / 2 ( / - l ) ( / 2 - / + 1 ) , w9{t) = - ± ( / 3 -t2 - 1), ( e Q \ { 0 , 1 ] ,

vj(t) = t2(t - 1), w7(t) = -\(t2-t-\), f € Q \ { 0 , 1],

vs(t) = t, w5(t) - -\(t - 1), ( e Q \ ( 0 ) .

As always, the data (from [20]) must be used modulo typos. Worse, the notation
of [20] is slightly different from that of here and in [18]; its v is our 4v.

For completeness we remark that in these cases the residual cubic factor Gm(x; t)
is reducible in the case m = 5 and t = s2(s + l)/(s + 1) and that then the surviving
quadratic factor is irreducible. With finitely many possible exceptions, namely un-
likely rational points on certain curves of genus more than 1, the Galois groups of the
irreducible Gm{x\t) is always J^3.

Specifically, the respective discriminants Fm(t) of the cubic factors are

F-i(t) = t(t - l)(f3 - 8/2 + 5/4- 1),

F9(t) = /( / - l)(r2 - / + 1)(/3 - 6/2 + 3/ + 1), and

F 5 ( t ) = t(t-

The last case is Cremona's curve 20A2, which has rank 0 and torsion 2. We saw that
G-i{x;t) is irreducible because a putative rational zero corresponds to a rational point
on the curve 14A4 with rank 0 and torsion 2. We found a complicated genus 2 curve
not warranting report whose rational points might allow G9(x\t) to factorise.
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The case m — 3 is degenerate; however, plainly

D3(x; v, w) = (x2 - w2)2 + 4v(x + w)

= (x + w)(x3 - vox2 - w2x - Av + iu3) =: (x + w)F.

If F is irreducible, then its Galois group is s/3 if and only if v = &t2w3/(27t2 + 1).
Further, F has a zero r when v = (w + r)(w — r)2/4; specifically

F = (x - r)(x2 — (w - r)x - w2 — rw + r2).

F splits as the product of three linear factors when v = 8iu3(s2 — \)2/({s2 + 3)3). The
reader may find it a useful exercise to extract other details.

References

[1] W. W. Adams and M. J. Razar, 'Multiples of points on elliptic curves and continued fractions'.
Proc. London Math. Soc. 41 (1980), 481^198.

[2] R. M. Avanzi and U. M. Zannier, 'Genus one curves defined by separated variable polynomials
and a polynomial pell equation', ActaArith. 99 (2001), 227-256.

[3] T. G. Berry, 'On periodicity of continued fractions in hyperelliptic function fields', Arch. Math. 55
(1990), 259-266.

[4] E. Bombieri and P. B. Cohen, 'Siegel's lemma, Pade approximations and Jacobians', Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 155-178.

[5] D. G. Cantor, 'Computing in the Jacobian of a hyperelliptic curve', Math. Comp. 48 (1987),
95-101.

[6] J. E. Cremona, Algorithms for modular elliptic curves (Cambridge Univ. Press, 1997). Available
on-line at http://www.maths.nott.ac.uk/personal/jec/book/amec.html

[7] C. Friesen, 'Continued fraction characterization and generic ideals', in: The arithmetic of function
fields (Columbus, OH, 1991) (eds. D. Goss, D. R. Hayes and M. I. Rosen), Ohio State Univ. Math.
Res. Inst. Publ. 2 (Walter de Gruyter, Berlin, 1992) pp. 465^174.

[8] D. Goss, D. R. Hayes and M. I. Rosen (eds.). The arithmetic of function fields (Columbus, OH,
1991), Ohio State Univ. Math. Res. Inst. Publ. 2 (Walter de Gruyter, Berlin, 1992).

[9] I. Hardy, Y. Hellegouarch and R. Paysant-Le-Roux, 'Fractions continues normales dans un corps
defonctionshyperelliptiques'./lcra/lntf!. 101(2002), 19-37.

[10] A. D. Healy, 'Resultants, resolvents, and computation of Galois groups', available on-line at
http://www.alexhealy.net/papers/math250a.pdf.

[11] K. E. Lauter, 'The equivalence of the geometric and algebraic group laws for jacobians of genus
2 curves', in: Proceedings of the conferences in memory of Ruth Michler, AMS Contemp. Math.
Series (Amer. Math. Soc, Providence, RI, to appear).

[12] Maple, http://www.maplesoft.com/
[13] B. Mazur, 'Modular curves and the Eisenstein ideal', Inst. Hautes Etudes Sci. Publ. Math. 47

(1977), 33-186.
[14] PARI-GP, see http://pari.math.u-bordeaux.fr
[15] W. M. Schmidt, 'On continued fractions and diophantine approximation in power series fields',

ActaArith. 9(2000), 139-166.

https://doi.org/10.1017/S1446788700010934 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010934


[13] Pseudo-elliptic integrals 347

[16] E. Street, 'Pell's equation and Laurent fields', manuscript, 2003.
[17] A. J. van der Poorten, 'Non-periodic continued fractions in hyperelliptic function fields', Bull.

Austral. Math. Soc. 64 (2001), 331-343.
[18] , 'Periodic continued fractions and elliptic curves', in: High primes and misdemeanours:

lectures in honour of the 60th birthday of Hugh Cowie Williams (eds. A. van der Poorten and
A. Stein), Fields Institute Communications Series (Amer. Math. Soc, Providence, RI, 2004) pp.
353-365.

[19] A. J. van der Poorten and X. C. Tran, 'Quasi-elliptic integrals and periodic continued fractions',
Monatshefte Math. 131 (2000), 155-169.

[20] , 'Periodic continued fractions in elliptic function fields', in: Algorithmic number theory
(Proc. Fifth International Symposium, ANTS-V, Sydney, NSW, Australia July 2002) (eds. C. Fieker
and D. R. Kohel), Lecture Notes in Comput. Sci. 2369 (Springer, Berlin, 2002) pp. 390-404.

Dipartimento di Matematica

Universita degli Studi Roma Tre

L.go San Leonardo Murialdo, 1

1-00146 Roma

Italy

e-mail: pappa@mat.uniroma3.it

Centre for Number Theory Research

1 Bimbil Place, Killara

Sydney NSW 2071

Australia

e-mail: alf@math.mq.edu.au

https://doi.org/10.1017/S1446788700010934 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700010934

